new training process and changes to the models (wip)
This commit is contained in:
@ -28,14 +28,14 @@ class DQNAgent:
|
||||
window_size: int,
|
||||
num_features: int,
|
||||
timeframes: List[str],
|
||||
learning_rate: float = 0.001,
|
||||
gamma: float = 0.99,
|
||||
learning_rate: float = 0.0005, # Reduced learning rate for more stability
|
||||
gamma: float = 0.97, # Slightly reduced discount factor
|
||||
epsilon: float = 1.0,
|
||||
epsilon_min: float = 0.01,
|
||||
epsilon_decay: float = 0.995,
|
||||
memory_size: int = 10000,
|
||||
batch_size: int = 64,
|
||||
target_update: int = 10):
|
||||
epsilon_min: float = 0.05, # Increased minimum epsilon for more exploration
|
||||
epsilon_decay: float = 0.9975, # Slower decay rate
|
||||
memory_size: int = 20000, # Increased memory size
|
||||
batch_size: int = 128, # Larger batch size
|
||||
target_update: int = 5): # More frequent target updates
|
||||
|
||||
self.state_size = state_size
|
||||
self.action_size = action_size
|
||||
@ -70,23 +70,25 @@ class DQNAgent:
|
||||
).to(self.device)
|
||||
self.target_net.load_state_dict(self.policy_net.state_dict())
|
||||
|
||||
# Initialize optimizer
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=learning_rate)
|
||||
# Initialize optimizer with gradient clipping
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=learning_rate, weight_decay=1e-5)
|
||||
|
||||
# Initialize memory
|
||||
# Initialize memories with different priorities
|
||||
self.memory = deque(maxlen=memory_size)
|
||||
|
||||
# Special memory for extrema samples to use for targeted learning
|
||||
self.extrema_memory = deque(maxlen=memory_size // 5) # Smaller size for extrema examples
|
||||
self.extrema_memory = deque(maxlen=memory_size // 4) # For extrema points
|
||||
self.positive_memory = deque(maxlen=memory_size // 4) # For positive rewards
|
||||
|
||||
# Training metrics
|
||||
self.update_count = 0
|
||||
self.losses = []
|
||||
self.avg_reward = 0
|
||||
self.no_improvement_count = 0
|
||||
self.best_reward = float('-inf')
|
||||
|
||||
def remember(self, state: np.ndarray, action: int, reward: float,
|
||||
next_state: np.ndarray, done: bool, is_extrema: bool = False):
|
||||
"""
|
||||
Store experience in memory
|
||||
Store experience in memory with prioritization
|
||||
|
||||
Args:
|
||||
state: Current state
|
||||
@ -97,28 +99,124 @@ class DQNAgent:
|
||||
is_extrema: Whether this is a local extrema sample (for specialized learning)
|
||||
"""
|
||||
experience = (state, action, reward, next_state, done)
|
||||
|
||||
# Always add to main memory
|
||||
self.memory.append(experience)
|
||||
|
||||
# If this is an extrema sample, also add to specialized memory
|
||||
# Add to specialized memories if applicable
|
||||
if is_extrema:
|
||||
self.extrema_memory.append(experience)
|
||||
|
||||
# Store positive experiences separately for prioritized replay
|
||||
if reward > 0:
|
||||
self.positive_memory.append(experience)
|
||||
|
||||
def act(self, state: np.ndarray) -> int:
|
||||
"""Choose action using epsilon-greedy policy"""
|
||||
if random.random() < self.epsilon:
|
||||
def act(self, state: np.ndarray, explore=True) -> int:
|
||||
"""Choose action using epsilon-greedy policy with explore flag"""
|
||||
if explore and random.random() < self.epsilon:
|
||||
return random.randrange(self.action_size)
|
||||
|
||||
with torch.no_grad():
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
|
||||
action_probs, extrema_pred = self.policy_net(state)
|
||||
# Ensure state is normalized before inference
|
||||
state_tensor = self._normalize_state(state)
|
||||
state_tensor = torch.FloatTensor(state_tensor).unsqueeze(0).to(self.device)
|
||||
action_probs, extrema_pred = self.policy_net(state_tensor)
|
||||
return action_probs.argmax().item()
|
||||
|
||||
def replay(self, use_extrema=False) -> float:
|
||||
def _normalize_state(self, state: np.ndarray) -> np.ndarray:
|
||||
"""Normalize the state data to prevent numerical issues"""
|
||||
# Handle NaN and infinite values
|
||||
state = np.nan_to_num(state, nan=0.0, posinf=1.0, neginf=-1.0)
|
||||
|
||||
# Check if state is 1D array (happens in some environments)
|
||||
if len(state.shape) == 1:
|
||||
# If 1D, we need to normalize the whole array
|
||||
normalized_state = state.copy()
|
||||
|
||||
# Convert any timestamp or non-numeric data to float
|
||||
for i in range(len(normalized_state)):
|
||||
# Check for timestamp-like objects
|
||||
if hasattr(normalized_state[i], 'timestamp') and callable(getattr(normalized_state[i], 'timestamp')):
|
||||
# Convert timestamp to float (seconds since epoch)
|
||||
normalized_state[i] = float(normalized_state[i].timestamp())
|
||||
elif not isinstance(normalized_state[i], (int, float, np.number)):
|
||||
# Set non-numeric data to 0
|
||||
normalized_state[i] = 0.0
|
||||
|
||||
# Ensure all values are float
|
||||
normalized_state = normalized_state.astype(np.float32)
|
||||
|
||||
# Simple min-max normalization for 1D state
|
||||
state_min = np.min(normalized_state)
|
||||
state_max = np.max(normalized_state)
|
||||
if state_max > state_min:
|
||||
normalized_state = (normalized_state - state_min) / (state_max - state_min)
|
||||
return normalized_state
|
||||
|
||||
# Handle 2D arrays
|
||||
normalized_state = np.zeros_like(state, dtype=np.float32)
|
||||
|
||||
# Convert any timestamp or non-numeric data to float
|
||||
for i in range(state.shape[0]):
|
||||
for j in range(state.shape[1]):
|
||||
if hasattr(state[i, j], 'timestamp') and callable(getattr(state[i, j], 'timestamp')):
|
||||
# Convert timestamp to float (seconds since epoch)
|
||||
normalized_state[i, j] = float(state[i, j].timestamp())
|
||||
elif isinstance(state[i, j], (int, float, np.number)):
|
||||
normalized_state[i, j] = state[i, j]
|
||||
else:
|
||||
# Set non-numeric data to 0
|
||||
normalized_state[i, j] = 0.0
|
||||
|
||||
# Loop through each timeframe's features in the combined state
|
||||
feature_count = state.shape[1] // len(self.timeframes)
|
||||
|
||||
for tf_idx in range(len(self.timeframes)):
|
||||
start_idx = tf_idx * feature_count
|
||||
end_idx = start_idx + feature_count
|
||||
|
||||
# Extract this timeframe's features
|
||||
tf_features = normalized_state[:, start_idx:end_idx]
|
||||
|
||||
# Normalize OHLCV data by the first close price in the window
|
||||
# This makes price movements relative rather than absolute
|
||||
price_idx = 3 # Assuming close price is at index 3
|
||||
if price_idx < tf_features.shape[1]:
|
||||
reference_price = np.mean(tf_features[:, price_idx])
|
||||
if reference_price != 0:
|
||||
# Normalize price-related columns (OHLC)
|
||||
for i in range(4): # First 4 columns are OHLC
|
||||
if i < tf_features.shape[1]:
|
||||
normalized_state[:, start_idx + i] = tf_features[:, i] / reference_price
|
||||
|
||||
# Normalize volume using mean and std
|
||||
vol_idx = 4 # Assuming volume is at index 4
|
||||
if vol_idx < tf_features.shape[1]:
|
||||
vol_mean = np.mean(tf_features[:, vol_idx])
|
||||
vol_std = np.std(tf_features[:, vol_idx])
|
||||
if vol_std > 0:
|
||||
normalized_state[:, start_idx + vol_idx] = (tf_features[:, vol_idx] - vol_mean) / vol_std
|
||||
else:
|
||||
normalized_state[:, start_idx + vol_idx] = 0
|
||||
|
||||
# Other features (technical indicators) - normalize with min-max scaling
|
||||
for i in range(5, feature_count):
|
||||
if i < tf_features.shape[1]:
|
||||
feature_min = np.min(tf_features[:, i])
|
||||
feature_max = np.max(tf_features[:, i])
|
||||
if feature_max > feature_min:
|
||||
normalized_state[:, start_idx + i] = (tf_features[:, i] - feature_min) / (feature_max - feature_min)
|
||||
else:
|
||||
normalized_state[:, start_idx + i] = 0
|
||||
|
||||
return normalized_state
|
||||
|
||||
def replay(self, use_prioritized=True) -> float:
|
||||
"""
|
||||
Train on a batch of experiences
|
||||
Train on a batch of experiences with prioritized sampling
|
||||
|
||||
Args:
|
||||
use_extrema: Whether to include extrema samples in training
|
||||
use_prioritized: Whether to use prioritized replay
|
||||
|
||||
Returns:
|
||||
float: Loss value
|
||||
@ -126,55 +224,67 @@ class DQNAgent:
|
||||
if len(self.memory) < self.batch_size:
|
||||
return 0.0
|
||||
|
||||
# Sample batch - mix regular and extrema samples
|
||||
# Sample batch with prioritization
|
||||
batch = []
|
||||
if use_extrema and len(self.extrema_memory) > self.batch_size // 4:
|
||||
# Get some extrema samples
|
||||
extrema_count = min(self.batch_size // 3, len(self.extrema_memory))
|
||||
extrema_samples = random.sample(list(self.extrema_memory), extrema_count)
|
||||
|
||||
if use_prioritized and len(self.positive_memory) > 0 and len(self.extrema_memory) > 0:
|
||||
# Prioritized sampling from different memory types
|
||||
positive_count = min(self.batch_size // 4, len(self.positive_memory))
|
||||
extrema_count = min(self.batch_size // 4, len(self.extrema_memory))
|
||||
regular_count = self.batch_size - positive_count - extrema_count
|
||||
|
||||
# Get regular samples for the rest
|
||||
regular_count = self.batch_size - extrema_count
|
||||
positive_samples = random.sample(list(self.positive_memory), positive_count)
|
||||
extrema_samples = random.sample(list(self.extrema_memory), extrema_count)
|
||||
regular_samples = random.sample(list(self.memory), regular_count)
|
||||
|
||||
# Combine samples
|
||||
batch = extrema_samples + regular_samples
|
||||
batch = positive_samples + extrema_samples + regular_samples
|
||||
else:
|
||||
# Standard sampling
|
||||
batch = random.sample(self.memory, self.batch_size)
|
||||
|
||||
states, actions, rewards, next_states, dones = zip(*batch)
|
||||
|
||||
# Normalize states before training
|
||||
normalized_states = np.array([self._normalize_state(state) for state in states])
|
||||
normalized_next_states = np.array([self._normalize_state(state) for state in next_states])
|
||||
|
||||
# Convert to tensors and move to device
|
||||
states = torch.FloatTensor(np.array(states)).to(self.device)
|
||||
actions = torch.LongTensor(actions).to(self.device)
|
||||
rewards = torch.FloatTensor(rewards).to(self.device)
|
||||
next_states = torch.FloatTensor(np.array(next_states)).to(self.device)
|
||||
dones = torch.FloatTensor(dones).to(self.device)
|
||||
states_tensor = torch.FloatTensor(normalized_states).to(self.device)
|
||||
actions_tensor = torch.LongTensor(actions).to(self.device)
|
||||
rewards_tensor = torch.FloatTensor(rewards).to(self.device)
|
||||
next_states_tensor = torch.FloatTensor(normalized_next_states).to(self.device)
|
||||
dones_tensor = torch.FloatTensor(dones).to(self.device)
|
||||
|
||||
# Get current Q values
|
||||
current_q_values, extrema_pred = self.policy_net(states)
|
||||
current_q_values = current_q_values.gather(1, actions.unsqueeze(1))
|
||||
current_q_values, extrema_pred = self.policy_net(states_tensor)
|
||||
current_q_values = current_q_values.gather(1, actions_tensor.unsqueeze(1))
|
||||
|
||||
# Get next Q values from target network
|
||||
# Get next Q values from target network (Double DQN approach)
|
||||
with torch.no_grad():
|
||||
next_q_values, _ = self.target_net(next_states)
|
||||
next_q_values = next_q_values.max(1)[0]
|
||||
target_q_values = rewards + (1 - dones) * self.gamma * next_q_values
|
||||
# Get actions from policy network
|
||||
next_actions, _ = self.policy_net(next_states_tensor)
|
||||
next_actions = next_actions.max(1)[1].unsqueeze(1)
|
||||
|
||||
# Get Q values from target network for those actions
|
||||
next_q_values, _ = self.target_net(next_states_tensor)
|
||||
next_q_values = next_q_values.gather(1, next_actions).squeeze(1)
|
||||
|
||||
# Compute target Q values
|
||||
target_q_values = rewards_tensor + (1 - dones_tensor) * self.gamma * next_q_values
|
||||
|
||||
# Compute Q-learning loss
|
||||
q_loss = nn.MSELoss()(current_q_values.squeeze(), target_q_values)
|
||||
# Clamp target values to prevent extreme values
|
||||
target_q_values = torch.clamp(target_q_values, -100, 100)
|
||||
|
||||
# If we have extrema labels (not in this implementation yet),
|
||||
# we could add an additional loss for extrema prediction
|
||||
# This would require labels for whether each state is near an extrema
|
||||
|
||||
# Total loss is just Q-learning loss for now
|
||||
loss = q_loss
|
||||
# Compute Huber loss (more robust to outliers than MSE)
|
||||
loss = nn.SmoothL1Loss()(current_q_values.squeeze(), target_q_values)
|
||||
|
||||
# Optimize
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
# Apply gradient clipping to prevent exploding gradients
|
||||
nn.utils.clip_grad_norm_(self.policy_net.parameters(), max_norm=1.0)
|
||||
|
||||
self.optimizer.step()
|
||||
|
||||
# Update target network if needed
|
||||
@ -200,37 +310,77 @@ class DQNAgent:
|
||||
"""
|
||||
if len(states) == 0:
|
||||
return 0.0
|
||||
|
||||
# Normalize states
|
||||
normalized_states = np.array([self._normalize_state(state) for state in states])
|
||||
normalized_next_states = np.array([self._normalize_state(state) for state in next_states])
|
||||
|
||||
# Convert to tensors
|
||||
states = torch.FloatTensor(np.array(states)).to(self.device)
|
||||
actions = torch.LongTensor(actions).to(self.device)
|
||||
rewards = torch.FloatTensor(rewards).to(self.device)
|
||||
next_states = torch.FloatTensor(np.array(next_states)).to(self.device)
|
||||
dones = torch.FloatTensor(dones).to(self.device)
|
||||
states_tensor = torch.FloatTensor(normalized_states).to(self.device)
|
||||
actions_tensor = torch.LongTensor(actions).to(self.device)
|
||||
rewards_tensor = torch.FloatTensor(rewards).to(self.device)
|
||||
next_states_tensor = torch.FloatTensor(normalized_next_states).to(self.device)
|
||||
dones_tensor = torch.FloatTensor(dones).to(self.device)
|
||||
|
||||
# Forward pass
|
||||
current_q_values, extrema_pred = self.policy_net(states)
|
||||
current_q_values = current_q_values.gather(1, actions.unsqueeze(1))
|
||||
current_q_values, extrema_pred = self.policy_net(states_tensor)
|
||||
current_q_values = current_q_values.gather(1, actions_tensor.unsqueeze(1))
|
||||
|
||||
# Get next Q values
|
||||
# Get next Q values (Double DQN approach)
|
||||
with torch.no_grad():
|
||||
next_q_values, _ = self.target_net(next_states)
|
||||
next_q_values = next_q_values.max(1)[0]
|
||||
target_q_values = rewards + (1 - dones) * self.gamma * next_q_values
|
||||
next_actions, _ = self.policy_net(next_states_tensor)
|
||||
next_actions = next_actions.max(1)[1].unsqueeze(1)
|
||||
|
||||
# Higher weight for extrema training
|
||||
q_loss = nn.MSELoss()(current_q_values.squeeze(), target_q_values)
|
||||
next_q_values, _ = self.target_net(next_states_tensor)
|
||||
next_q_values = next_q_values.gather(1, next_actions).squeeze(1)
|
||||
|
||||
target_q_values = rewards_tensor + (1 - dones_tensor) * self.gamma * next_q_values
|
||||
|
||||
# Clamp target values
|
||||
target_q_values = torch.clamp(target_q_values, -100, 100)
|
||||
|
||||
# Full loss is just Q-learning loss
|
||||
# Use Huber loss for extrema training
|
||||
q_loss = nn.SmoothL1Loss()(current_q_values.squeeze(), target_q_values)
|
||||
|
||||
# Full loss
|
||||
loss = q_loss
|
||||
|
||||
# Optimize
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
nn.utils.clip_grad_norm_(self.policy_net.parameters(), max_norm=1.0)
|
||||
self.optimizer.step()
|
||||
|
||||
return loss.item()
|
||||
|
||||
def update_learning_metrics(self, episode_reward, best_reward_threshold=0.01):
|
||||
"""Update learning metrics and perform learning rate adjustments if needed"""
|
||||
# Update average reward with exponential moving average
|
||||
if self.avg_reward == 0:
|
||||
self.avg_reward = episode_reward
|
||||
else:
|
||||
self.avg_reward = 0.95 * self.avg_reward + 0.05 * episode_reward
|
||||
|
||||
# Check if we're making sufficient progress
|
||||
if episode_reward > (1 + best_reward_threshold) * self.best_reward:
|
||||
self.best_reward = episode_reward
|
||||
self.no_improvement_count = 0
|
||||
return True # Improved
|
||||
else:
|
||||
self.no_improvement_count += 1
|
||||
|
||||
# If no improvement for a while, adjust learning rate
|
||||
if self.no_improvement_count >= 10:
|
||||
current_lr = self.optimizer.param_groups[0]['lr']
|
||||
new_lr = current_lr * 0.5
|
||||
if new_lr >= 1e-6: # Don't reduce below minimum threshold
|
||||
for param_group in self.optimizer.param_groups:
|
||||
param_group['lr'] = new_lr
|
||||
logger.info(f"Reducing learning rate from {current_lr} to {new_lr}")
|
||||
self.no_improvement_count = 0
|
||||
|
||||
return False # No improvement
|
||||
|
||||
def save(self, path: str):
|
||||
"""Save model and agent state"""
|
||||
os.makedirs(os.path.dirname(path), exist_ok=True)
|
||||
@ -246,9 +396,13 @@ class DQNAgent:
|
||||
'epsilon': self.epsilon,
|
||||
'update_count': self.update_count,
|
||||
'losses': self.losses,
|
||||
'optimizer_state': self.optimizer.state_dict()
|
||||
'optimizer_state': self.optimizer.state_dict(),
|
||||
'best_reward': self.best_reward,
|
||||
'avg_reward': self.avg_reward
|
||||
}
|
||||
|
||||
torch.save(state, f"{path}_agent_state.pt")
|
||||
logger.info(f"Agent state saved to {path}_agent_state.pt")
|
||||
|
||||
def load(self, path: str):
|
||||
"""Load model and agent state"""
|
||||
@ -259,8 +413,19 @@ class DQNAgent:
|
||||
self.target_net.load(f"{path}_target")
|
||||
|
||||
# Load agent state
|
||||
state = torch.load(f"{path}_agent_state.pt")
|
||||
self.epsilon = state['epsilon']
|
||||
self.update_count = state['update_count']
|
||||
self.losses = state['losses']
|
||||
self.optimizer.load_state_dict(state['optimizer_state'])
|
||||
try:
|
||||
agent_state = torch.load(f"{path}_agent_state.pt", map_location=self.device)
|
||||
self.epsilon = agent_state['epsilon']
|
||||
self.update_count = agent_state['update_count']
|
||||
self.losses = agent_state['losses']
|
||||
self.optimizer.load_state_dict(agent_state['optimizer_state'])
|
||||
|
||||
# Load additional metrics if they exist
|
||||
if 'best_reward' in agent_state:
|
||||
self.best_reward = agent_state['best_reward']
|
||||
if 'avg_reward' in agent_state:
|
||||
self.avg_reward = agent_state['avg_reward']
|
||||
|
||||
logger.info(f"Agent state loaded from {path}_agent_state.pt")
|
||||
except FileNotFoundError:
|
||||
logger.warning(f"Agent state file not found at {path}_agent_state.pt, using default values")
|
@ -44,13 +44,46 @@ class PricePatternAttention(nn.Module):
|
||||
|
||||
return output, attn_weights
|
||||
|
||||
class AdaptiveNorm(nn.Module):
|
||||
"""
|
||||
Adaptive normalization layer that chooses between different normalization
|
||||
methods based on input dimensions
|
||||
"""
|
||||
def __init__(self, num_features):
|
||||
super(AdaptiveNorm, self).__init__()
|
||||
self.batch_norm = nn.BatchNorm1d(num_features, affine=True)
|
||||
self.group_norm = nn.GroupNorm(min(32, num_features), num_features)
|
||||
self.layer_norm = nn.LayerNorm([num_features, 1])
|
||||
|
||||
def forward(self, x):
|
||||
# Check input dimensions
|
||||
batch_size, channels, seq_len = x.size()
|
||||
|
||||
# Choose normalization method:
|
||||
# - Batch size > 1 and seq_len > 1: BatchNorm
|
||||
# - Batch size == 1 or seq_len == 1: GroupNorm
|
||||
# - Fallback for extreme cases: LayerNorm
|
||||
if batch_size > 1 and seq_len > 1:
|
||||
return self.batch_norm(x)
|
||||
elif seq_len > 1:
|
||||
return self.group_norm(x)
|
||||
else:
|
||||
# For 1D inputs (seq_len=1), we need to adjust the layer norm
|
||||
# to the actual input size
|
||||
if not hasattr(self, 'layer_norm_1d') or self.layer_norm_1d.normalized_shape[0] != channels:
|
||||
self.layer_norm_1d = nn.LayerNorm([channels, seq_len]).to(x.device)
|
||||
return self.layer_norm_1d(x)
|
||||
|
||||
class CNNModelPyTorch(nn.Module):
|
||||
"""
|
||||
CNN model for trading with multiple timeframes
|
||||
"""
|
||||
def __init__(self, window_size, num_features, output_size, timeframes):
|
||||
def __init__(self, window_size=20, num_features=5, output_size=3, timeframes=None):
|
||||
super(CNNModelPyTorch, self).__init__()
|
||||
|
||||
if timeframes is None:
|
||||
timeframes = [1]
|
||||
|
||||
self.window_size = window_size
|
||||
self.num_features = num_features
|
||||
self.output_size = output_size
|
||||
@ -73,27 +106,28 @@ class CNNModelPyTorch(nn.Module):
|
||||
"""Create all model layers with current feature dimensions"""
|
||||
# Convolutional layers - use total_features as input channels
|
||||
self.conv1 = nn.Conv1d(self.total_features, 64, kernel_size=3, padding=1)
|
||||
self.bn1 = nn.BatchNorm1d(64)
|
||||
self.norm1 = AdaptiveNorm(64)
|
||||
self.dropout1 = nn.Dropout(0.2)
|
||||
|
||||
self.conv2 = nn.Conv1d(64, 128, kernel_size=3, padding=1)
|
||||
self.bn2 = nn.BatchNorm1d(128)
|
||||
self.norm2 = AdaptiveNorm(128)
|
||||
self.dropout2 = nn.Dropout(0.3)
|
||||
|
||||
self.conv3 = nn.Conv1d(128, 256, kernel_size=3, padding=1)
|
||||
self.bn3 = nn.BatchNorm1d(256)
|
||||
self.norm3 = AdaptiveNorm(256)
|
||||
self.dropout3 = nn.Dropout(0.4)
|
||||
|
||||
# Add price pattern attention layer
|
||||
self.attention = PricePatternAttention(256)
|
||||
|
||||
# Extrema detection specialized convolutional layer
|
||||
self.extrema_conv = nn.Conv1d(256, 128, kernel_size=5, padding=2)
|
||||
self.extrema_bn = nn.BatchNorm1d(128)
|
||||
self.extrema_conv = nn.Conv1d(256, 128, kernel_size=3, padding=1) # Smaller kernel for small inputs
|
||||
self.extrema_norm = AdaptiveNorm(128)
|
||||
|
||||
# Calculate size after convolutions - adjusted for attention output
|
||||
conv_output_size = self.window_size * 256
|
||||
|
||||
# Fully connected layers
|
||||
self.fc1 = nn.Linear(conv_output_size, 512)
|
||||
# Fully connected layers - input size will be determined dynamically
|
||||
self.fc1 = None # Will be initialized in forward pass
|
||||
self.fc2 = nn.Linear(512, 256)
|
||||
self.dropout_fc = nn.Dropout(0.5)
|
||||
|
||||
# Advantage and Value streams (Dueling DQN architecture)
|
||||
self.fc3 = nn.Linear(256, self.output_size) # Advantage stream
|
||||
@ -131,46 +165,96 @@ class CNNModelPyTorch(nn.Module):
|
||||
# Ensure input is on the correct device
|
||||
x = x.to(self.device)
|
||||
|
||||
# Check and handle if input dimensions don't match model expectations
|
||||
batch_size, window_len, feature_dim = x.size()
|
||||
if feature_dim != self.total_features:
|
||||
logger.warning(f"Input features ({feature_dim}) don't match model features ({self.total_features}), rebuilding layers")
|
||||
self.rebuild_conv_layers(feature_dim)
|
||||
# Check input dimensions and reshape as needed
|
||||
if len(x.size()) == 2:
|
||||
# If input is [batch_size, features], reshape to [batch_size, features, 1]
|
||||
batch_size, feature_dim = x.size()
|
||||
|
||||
# Check and handle if input features don't match model expectations
|
||||
if feature_dim != self.total_features:
|
||||
logger.warning(f"Input features ({feature_dim}) don't match model features ({self.total_features}), rebuilding layers")
|
||||
self.rebuild_conv_layers(feature_dim)
|
||||
|
||||
# For 1D input, use a sequence length of 1
|
||||
seq_len = 1
|
||||
x = x.unsqueeze(2) # Reshape to [batch, features, 1]
|
||||
elif len(x.size()) == 3:
|
||||
# Standard case: [batch_size, window_size, features]
|
||||
batch_size, seq_len, feature_dim = x.size()
|
||||
|
||||
# Check and handle if input dimensions don't match model expectations
|
||||
if feature_dim != self.total_features:
|
||||
logger.warning(f"Input features ({feature_dim}) don't match model features ({self.total_features}), rebuilding layers")
|
||||
self.rebuild_conv_layers(feature_dim)
|
||||
|
||||
# Reshape input: [batch, window_size, features] -> [batch, features, window_size]
|
||||
x = x.permute(0, 2, 1)
|
||||
else:
|
||||
raise ValueError(f"Unexpected input shape: {x.size()}, expected 2D or 3D tensor")
|
||||
|
||||
# Reshape input: [batch, window_size, features] -> [batch, channels, window_size]
|
||||
x = x.permute(0, 2, 1)
|
||||
|
||||
# Convolutional layers
|
||||
x = F.relu(self.bn1(self.conv1(x)))
|
||||
x = F.relu(self.bn2(self.conv2(x)))
|
||||
x = F.relu(self.bn3(self.conv3(x)))
|
||||
# Convolutional layers with dropout - safely handle small spatial dimensions
|
||||
try:
|
||||
x = self.dropout1(F.relu(self.norm1(self.conv1(x))))
|
||||
x = self.dropout2(F.relu(self.norm2(self.conv2(x))))
|
||||
x = self.dropout3(F.relu(self.norm3(self.conv3(x))))
|
||||
except Exception as e:
|
||||
logger.warning(f"Error in convolutional layers: {str(e)}")
|
||||
# Fallback for very small inputs: skip some convolutions
|
||||
if seq_len < 3:
|
||||
# Apply a simpler convolution for very small inputs
|
||||
x = F.relu(self.conv1(x))
|
||||
x = F.relu(self.conv2(x))
|
||||
# Skip last conv if we get dimension errors
|
||||
try:
|
||||
x = F.relu(self.conv3(x))
|
||||
except:
|
||||
pass
|
||||
|
||||
# Store conv features for extrema detection
|
||||
conv_features = x
|
||||
|
||||
# Reshape for attention: [batch, channels, window_size] -> [batch, window_size, channels]
|
||||
x_attention = x.permute(0, 2, 1)
|
||||
# Get the current shape after convolutions
|
||||
_, channels, conv_seq_len = x.size()
|
||||
|
||||
# Apply attention
|
||||
attention_output, attention_weights = self.attention(x_attention)
|
||||
# Initialize fc1 if not created yet or if the shape has changed
|
||||
if self.fc1 is None:
|
||||
flattened_size = channels * conv_seq_len
|
||||
logger.info(f"Initializing fc1 with input size {flattened_size}")
|
||||
self.fc1 = nn.Linear(flattened_size, 512).to(self.device)
|
||||
|
||||
# We'll use attention directly without the residual connection
|
||||
# to avoid dimension mismatch issues
|
||||
attention_reshaped = attention_output.permute(0, 2, 1) # [batch, channels, window_size]
|
||||
# Apply extrema detection safely
|
||||
try:
|
||||
extrema_features = F.relu(self.extrema_norm(self.extrema_conv(conv_features)))
|
||||
except Exception as e:
|
||||
logger.warning(f"Error in extrema detection: {str(e)}")
|
||||
extrema_features = conv_features # Fallback
|
||||
|
||||
# Apply extrema detection specialized layer
|
||||
extrema_features = F.relu(self.extrema_bn(self.extrema_conv(conv_features)))
|
||||
# Handle attention for small sequence lengths
|
||||
if conv_seq_len > 1:
|
||||
# Reshape for attention: [batch, channels, seq_len] -> [batch, seq_len, channels]
|
||||
x_attention = x.permute(0, 2, 1)
|
||||
|
||||
# Apply attention
|
||||
try:
|
||||
attention_output, attention_weights = self.attention(x_attention)
|
||||
except Exception as e:
|
||||
logger.warning(f"Error in attention layer: {str(e)}")
|
||||
# Fallback: don't use attention
|
||||
|
||||
# Use attention features directly instead of residual connection
|
||||
# to avoid dimension mismatches
|
||||
x = conv_features # Just use the convolutional features
|
||||
# Flatten - get the actual shape for this batch
|
||||
flattened_size = channels * conv_seq_len
|
||||
x = x.view(batch_size, flattened_size)
|
||||
|
||||
# Flatten
|
||||
x = x.view(batch_size, -1)
|
||||
# Check if we need to recreate fc1 with the correct size
|
||||
if self.fc1.in_features != flattened_size:
|
||||
logger.info(f"Recreating fc1 layer to match input size {flattened_size}")
|
||||
self.fc1 = nn.Linear(flattened_size, 512).to(self.device)
|
||||
# Reinitialize optimizer after changing the model
|
||||
self.optimizer = optim.Adam(self.parameters(), lr=0.001)
|
||||
|
||||
# Fully connected layers
|
||||
# Fully connected layers with dropout
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
x = self.dropout_fc(F.relu(self.fc2(x)))
|
||||
|
||||
# Split into advantage and value streams
|
||||
advantage = self.fc3(x)
|
||||
|
Reference in New Issue
Block a user