WIP oclcv in storage. migrate do duckdb

This commit is contained in:
Dobromir Popov
2025-10-24 15:57:33 +03:00
parent d4ed894a92
commit 809c32e7a8
7 changed files with 1417 additions and 92 deletions

View File

@@ -67,6 +67,14 @@ except ImportError:
UNIFIED_STORAGE_AVAILABLE = False
logger.warning("Unified storage components not available")
# Import DuckDB storage
try:
from .duckdb_storage import DuckDBStorage
DUCKDB_STORAGE_AVAILABLE = True
except ImportError:
DUCKDB_STORAGE_AVAILABLE = False
logger.warning("DuckDB storage not available")
@dataclass
class PivotBounds:
"""Pivot-based normalization bounds derived from Williams Market Structure"""
@@ -142,15 +150,10 @@ class DataProvider:
def __init__(self, symbols: List[str] = None, timeframes: List[str] = None):
"""Initialize the data provider"""
self.config = get_config()
# Fixed symbols and timeframes for caching
# Fixed symbols and timeframes
self.symbols = ['ETH/USDT', 'BTC/USDT']
self.timeframes = ['1s', '1m', '1h', '1d']
# Cache settings (initialize first)
self.cache_enabled = True
self.cache_dir = Path('cache')
self.cache_dir.mkdir(parents=True, exist_ok=True)
# Data storage - cached OHLCV data (1500 candles each)
self.cached_data = {} # {symbol: {timeframe: DataFrame}}
self.real_time_data = {} # {symbol: {timeframe: deque}}
@@ -176,11 +179,7 @@ class DataProvider:
# Pivot-based normalization system
self.pivot_bounds: Dict[str, PivotBounds] = {} # {symbol: PivotBounds}
self.pivot_cache_dir = self.cache_dir / 'pivot_bounds'
self.pivot_cache_dir.mkdir(parents=True, exist_ok=True)
self.pivot_refresh_interval = timedelta(days=1) # Refresh pivot bounds daily
self.monthly_data_cache_dir = self.cache_dir / 'monthly_1s_data'
self.monthly_data_cache_dir.mkdir(parents=True, exist_ok=True)
# Enhanced WebSocket integration
self.enhanced_cob_websocket: Optional[EnhancedCOBWebSocket] = None
@@ -266,11 +265,16 @@ class DataProvider:
self.unified_storage: Optional['UnifiedDataProviderExtension'] = None
self._unified_storage_enabled = False
# Auto-fix corrupted cache files on startup
self._auto_fix_corrupted_cache()
# DuckDB storage - unified storage with native Parquet support
self.duckdb_storage: Optional[DuckDBStorage] = None
if DUCKDB_STORAGE_AVAILABLE:
try:
self.duckdb_storage = DuckDBStorage()
logger.info("✅ DuckDB storage initialized (unified Parquet + SQL)")
except Exception as e:
logger.warning(f"Could not initialize DuckDB storage: {e}")
# Load existing pivot bounds from cache
self._load_all_pivot_bounds()
# Pivot bounds will be calculated on demand
# COB (Consolidated Order Book) data system using WebSocket
self.cob_integration: Optional[COBIntegration] = None
@@ -1488,11 +1492,18 @@ class DataProvider:
logger.error(f"Error getting market state at time: {e}")
return {}
def get_historical_data(self, symbol: str, timeframe: str, limit: int = 1000, refresh: bool = False) -> Optional[pd.DataFrame]:
def get_historical_data(self, symbol: str, timeframe: str, limit: int = 1000, refresh: bool = False, allow_stale_cache: bool = False) -> Optional[pd.DataFrame]:
"""Get historical OHLCV data.
- Prefer cached data for low latency.
- If cache is empty or refresh=True, fetch real data from exchanges.
- Never generate synthetic data.
Args:
symbol: Trading symbol
timeframe: Timeframe
limit: Number of candles to return
refresh: Force refresh from exchange
allow_stale_cache: Allow loading stale cache (for startup performance)
"""
try:
# Serve from cache when available
@@ -1501,6 +1512,17 @@ class DataProvider:
if not cached_df.empty and not refresh:
return cached_df.tail(limit)
# Try loading from DuckDB first (fast Parquet queries)
if allow_stale_cache:
cached_df = self._load_from_duckdb(symbol, timeframe, limit=1500)
if cached_df is not None and not cached_df.empty:
logger.info(f"Loaded {len(cached_df)} candles from DuckDB for {symbol} {timeframe} (startup mode)")
# Store in memory cache
if symbol not in self.cached_data:
self.cached_data[symbol] = {}
self.cached_data[symbol][timeframe] = cached_df.tail(1500)
return cached_df.tail(limit)
# Cache empty or refresh requested: fetch real data now
df = self._fetch_from_binance(symbol, timeframe, limit)
if (df is None or df.empty):
@@ -1508,7 +1530,15 @@ class DataProvider:
if df is not None and not df.empty:
df = self._ensure_datetime_index(df)
# Store/merge into cache
# Store in DuckDB (Parquet + SQL in one)
if self.duckdb_storage:
try:
self.duckdb_storage.store_ohlcv_data(symbol, timeframe, df)
except Exception as e:
logger.warning(f"Could not store data in DuckDB: {e}")
# Store/merge into memory cache (keep last 1500 candles for fast access)
if symbol not in self.cached_data:
self.cached_data[symbol] = {}
if timeframe not in self.cached_data[symbol] or self.cached_data[symbol][timeframe].empty:
@@ -1518,7 +1548,8 @@ class DataProvider:
combined_df = combined_df[~combined_df.index.duplicated(keep='last')]
combined_df = combined_df.sort_index()
self.cached_data[symbol][timeframe] = combined_df.tail(1500)
logger.info(f"Cached {len(self.cached_data[symbol][timeframe])} candles for {symbol} {timeframe}")
logger.info(f"Stored {len(df)} candles for {symbol} {timeframe} (DuckDB + memory cache)")
return self.cached_data[symbol][timeframe].tail(limit)
logger.warning(f"No real data available for {symbol} {timeframe} at request time")
@@ -2973,71 +3004,33 @@ class DataProvider:
logger.debug(f"Error calculating RSI: {e}")
return 50.0 # Default neutral value
def _load_from_cache(self, symbol: str, timeframe: str) -> Optional[pd.DataFrame]:
"""Load data from cache"""
try:
cache_file = self.cache_dir / f"{symbol.replace('/', '')}_{timeframe}.parquet"
if cache_file.exists():
# Check if cache is recent - stricter rules for startup
cache_age = time.time() - cache_file.stat().st_mtime
# For 1m data, use cache only if less than 5 minutes old to avoid gaps
if timeframe == '1m':
max_age = 300 # 5 minutes
else:
max_age = 3600 # 1 hour for other timeframes
if cache_age < max_age:
try:
df = pd.read_parquet(cache_file)
# Ensure cached data has proper timezone (UTC to match COB WebSocket data)
if not df.empty and 'timestamp' in df.columns:
if df['timestamp'].dt.tz is None:
# If no timezone info, assume UTC and keep in UTC
df['timestamp'] = pd.to_datetime(df['timestamp'], utc=True)
elif str(df['timestamp'].dt.tz) != 'UTC':
# Convert to UTC if different timezone
df['timestamp'] = df['timestamp'].dt.tz_convert('UTC')
logger.debug(f"Loaded {len(df)} rows from cache for {symbol} {timeframe} (age: {cache_age/60:.1f}min)")
return df
except Exception as parquet_e:
# Handle corrupted Parquet file - expanded error detection
error_str = str(parquet_e).lower()
corrupted_indicators = [
"parquet magic bytes not found",
"corrupted",
"couldn't deserialize thrift",
"don't know what type",
"invalid parquet file",
"unexpected end of file",
"invalid metadata"
]
if any(indicator in error_str for indicator in corrupted_indicators):
logger.warning(f"Corrupted Parquet cache file for {symbol} {timeframe}, removing and returning None: {parquet_e}")
try:
cache_file.unlink() # Delete corrupted file
logger.info(f"Deleted corrupted cache file: {cache_file}")
except Exception as delete_e:
logger.error(f"Failed to delete corrupted cache file: {delete_e}")
return None
else:
raise parquet_e
else:
logger.debug(f"Cache for {symbol} {timeframe} is too old ({cache_age/60:.1f}min > {max_age/60:.1f}min)")
def _load_from_duckdb(self, symbol: str, timeframe: str, limit: int = 1500) -> Optional[pd.DataFrame]:
"""Load data from DuckDB storage
Args:
symbol: Trading symbol
timeframe: Timeframe
limit: Number of candles to load
"""
if not self.duckdb_storage:
return None
except Exception as e:
logger.warning(f"Error loading cache for {symbol} {timeframe}: {e}")
return None
def _save_to_cache(self, df: pd.DataFrame, symbol: str, timeframe: str):
"""Save data to cache"""
try:
cache_file = self.cache_dir / f"{symbol.replace('/', '')}_{timeframe}.parquet"
df.to_parquet(cache_file, index=False)
logger.debug(f"Saved {len(df)} rows to cache for {symbol} {timeframe}")
df = self.duckdb_storage.get_ohlcv_data(
symbol=symbol,
timeframe=timeframe,
limit=limit
)
if df is not None and not df.empty:
logger.debug(f"Loaded {len(df)} candles from DuckDB for {symbol} {timeframe}")
return df
return None
except Exception as e:
logger.warning(f"Error saving cache for {symbol} {timeframe}: {e}")
logger.warning(f"Error loading from DuckDB for {symbol} {timeframe}: {e}")
return None
async def start_real_time_streaming(self):
"""Start real-time data streaming using COBIntegration"""