price vector predictions

This commit is contained in:
Dobromir Popov
2025-07-30 00:31:51 +03:00
parent 29382ac0db
commit 8335ad8e64
4 changed files with 789 additions and 2 deletions

View File

@ -2201,6 +2201,9 @@ class CleanTradingDashboard:
self._add_cnn_predictions_to_chart(fig, symbol, df_main, row)
self._add_cob_rl_predictions_to_chart(fig, symbol, df_main, row)
self._add_prediction_accuracy_feedback(fig, symbol, df_main, row)
# 3. Add price vector predictions as directional lines
self._add_price_vector_predictions_to_chart(fig, symbol, df_main, row)
except Exception as e:
logger.warning(f"Error adding model predictions to chart: {e}")
@ -2590,6 +2593,142 @@ class CleanTradingDashboard:
except Exception as e:
logger.debug(f"Error adding prediction accuracy feedback to chart: {e}")
def _add_price_vector_predictions_to_chart(self, fig: go.Figure, symbol: str, df_main: pd.DataFrame, row: int = 1):
"""Add price vector predictions as thin directional lines on the chart"""
try:
# Get recent predictions with price vectors from orchestrator
vector_predictions = self._get_recent_vector_predictions(symbol)
if not vector_predictions:
return
for pred in vector_predictions[-20:]: # Last 20 vector predictions
try:
timestamp = pred.get('timestamp')
price = pred.get('price', 0)
vector = pred.get('price_direction', {})
confidence = pred.get('confidence', 0)
model_name = pred.get('model_name', 'unknown')
if not vector or price <= 0:
continue
direction = vector.get('direction', 0.0)
vector_confidence = vector.get('confidence', 0.0)
# Skip weak predictions
if abs(direction) < 0.1 or vector_confidence < 0.3:
continue
# Calculate vector endpoint
# Scale magnitude based on direction and confidence
predicted_magnitude = abs(direction) * vector_confidence * 2.0 # Scale to ~2% max
price_change = predicted_magnitude if direction > 0 else -predicted_magnitude
end_price = price * (1 + price_change / 100.0)
# Create time projection (5-minute forward projection)
if isinstance(timestamp, str):
timestamp = pd.to_datetime(timestamp)
end_time = timestamp + timedelta(minutes=5)
# Color based on direction and confidence
if direction > 0:
# Upward prediction - green shades
color = f'rgba(0, 255, 0, {vector_confidence:.2f})'
else:
# Downward prediction - red shades
color = f'rgba(255, 0, 0, {vector_confidence:.2f})'
# Draw vector line
fig.add_trace(
go.Scatter(
x=[timestamp, end_time],
y=[price, end_price],
mode='lines',
line=dict(
color=color,
width=2,
dash='dot' if vector_confidence < 0.6 else 'solid'
),
name=f'{model_name.upper()} Vector',
showlegend=False,
hovertemplate=f"<b>{model_name.upper()} PRICE VECTOR</b><br>" +
"Start: $%{y[0]:.2f}<br>" +
"Target: $%{y[1]:.2f}<br>" +
f"Direction: {direction:+.3f}<br>" +
f"V.Confidence: {vector_confidence:.1%}<br>" +
f"Magnitude: {predicted_magnitude:.2f}%<br>" +
f"Model Confidence: {confidence:.1%}<extra></extra>"
),
row=row, col=1
)
# Add small marker at vector start
marker_color = 'green' if direction > 0 else 'red'
fig.add_trace(
go.Scatter(
x=[timestamp],
y=[price],
mode='markers',
marker=dict(
symbol='circle',
size=4,
color=marker_color,
opacity=vector_confidence
),
name=f'{model_name} Vector Start',
showlegend=False,
hoverinfo='skip'
),
row=row, col=1
)
except Exception as e:
logger.debug(f"Error drawing vector for prediction: {e}")
continue
except Exception as e:
logger.debug(f"Error adding price vector predictions to chart: {e}")
def _get_recent_vector_predictions(self, symbol: str) -> List[Dict]:
"""Get recent predictions that include price vector data"""
try:
vector_predictions = []
# Get from orchestrator's recent predictions
if hasattr(self.trading_executor, 'orchestrator') and self.trading_executor.orchestrator:
orchestrator = self.trading_executor.orchestrator
# Check last inference data for each model
for model_name, inference_data in getattr(orchestrator, 'last_inference', {}).items():
if not inference_data:
continue
prediction = inference_data.get('prediction', {})
metadata = inference_data.get('metadata', {})
# Look for price direction in prediction or metadata
price_direction = None
if 'price_direction' in prediction:
price_direction = prediction['price_direction']
elif 'price_direction' in metadata:
price_direction = metadata['price_direction']
if price_direction:
vector_predictions.append({
'timestamp': inference_data.get('timestamp', datetime.now()),
'price': inference_data.get('inference_price', 0),
'price_direction': price_direction,
'confidence': prediction.get('confidence', 0),
'model_name': model_name
})
return vector_predictions
except Exception as e:
logger.debug(f"Error getting recent vector predictions: {e}")
return []
def _get_real_cob_rl_predictions(self, symbol: str) -> List[Dict]:
"""Get real COB RL predictions from the model"""
try: