fixes around pivot points and BOM matrix

This commit is contained in:
Dobromir Popov
2025-06-24 21:09:35 +03:00
parent 6a4a73ff0b
commit 8685319989
7 changed files with 136 additions and 23 deletions

View File

@ -443,11 +443,33 @@ class EnhancedCNNModel(nn.Module):
# Forward pass
outputs = self.forward(x)
# Extract results
# Extract results with proper shape handling
probs = outputs['probabilities'].cpu().numpy()[0]
confidence = outputs['confidence'].cpu().numpy()[0]
confidence_tensor = outputs['confidence'].cpu().numpy()
regime = outputs['regime'].cpu().numpy()[0]
volatility = outputs['volatility'].cpu().numpy()[0]
volatility = outputs['volatility'].cpu().numpy()
# Handle confidence shape properly
if isinstance(confidence_tensor, np.ndarray):
if confidence_tensor.ndim == 0:
confidence = float(confidence_tensor.item())
elif confidence_tensor.size == 1:
confidence = float(confidence_tensor.flatten()[0])
else:
confidence = float(confidence_tensor[0] if len(confidence_tensor) > 0 else 0.7)
else:
confidence = float(confidence_tensor)
# Handle volatility shape properly
if isinstance(volatility, np.ndarray):
if volatility.ndim == 0:
volatility = float(volatility.item())
elif volatility.size == 1:
volatility = float(volatility.flatten()[0])
else:
volatility = float(volatility[0] if len(volatility) > 0 else 0.0)
else:
volatility = float(volatility)
# Determine action (0=BUY, 1=SELL for 2-action system)
action = int(np.argmax(probs))