cleanup and removed dummy data

This commit is contained in:
Dobromir Popov
2025-07-26 23:35:14 +03:00
parent 3eb6335169
commit 87942d3807
14 changed files with 220 additions and 2465 deletions

View File

@ -224,6 +224,12 @@ class DataProvider:
self.cob_data_cache[binance_symbol] = deque(maxlen=300) # 5 minutes of COB data
self.training_data_cache[binance_symbol] = deque(maxlen=1000) # Training data buffer
# Pre-built OHLCV cache for instant BaseDataInput building (optimization from SimplifiedDataIntegration)
self._ohlcv_cache = {} # {symbol: {timeframe: List[OHLCVBar]}}
self._ohlcv_cache_lock = Lock()
self._last_cache_update = {} # {symbol: {timeframe: datetime}}
self._cache_refresh_interval = 5 # seconds
# Data collection threads
self.data_collection_active = False
@ -1387,6 +1393,175 @@ class DataProvider:
logger.error(f"Error applying pivot normalization for {symbol}: {e}")
return df
def build_base_data_input(self, symbol: str) -> Optional['BaseDataInput']:
"""
Build BaseDataInput from cached data (optimized for speed)
Args:
symbol: Trading symbol
Returns:
BaseDataInput with consistent data structure
"""
try:
from .data_models import BaseDataInput
# Get OHLCV data directly from optimized cache (no validation checks for speed)
ohlcv_1s_list = self._get_cached_ohlcv_bars(symbol, '1s', 300)
ohlcv_1m_list = self._get_cached_ohlcv_bars(symbol, '1m', 300)
ohlcv_1h_list = self._get_cached_ohlcv_bars(symbol, '1h', 300)
ohlcv_1d_list = self._get_cached_ohlcv_bars(symbol, '1d', 300)
# Get BTC reference data
btc_symbol = 'BTC/USDT'
btc_ohlcv_1s_list = self._get_cached_ohlcv_bars(btc_symbol, '1s', 300)
if not btc_ohlcv_1s_list:
# Use ETH data as fallback
btc_ohlcv_1s_list = ohlcv_1s_list
# Get cached data (fast lookups)
technical_indicators = self._get_latest_technical_indicators(symbol)
cob_data = self._get_latest_cob_data_object(symbol)
last_predictions = {} # TODO: Implement model prediction caching
# Build BaseDataInput (no validation for speed - assume data is good)
base_data = BaseDataInput(
symbol=symbol,
timestamp=datetime.now(),
ohlcv_1s=ohlcv_1s_list,
ohlcv_1m=ohlcv_1m_list,
ohlcv_1h=ohlcv_1h_list,
ohlcv_1d=ohlcv_1d_list,
btc_ohlcv_1s=btc_ohlcv_1s_list,
technical_indicators=technical_indicators,
cob_data=cob_data,
last_predictions=last_predictions
)
return base_data
except Exception as e:
logger.error(f"Error building BaseDataInput for {symbol}: {e}")
return None
def _get_cached_ohlcv_bars(self, symbol: str, timeframe: str, max_count: int) -> List['OHLCVBar']:
"""Get OHLCV data list from pre-built cache for instant access"""
try:
with self._ohlcv_cache_lock:
cache_key = f"{symbol}_{timeframe}"
# Check if we have fresh cached data (updated within last 5 seconds)
last_update = self._last_cache_update.get(cache_key)
if (last_update and
(datetime.now() - last_update).total_seconds() < self._cache_refresh_interval and
cache_key in self._ohlcv_cache):
cached_data = self._ohlcv_cache[cache_key]
return cached_data[-max_count:] if len(cached_data) >= max_count else cached_data
# Need to rebuild cache for this symbol/timeframe
data_list = self._build_ohlcv_bar_cache(symbol, timeframe, max_count)
# Cache the result
self._ohlcv_cache[cache_key] = data_list
self._last_cache_update[cache_key] = datetime.now()
return data_list[-max_count:] if len(data_list) >= max_count else data_list
except Exception as e:
logger.error(f"Error getting cached OHLCV bars for {symbol}/{timeframe}: {e}")
return []
def _build_ohlcv_bar_cache(self, symbol: str, timeframe: str, max_count: int) -> List['OHLCVBar']:
"""Build OHLCV bar cache from historical and current data"""
try:
from .data_models import OHLCVBar
data_list = []
# Get historical data first (this should be fast as it's already cached)
historical_df = self.get_historical_data(symbol, timeframe, limit=max_count)
if historical_df is not None and not historical_df.empty:
# Convert historical data to OHLCVBar objects
for idx, row in historical_df.tail(max_count).iterrows():
bar = OHLCVBar(
symbol=symbol,
timestamp=idx if hasattr(idx, 'to_pydatetime') else datetime.now(),
open=float(row['open']),
high=float(row['high']),
low=float(row['low']),
close=float(row['close']),
volume=float(row['volume']),
timeframe=timeframe
)
data_list.append(bar)
return data_list
except Exception as e:
logger.error(f"Error building OHLCV bar cache for {symbol}/{timeframe}: {e}")
return []
def _get_latest_technical_indicators(self, symbol: str) -> Dict[str, float]:
"""Get latest technical indicators for a symbol"""
try:
# Get latest data and calculate indicators
df = self.get_historical_data(symbol, '1h', limit=50)
if df is not None and not df.empty:
df_with_indicators = self._add_technical_indicators(df)
if not df_with_indicators.empty:
# Return the latest indicators as a dict
latest_row = df_with_indicators.iloc[-1]
indicators = {}
for col in df_with_indicators.columns:
if col not in ['open', 'high', 'low', 'close', 'volume', 'timestamp']:
indicators[col] = float(latest_row[col]) if pd.notna(latest_row[col]) else 0.0
return indicators
return {}
except Exception as e:
logger.error(f"Error getting technical indicators for {symbol}: {e}")
return {}
def _get_latest_cob_data_object(self, symbol: str) -> Optional['COBData']:
"""Get latest COB data as COBData object"""
try:
from .data_models import COBData
# Get latest COB data from cache
cob_data = self.get_latest_cob_data(symbol)
if cob_data and 'current_price' in cob_data:
return COBData(
symbol=symbol,
timestamp=datetime.now(),
current_price=cob_data['current_price'],
bucket_size=1.0 if 'ETH' in symbol else 10.0,
price_buckets=cob_data.get('price_buckets', {}),
bid_ask_imbalance=cob_data.get('bid_ask_imbalance', {}),
volume_weighted_prices=cob_data.get('volume_weighted_prices', {}),
order_flow_metrics=cob_data.get('order_flow_metrics', {}),
ma_1s_imbalance=cob_data.get('ma_1s_imbalance', {}),
ma_5s_imbalance=cob_data.get('ma_5s_imbalance', {}),
ma_15s_imbalance=cob_data.get('ma_15s_imbalance', {}),
ma_60s_imbalance=cob_data.get('ma_60s_imbalance', {})
)
return None
except Exception as e:
logger.error(f"Error getting COB data object for {symbol}: {e}")
return None
def invalidate_ohlcv_cache(self, symbol: str):
"""Invalidate OHLCV cache for a symbol when new data arrives"""
try:
with self._ohlcv_cache_lock:
# Remove cached data for all timeframes of this symbol
keys_to_remove = [key for key in self._ohlcv_cache.keys() if key.startswith(f"{symbol}_")]
for key in keys_to_remove:
if key in self._ohlcv_cache:
del self._ohlcv_cache[key]
if key in self._last_cache_update:
del self._last_cache_update[key]
except Exception as e:
logger.error(f"Error invalidating OHLCV cache for {symbol}: {e}")
def _add_basic_indicators(self, df: pd.DataFrame) -> pd.DataFrame:
"""Add basic indicators for small datasets"""
try: