training progress

This commit is contained in:
Dobromir Popov
2025-11-10 20:01:07 +02:00
parent a2d34c6d7c
commit 999dea9eb0
2 changed files with 116 additions and 38 deletions

View File

@@ -337,8 +337,8 @@ class RealTrainingAdapter:
# Get training config # Get training config
training_config = test_case.get('training_config', {}) training_config = test_case.get('training_config', {})
timeframes = training_config.get('timeframes', ['1s', '1m', '1h', '1d']) timeframes = training_config.get('timeframes', ['1s', '1m', '1h', '1d'])
# Reduce sequence length to avoid OOM - 200 candles is more reasonable # RESTORED: 200 candles per timeframe (memory leak fixed)
# With 5 timeframes, this gives 1000 total positions vs 3000 with 600 candles # With 5 timeframes * 200 candles = 1000 total positions
candles_per_timeframe = training_config.get('candles_per_timeframe', 200) # 200 candles per batch candles_per_timeframe = training_config.get('candles_per_timeframe', 200) # 200 candles per batch
# Determine secondary symbol based on primary symbol # Determine secondary symbol based on primary symbol
@@ -586,20 +586,24 @@ class RealTrainingAdapter:
logger.info(f" Test case {i+1}: Added {len(hold_samples)} HOLD samples (during position)") logger.info(f" Test case {i+1}: Added {len(hold_samples)} HOLD samples (during position)")
# Create EXIT sample (where model SHOULD exit trade) # Create EXIT sample (where model SHOULD exit trade)
exit_timestamp = test_case.get('annotation_metadata', {}).get('exit_timestamp') # Exit info is in expected_outcome, not annotation_metadata
if exit_timestamp: exit_price = expected_outcome.get('exit_price')
if exit_price:
# For now, use same market state (TODO: fetch market state at exit time)
# The model will learn to exit based on profit_loss_pct and position state
exit_sample = { exit_sample = {
'market_state': market_state, # TODO: Get market state at exit time 'market_state': market_state, # Using entry market state as proxy
'action': 'CLOSE', 'action': 'CLOSE',
'direction': expected_outcome.get('direction'), 'direction': expected_outcome.get('direction'),
'profit_loss_pct': expected_outcome.get('profit_loss_pct'), 'profit_loss_pct': expected_outcome.get('profit_loss_pct'),
'entry_price': expected_outcome.get('entry_price'), 'entry_price': expected_outcome.get('entry_price'),
'exit_price': expected_outcome.get('exit_price'), 'exit_price': exit_price,
'timestamp': exit_timestamp, 'timestamp': test_case.get('timestamp'), # Entry timestamp (exit time not stored separately)
'label': 'EXIT' # Exit signal 'label': 'EXIT', # Exit signal
'in_position': True # Model is in position when deciding to exit
} }
training_data.append(exit_sample) training_data.append(exit_sample)
logger.info(f" Test case {i+1}: EXIT sample @ {exit_sample['exit_price']} ({exit_sample['profit_loss_pct']:.2f}%)") logger.info(f" Test case {i+1}: EXIT sample @ {exit_price} ({expected_outcome.get('profit_loss_pct', 0):.2f}%)")
# Create NEGATIVE samples (where model should NOT trade) # Create NEGATIVE samples (where model should NOT trade)
# These are candles before and after the signal (±15 candles) # These are candles before and after the signal (±15 candles)
@@ -1186,12 +1190,13 @@ class RealTrainingAdapter:
timeframes = market_state.get('timeframes', {}) timeframes = market_state.get('timeframes', {})
secondary_timeframes = market_state.get('secondary_timeframes', {}) secondary_timeframes = market_state.get('secondary_timeframes', {})
# Target sequence length - use actual data length (typically 200 candles) # Target sequence length - RESTORED to 200 (memory leak fixed)
# Find the first available timeframe to determine sequence length # With 5 timeframes * 200 candles = 1000 sequence positions
target_seq_len = 200 # Default # Memory management fixes allow full sequence length
target_seq_len = 200 # Restored to original
for tf_data in timeframes.values(): for tf_data in timeframes.values():
if tf_data and 'close' in tf_data and len(tf_data['close']) > 0: if tf_data and 'close' in tf_data and len(tf_data['close']) > 0:
target_seq_len = min(len(tf_data['close']), 200) # Cap at 200 to avoid OOM target_seq_len = min(len(tf_data['close']), 200) # Cap at 200
break break
# Extract each timeframe (returns None if not available) # Extract each timeframe (returns None if not available)
@@ -1409,12 +1414,14 @@ class RealTrainingAdapter:
# For HOLD samples, expect no price change # For HOLD samples, expect no price change
future_price_ratio = 0.0 future_price_ratio = 0.0
future_prices = torch.tensor([future_price_ratio], dtype=torch.float32) # FIXED: Shape must be [batch, 1] to match price_head output
future_prices = torch.tensor([[future_price_ratio]], dtype=torch.float32) # [1, 1]
# Trade success (1.0 if profitable, 0.0 otherwise) # Trade success (1.0 if profitable, 0.0 otherwise)
# Shape must be [batch_size, 1] to match confidence head output # Shape must be [batch_size, 1] to match confidence head output [batch, 1]
profit_loss_pct = training_sample.get('profit_loss_pct', 0.0) profit_loss_pct = training_sample.get('profit_loss_pct', 0.0)
trade_success = torch.tensor([[1.0 if profit_loss_pct > 0 else 0.0]], dtype=torch.float32) # FIXED: Ensure shape is [1, 1] not [1] to match BCELoss requirements
trade_success = torch.tensor([[1.0 if profit_loss_pct > 0 else 0.0]], dtype=torch.float32) # [1, 1]
# Return batch dictionary with ALL timeframes # Return batch dictionary with ALL timeframes
batch = { batch = {
@@ -1580,8 +1587,8 @@ class RealTrainingAdapter:
logger.info(f" Converted {len(training_data)} samples to {len(converted_batches)} training batches") logger.info(f" Converted {len(training_data)} samples to {len(converted_batches)} training batches")
# Use batch size of 1 to avoid OOM with large sequence lengths # Use batch size of 1 to avoid OOM with large sequence lengths
# With 5 timeframes * 600 candles = 3000 sequence positions per sample, # With 5 timeframes * 100 candles = 500 sequence positions per sample
# even batch_size=5 causes 15,000 positions which is too large for GPU # Batch size of 1 ensures we don't exceed GPU memory (8GB)
mini_batch_size = 1 # Process one sample at a time to avoid OOM mini_batch_size = 1 # Process one sample at a time to avoid OOM
def _combine_batches(batch_list: List[Dict[str, 'torch.Tensor']]) -> Dict[str, 'torch.Tensor']: def _combine_batches(batch_list: List[Dict[str, 'torch.Tensor']]) -> Dict[str, 'torch.Tensor']:
@@ -1623,6 +1630,10 @@ class RealTrainingAdapter:
epoch_accuracy = 0.0 epoch_accuracy = 0.0
num_batches = 0 num_batches = 0
# Clear CUDA cache before epoch
if torch.cuda.is_available():
torch.cuda.empty_cache()
for i, batch in enumerate(grouped_batches): for i, batch in enumerate(grouped_batches):
try: try:
# Determine if this is an accumulation step or optimizer step # Determine if this is an accumulation step or optimizer step
@@ -1639,16 +1650,41 @@ class RealTrainingAdapter:
epoch_accuracy += batch_accuracy epoch_accuracy += batch_accuracy
num_batches += 1 num_batches += 1
# Log first batch and every 10th batch for debugging # Log first batch and every 5th batch for debugging
if (i + 1) == 1 or (i + 1) % 10 == 0: if (i + 1) == 1 or (i + 1) % 5 == 0:
logger.info(f" Batch {i + 1}/{len(grouped_batches)}, Loss: {batch_loss:.6f}, Action Acc: {batch_accuracy:.2%}, Candle Acc: {batch_candle_accuracy:.2%}") logger.info(f" Batch {i + 1}/{len(grouped_batches)}, Loss: {batch_loss:.6f}, Action Acc: {batch_accuracy:.2%}, Candle Acc: {batch_candle_accuracy:.2%}")
else: else:
logger.warning(f" Batch {i + 1} returned None result - skipping") logger.warning(f" Batch {i + 1} returned None result - skipping")
# Clear CUDA cache after optimizer step (not accumulation step) # CRITICAL FIX: Delete batch tensors immediately to free GPU memory
if torch.cuda.is_available() and not is_accumulation_step: # This prevents memory accumulation during gradient accumulation
for key in list(batch.keys()):
if isinstance(batch[key], torch.Tensor):
del batch[key]
del batch
# CRITICAL: Clear CUDA cache after EVERY batch to prevent memory accumulation
# This is essential with large models and limited GPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache() torch.cuda.empty_cache()
# After optimizer step (not accumulation), force garbage collection
if not is_accumulation_step:
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.synchronize()
except torch.cuda.OutOfMemoryError as oom_error:
logger.error(f" CUDA OOM in batch {i + 1}: {oom_error}")
# Aggressive memory cleanup on OOM
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Reset optimizer state to prevent corruption
trainer.optimizer.zero_grad(set_to_none=True)
logger.warning(f" Skipping batch {i + 1} due to OOM, optimizer state reset")
continue
except Exception as e: except Exception as e:
logger.error(f" Error in batch {i + 1}: {e}") logger.error(f" Error in batch {i + 1}: {e}")
import traceback import traceback

View File

@@ -23,19 +23,19 @@ logger = logging.getLogger(__name__)
@dataclass @dataclass
class TradingTransformerConfig: class TradingTransformerConfig:
"""Configuration for trading transformer models - SCALED TO 46M PARAMETERS""" """Configuration for trading transformer models - WITH PROPER MEMORY MANAGEMENT"""
# Model architecture - SCALED UP # Model architecture - RESTORED to original size (memory leak fixed)
d_model: int = 1024 # Model dimension (2x increase) d_model: int = 1024 # Model dimension
n_heads: int = 16 # Number of attention heads (2x increase) n_heads: int = 16 # Number of attention heads
n_layers: int = 12 # Number of transformer layers (2x increase) n_layers: int = 12 # Number of transformer layers
d_ff: int = 4096 # Feed-forward dimension (2x increase) d_ff: int = 4096 # Feed-forward dimension
dropout: float = 0.1 # Dropout rate dropout: float = 0.1 # Dropout rate
# Input dimensions - ENHANCED # Input dimensions - RESTORED
seq_len: int = 150 # Sequence length for time series (1.5x increase) seq_len: int = 200 # Sequence length for time series
cob_features: int = 100 # COB feature dimension (2x increase) cob_features: int = 100 # COB feature dimension
tech_features: int = 40 # Technical indicator features (2x increase) tech_features: int = 40 # Technical indicator features
market_features: int = 30 # Market microstructure features (2x increase) market_features: int = 30 # Market microstructure features
# Output configuration # Output configuration
n_actions: int = 3 # BUY, SELL, HOLD n_actions: int = 3 # BUY, SELL, HOLD
@@ -358,6 +358,7 @@ class AdvancedTradingTransformer(nn.Module):
# SERIAL: Shared pattern encoder (learns candle patterns ONCE for all timeframes) # SERIAL: Shared pattern encoder (learns candle patterns ONCE for all timeframes)
# This is applied to each timeframe independently but uses SAME weights # This is applied to each timeframe independently but uses SAME weights
# RESTORED: Original dimensions (memory leak fixed)
self.shared_pattern_encoder = nn.Sequential( self.shared_pattern_encoder = nn.Sequential(
nn.Linear(5, config.d_model // 4), # 5 OHLCV -> 256 nn.Linear(5, config.d_model // 4), # 5 OHLCV -> 256
nn.LayerNorm(config.d_model // 4), nn.LayerNorm(config.d_model // 4),
@@ -1163,12 +1164,13 @@ class TradingTransformerTrainer:
self.model.train() self.model.train()
# Only zero gradients if not accumulating # Only zero gradients if not accumulating
# Use set_to_none=True for better memory efficiency
if not accumulate_gradients: if not accumulate_gradients:
self.optimizer.zero_grad() self.optimizer.zero_grad(set_to_none=True)
# Move batch to device WITHOUT cloning to avoid version tracking issues # Move batch to device WITHOUT cloning to avoid version tracking issues
# The detach().clone() was causing gradient computation errors # The detach().clone() was causing gradient computation errors
batch = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v batch = {k: v.to(self.device, non_blocking=True) if isinstance(v, torch.Tensor) else v
for k, v in batch.items()} for k, v in batch.items()}
# Use automatic mixed precision (FP16) for memory efficiency # Use automatic mixed precision (FP16) for memory efficiency
@@ -1189,18 +1191,34 @@ class TradingTransformerTrainer:
# Calculate losses # Calculate losses
action_loss = self.action_criterion(outputs['action_logits'], batch['actions']) action_loss = self.action_criterion(outputs['action_logits'], batch['actions'])
price_loss = self.price_criterion(outputs['price_prediction'], batch['future_prices'])
# FIXED: Ensure shapes match for MSELoss
price_pred = outputs['price_prediction']
price_target = batch['future_prices']
# Both should be [batch, 1], but ensure they match
if price_pred.shape != price_target.shape:
logger.debug(f"Reshaping price target from {price_target.shape} to {price_pred.shape}")
price_target = price_target.view(price_pred.shape)
price_loss = self.price_criterion(price_pred, price_target)
# Start with base losses - avoid inplace operations on computation graph # Start with base losses - avoid inplace operations on computation graph
total_loss = action_loss + 0.1 * price_loss # Weight auxiliary task total_loss = action_loss + 0.1 * price_loss # Weight auxiliary task
# CRITICAL FIX: Scale loss for gradient accumulation
# This prevents gradient explosion when accumulating over multiple batches
if accumulate_gradients:
# Assume accumulation over 5 steps (should match training loop)
total_loss = total_loss / 5.0
# Add confidence loss if available # Add confidence loss if available
if 'confidence' in outputs and 'trade_success' in batch: if 'confidence' in outputs and 'trade_success' in batch:
# Both tensors should have shape [batch_size, 1] for BCELoss # Both tensors should have shape [batch_size, 1] for BCELoss
confidence_pred = outputs['confidence'] confidence_pred = outputs['confidence']
trade_target = batch['trade_success'].float() trade_target = batch['trade_success'].float()
# Ensure both are 2D tensors [batch_size, 1] # FIXED: Ensure both are 2D tensors [batch_size, 1]
# Handle different input shapes robustly # Handle different input shapes robustly
if confidence_pred.dim() == 0: if confidence_pred.dim() == 0:
# Scalar -> [1, 1] # Scalar -> [1, 1]
@@ -1208,6 +1226,9 @@ class TradingTransformerTrainer:
elif confidence_pred.dim() == 1: elif confidence_pred.dim() == 1:
# [batch_size] -> [batch_size, 1] # [batch_size] -> [batch_size, 1]
confidence_pred = confidence_pred.unsqueeze(-1) confidence_pred = confidence_pred.unsqueeze(-1)
elif confidence_pred.dim() == 3:
# [batch_size, seq_len, 1] -> [batch_size, 1] (take last timestep)
confidence_pred = confidence_pred[:, -1, :]
if trade_target.dim() == 0: if trade_target.dim() == 0:
# Scalar -> [1, 1] # Scalar -> [1, 1]
@@ -1292,11 +1313,31 @@ class TradingTransformerTrainer:
'learning_rate': self.scheduler.get_last_lr()[0] 'learning_rate': self.scheduler.get_last_lr()[0]
} }
# Delete large tensors to free memory immediately # CRITICAL: Delete large tensors to free memory immediately
# This prevents memory accumulation across batches
del outputs, total_loss, action_loss, price_loss, predictions, accuracy del outputs, total_loss, action_loss, price_loss, predictions, accuracy
if torch.cuda.is_available():
torch.cuda.empty_cache()
return result return result
except torch.cuda.OutOfMemoryError as oom_error:
logger.error(f"CUDA OOM in train_step: {oom_error}")
# Aggressive cleanup on OOM
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Reset optimizer state to prevent corruption
self.optimizer.zero_grad(set_to_none=True)
# Return zero loss to continue training
return {
'total_loss': 0.0,
'action_loss': 0.0,
'price_loss': 0.0,
'accuracy': 0.0,
'candle_accuracy': 0.0,
'learning_rate': self.scheduler.get_last_lr()[0] if hasattr(self, 'scheduler') else 0.0
}
except Exception as e: except Exception as e:
logger.error(f"Error in train_step: {e}", exc_info=True) logger.error(f"Error in train_step: {e}", exc_info=True)
# Clear any partial computations # Clear any partial computations
@@ -1309,6 +1350,7 @@ class TradingTransformerTrainer:
'action_loss': 0.0, 'action_loss': 0.0,
'price_loss': 0.0, 'price_loss': 0.0,
'accuracy': 0.0, 'accuracy': 0.0,
'candle_accuracy': 0.0,
'learning_rate': self.scheduler.get_last_lr()[0] if hasattr(self, 'scheduler') else 0.0 'learning_rate': self.scheduler.get_last_lr()[0] if hasattr(self, 'scheduler') else 0.0
} }