improved data structure
This commit is contained in:
@@ -15,7 +15,12 @@ from dataclasses import dataclass, field
|
||||
|
||||
@dataclass
|
||||
class OHLCVBar:
|
||||
"""OHLCV bar data structure"""
|
||||
"""
|
||||
Enhanced OHLCV bar data structure with technical analysis features
|
||||
|
||||
Includes candle pattern recognition, relative sizing, body/wick analysis,
|
||||
and Williams pivot points metadata for improved model feature engineering.
|
||||
"""
|
||||
symbol: str
|
||||
timestamp: datetime
|
||||
open: float
|
||||
@@ -25,6 +30,189 @@ class OHLCVBar:
|
||||
volume: float
|
||||
timeframe: str
|
||||
indicators: Dict[str, float] = field(default_factory=dict)
|
||||
|
||||
# Pivot points metadata
|
||||
pivot_distance_to_support: Optional[float] = None
|
||||
pivot_distance_to_resistance: Optional[float] = None
|
||||
pivot_level_context: Optional[Dict[str, Any]] = field(default=None)
|
||||
near_pivot_support: bool = False
|
||||
near_pivot_resistance: bool = False
|
||||
|
||||
# Candle characteristics (computed on-demand or cached)
|
||||
_body_size: Optional[float] = field(default=None, repr=False)
|
||||
_upper_wick: Optional[float] = field(default=None, repr=False)
|
||||
_lower_wick: Optional[float] = field(default=None, repr=False)
|
||||
_total_range: Optional[float] = field(default=None, repr=False)
|
||||
_is_bullish: Optional[bool] = field(default=None, repr=False)
|
||||
|
||||
@property
|
||||
def body_size(self) -> float:
|
||||
"""Absolute size of candle body"""
|
||||
if self._body_size is None:
|
||||
self._body_size = abs(self.close - self.open)
|
||||
return self._body_size
|
||||
|
||||
@property
|
||||
def upper_wick(self) -> float:
|
||||
"""Size of upper wick/shadow"""
|
||||
if self._upper_wick is None:
|
||||
self._upper_wick = self.high - max(self.open, self.close)
|
||||
return self._upper_wick
|
||||
|
||||
@property
|
||||
def lower_wick(self) -> float:
|
||||
"""Size of lower wick/shadow"""
|
||||
if self._lower_wick is None:
|
||||
self._lower_wick = min(self.open, self.close) - self.low
|
||||
return self._lower_wick
|
||||
|
||||
@property
|
||||
def total_range(self) -> float:
|
||||
"""Total high-low range"""
|
||||
if self._total_range is None:
|
||||
self._total_range = self.high - self.low
|
||||
return self._total_range
|
||||
|
||||
@property
|
||||
def is_bullish(self) -> bool:
|
||||
"""True if close > open (hollow/green candle)"""
|
||||
if self._is_bullish is None:
|
||||
self._is_bullish = self.close > self.open
|
||||
return self._is_bullish
|
||||
|
||||
@property
|
||||
def is_bearish(self) -> bool:
|
||||
"""True if close < open (solid/red candle)"""
|
||||
return not self.is_bullish and self.close != self.open
|
||||
|
||||
@property
|
||||
def is_doji(self) -> bool:
|
||||
"""True if open ≈ close (doji pattern)"""
|
||||
return self.body_size < (self.total_range * 0.1) if self.total_range > 0 else True
|
||||
|
||||
def get_body_to_range_ratio(self) -> float:
|
||||
"""Body size as percentage of total range (0.0 to 1.0)"""
|
||||
return self.body_size / self.total_range if self.total_range > 0 else 0.0
|
||||
|
||||
def get_upper_wick_ratio(self) -> float:
|
||||
"""Upper wick as percentage of total range (0.0 to 1.0)"""
|
||||
return self.upper_wick / self.total_range if self.total_range > 0 else 0.0
|
||||
|
||||
def get_lower_wick_ratio(self) -> float:
|
||||
"""Lower wick as percentage of total range (0.0 to 1.0)"""
|
||||
return self.lower_wick / self.total_range if self.total_range > 0 else 0.0
|
||||
|
||||
def get_relative_size(self, reference_bars: List['OHLCVBar'], method: str = 'avg') -> float:
|
||||
"""
|
||||
Get relative size compared to reference bars
|
||||
|
||||
Args:
|
||||
reference_bars: List of previous bars for comparison
|
||||
method: 'avg' (average), 'max' (maximum), or 'median'
|
||||
|
||||
Returns:
|
||||
Ratio of current range to reference (1.0 = same size, >1.0 = larger, <1.0 = smaller)
|
||||
"""
|
||||
if not reference_bars:
|
||||
return 1.0
|
||||
|
||||
reference_ranges = [bar.total_range for bar in reference_bars if bar.total_range > 0]
|
||||
if not reference_ranges:
|
||||
return 1.0
|
||||
|
||||
if method == 'avg':
|
||||
reference_value = np.mean(reference_ranges)
|
||||
elif method == 'max':
|
||||
reference_value = np.max(reference_ranges)
|
||||
elif method == 'median':
|
||||
reference_value = np.median(reference_ranges)
|
||||
else:
|
||||
reference_value = np.mean(reference_ranges)
|
||||
|
||||
return self.total_range / reference_value if reference_value > 0 else 1.0
|
||||
|
||||
def get_candle_pattern(self) -> str:
|
||||
"""
|
||||
Identify basic candle pattern
|
||||
|
||||
Returns:
|
||||
Pattern name: 'doji', 'hammer', 'shooting_star', 'spinning_top',
|
||||
'marubozu_bullish', 'marubozu_bearish', 'standard'
|
||||
"""
|
||||
if self.total_range == 0:
|
||||
return 'doji'
|
||||
|
||||
body_ratio = self.get_body_to_range_ratio()
|
||||
upper_ratio = self.get_upper_wick_ratio()
|
||||
lower_ratio = self.get_lower_wick_ratio()
|
||||
|
||||
# Doji: very small body
|
||||
if body_ratio < 0.1:
|
||||
return 'doji'
|
||||
|
||||
# Marubozu: very small wicks (>90% body)
|
||||
if body_ratio > 0.9:
|
||||
return 'marubozu_bullish' if self.is_bullish else 'marubozu_bearish'
|
||||
|
||||
# Hammer: small body at top, long lower wick
|
||||
if body_ratio < 0.3 and lower_ratio > 0.6 and upper_ratio < 0.1:
|
||||
return 'hammer'
|
||||
|
||||
# Shooting star: small body at bottom, long upper wick
|
||||
if body_ratio < 0.3 and upper_ratio > 0.6 and lower_ratio < 0.1:
|
||||
return 'shooting_star'
|
||||
|
||||
# Spinning top: small body, both wicks present
|
||||
if body_ratio < 0.3 and (upper_ratio + lower_ratio) > 0.6:
|
||||
return 'spinning_top'
|
||||
|
||||
return 'standard'
|
||||
|
||||
def get_ta_features(self, reference_bars: Optional[List['OHLCVBar']] = None) -> Dict[str, float]:
|
||||
"""
|
||||
Get all technical analysis features as a dictionary
|
||||
|
||||
Args:
|
||||
reference_bars: Optional list of previous bars for relative sizing
|
||||
|
||||
Returns:
|
||||
Dictionary of TA features suitable for model input
|
||||
"""
|
||||
features = {
|
||||
# Basic candle properties
|
||||
'is_bullish': 1.0 if self.is_bullish else 0.0,
|
||||
'is_bearish': 1.0 if self.is_bearish else 0.0,
|
||||
'is_doji': 1.0 if self.is_doji else 0.0,
|
||||
|
||||
# Size ratios
|
||||
'body_to_range_ratio': self.get_body_to_range_ratio(),
|
||||
'upper_wick_ratio': self.get_upper_wick_ratio(),
|
||||
'lower_wick_ratio': self.get_lower_wick_ratio(),
|
||||
|
||||
# Absolute sizes (normalized by close price)
|
||||
'body_size_pct': self.body_size / self.close if self.close > 0 else 0.0,
|
||||
'upper_wick_pct': self.upper_wick / self.close if self.close > 0 else 0.0,
|
||||
'lower_wick_pct': self.lower_wick / self.close if self.close > 0 else 0.0,
|
||||
'total_range_pct': self.total_range / self.close if self.close > 0 else 0.0,
|
||||
|
||||
# Volume relative to price movement
|
||||
'volume_per_range': self.volume / self.total_range if self.total_range > 0 else 0.0,
|
||||
}
|
||||
|
||||
# Add relative sizing if reference bars provided
|
||||
if reference_bars:
|
||||
features['relative_size_avg'] = self.get_relative_size(reference_bars, 'avg')
|
||||
features['relative_size_max'] = self.get_relative_size(reference_bars, 'max')
|
||||
features['relative_size_median'] = self.get_relative_size(reference_bars, 'median')
|
||||
|
||||
# Add pattern encoding (one-hot style)
|
||||
pattern = self.get_candle_pattern()
|
||||
pattern_types = ['doji', 'hammer', 'shooting_star', 'spinning_top',
|
||||
'marubozu_bullish', 'marubozu_bearish', 'standard']
|
||||
for p in pattern_types:
|
||||
features[f'pattern_{p}'] = 1.0 if pattern == p else 0.0
|
||||
|
||||
return features
|
||||
|
||||
@dataclass
|
||||
class PivotPoint:
|
||||
@@ -66,6 +254,44 @@ class COBData:
|
||||
ma_15s_imbalance: Dict[float, float] = field(default_factory=dict) # 15s MA
|
||||
ma_60s_imbalance: Dict[float, float] = field(default_factory=dict) # 60s MA
|
||||
|
||||
@dataclass
|
||||
class NormalizationBounds:
|
||||
"""Normalization boundaries for price and volume data"""
|
||||
price_min: float
|
||||
price_max: float
|
||||
volume_min: float
|
||||
volume_max: float
|
||||
symbol: str
|
||||
timeframe: str = 'all' # 'all' means across all timeframes
|
||||
|
||||
def normalize_price(self, price: float) -> float:
|
||||
"""Normalize price to 0-1 range"""
|
||||
if self.price_max == self.price_min:
|
||||
return 0.5
|
||||
return (price - self.price_min) / (self.price_max - self.price_min)
|
||||
|
||||
def denormalize_price(self, normalized: float) -> float:
|
||||
"""Denormalize price from 0-1 range back to original"""
|
||||
return normalized * (self.price_max - self.price_min) + self.price_min
|
||||
|
||||
def normalize_volume(self, volume: float) -> float:
|
||||
"""Normalize volume to 0-1 range"""
|
||||
if self.volume_max == self.volume_min:
|
||||
return 0.5
|
||||
return (volume - self.volume_min) / (self.volume_max - self.volume_min)
|
||||
|
||||
def denormalize_volume(self, normalized: float) -> float:
|
||||
"""Denormalize volume from 0-1 range back to original"""
|
||||
return normalized * (self.volume_max - self.volume_min) + self.volume_min
|
||||
|
||||
def get_price_range(self) -> float:
|
||||
"""Get price range"""
|
||||
return self.price_max - self.price_min
|
||||
|
||||
def get_volume_range(self) -> float:
|
||||
"""Get volume range"""
|
||||
return self.volume_max - self.volume_min
|
||||
|
||||
@dataclass
|
||||
class BaseDataInput:
|
||||
"""
|
||||
@@ -75,6 +301,7 @@ class BaseDataInput:
|
||||
- OHLCV: 300 frames of (1s, 1m, 1h, 1d) ETH + 300s of 1s BTC
|
||||
- COB: ±20 buckets of COB amounts in USD for each 1s OHLCV
|
||||
- MA: 1s, 5s, 15s, and 60s MA of COB imbalance counting ±5 COB buckets
|
||||
- All OHLCV data is normalized to 0-1 range based on daily (longest timeframe) min/max
|
||||
"""
|
||||
symbol: str # Primary symbol (ETH/USDT)
|
||||
timestamp: datetime
|
||||
@@ -111,42 +338,224 @@ class BaseDataInput:
|
||||
# Position and trading state information
|
||||
position_info: Dict[str, Any] = field(default_factory=dict)
|
||||
|
||||
def get_feature_vector(self) -> np.ndarray:
|
||||
# Normalization boundaries (computed on-demand, cached)
|
||||
_normalization_bounds: Optional[NormalizationBounds] = field(default=None, repr=False)
|
||||
_btc_normalization_bounds: Optional[NormalizationBounds] = field(default=None, repr=False)
|
||||
|
||||
def _compute_normalization_bounds(self) -> NormalizationBounds:
|
||||
"""
|
||||
Compute normalization bounds from daily (longest timeframe) data
|
||||
|
||||
Uses daily data as it has the widest price range, ensuring all shorter
|
||||
timeframes are normalized within 0-1 range.
|
||||
|
||||
Returns:
|
||||
NormalizationBounds: Min/max for price and volume
|
||||
"""
|
||||
if self._normalization_bounds is not None:
|
||||
return self._normalization_bounds
|
||||
|
||||
# Collect all OHLCV data, prioritizing daily for widest range
|
||||
all_prices = []
|
||||
all_volumes = []
|
||||
|
||||
# Use daily data first (widest range)
|
||||
for bar in self.ohlcv_1d:
|
||||
all_prices.extend([bar.open, bar.high, bar.low, bar.close])
|
||||
all_volumes.append(bar.volume)
|
||||
|
||||
# Add other timeframes to ensure coverage
|
||||
for ohlcv_list in [self.ohlcv_1h, self.ohlcv_1m, self.ohlcv_1s]:
|
||||
for bar in ohlcv_list:
|
||||
all_prices.extend([bar.open, bar.high, bar.low, bar.close])
|
||||
all_volumes.append(bar.volume)
|
||||
|
||||
# Compute bounds
|
||||
if all_prices and all_volumes:
|
||||
price_min = min(all_prices)
|
||||
price_max = max(all_prices)
|
||||
volume_min = min(all_volumes)
|
||||
volume_max = max(all_volumes)
|
||||
else:
|
||||
# Fallback if no data
|
||||
price_min = price_max = 0.0
|
||||
volume_min = volume_max = 0.0
|
||||
|
||||
self._normalization_bounds = NormalizationBounds(
|
||||
price_min=price_min,
|
||||
price_max=price_max,
|
||||
volume_min=volume_min,
|
||||
volume_max=volume_max,
|
||||
symbol=self.symbol,
|
||||
timeframe='all'
|
||||
)
|
||||
|
||||
return self._normalization_bounds
|
||||
|
||||
def _compute_btc_normalization_bounds(self) -> NormalizationBounds:
|
||||
"""
|
||||
Compute normalization bounds for BTC data
|
||||
|
||||
Returns:
|
||||
NormalizationBounds: Min/max for BTC price and volume
|
||||
"""
|
||||
if self._btc_normalization_bounds is not None:
|
||||
return self._btc_normalization_bounds
|
||||
|
||||
all_prices = []
|
||||
all_volumes = []
|
||||
|
||||
for bar in self.btc_ohlcv_1s:
|
||||
all_prices.extend([bar.open, bar.high, bar.low, bar.close])
|
||||
all_volumes.append(bar.volume)
|
||||
|
||||
if all_prices and all_volumes:
|
||||
price_min = min(all_prices)
|
||||
price_max = max(all_prices)
|
||||
volume_min = min(all_volumes)
|
||||
volume_max = max(all_volumes)
|
||||
else:
|
||||
price_min = price_max = 0.0
|
||||
volume_min = volume_max = 0.0
|
||||
|
||||
self._btc_normalization_bounds = NormalizationBounds(
|
||||
price_min=price_min,
|
||||
price_max=price_max,
|
||||
volume_min=volume_min,
|
||||
volume_max=volume_max,
|
||||
symbol='BTC/USDT',
|
||||
timeframe='1s'
|
||||
)
|
||||
|
||||
return self._btc_normalization_bounds
|
||||
|
||||
def get_normalization_bounds(self) -> NormalizationBounds:
|
||||
"""Get normalization bounds for primary symbol (cached)"""
|
||||
return self._compute_normalization_bounds()
|
||||
|
||||
def get_btc_normalization_bounds(self) -> NormalizationBounds:
|
||||
"""Get normalization bounds for BTC (cached)"""
|
||||
return self._compute_btc_normalization_bounds()
|
||||
|
||||
def get_feature_vector(self, include_candle_ta: bool = True, normalize: bool = True) -> np.ndarray:
|
||||
"""
|
||||
Convert BaseDataInput to standardized feature vector for models
|
||||
|
||||
Args:
|
||||
include_candle_ta: If True, include enhanced candle TA features (default: True)
|
||||
normalize: If True, normalize OHLCV data to 0-1 range (default: True)
|
||||
|
||||
Returns:
|
||||
np.ndarray: FIXED SIZE standardized feature vector (7850 features)
|
||||
np.ndarray: FIXED SIZE standardized feature vector (7870 or 22880 features)
|
||||
|
||||
Note:
|
||||
- Full TA features are enabled by default for better model performance
|
||||
- Normalization uses daily (longest timeframe) min/max for primary symbol
|
||||
- BTC data is normalized independently using its own min/max
|
||||
- Normalization bounds are cached and accessible via get_normalization_bounds()
|
||||
- Includes pivot points metadata (10 features) for market structure context
|
||||
"""
|
||||
# FIXED FEATURE SIZE - this should NEVER change at runtime
|
||||
FIXED_FEATURE_SIZE = 7850
|
||||
# Standard: 7870 features (7850 + 10 pivot + 10 more indicators)
|
||||
# With candle TA: 22880 features (22850 + 10 pivot + 10 more indicators)
|
||||
FIXED_FEATURE_SIZE = 22880 if include_candle_ta else 7870
|
||||
features = []
|
||||
|
||||
# OHLCV features for ETH (up to 300 frames x 4 timeframes x 5 features)
|
||||
# Get normalization bounds (cached)
|
||||
if normalize:
|
||||
norm_bounds = self._compute_normalization_bounds()
|
||||
|
||||
# OHLCV features for ETH (up to 300 frames x 4 timeframes x 5 or 15 features)
|
||||
for ohlcv_list in [self.ohlcv_1s, self.ohlcv_1m, self.ohlcv_1h, self.ohlcv_1d]:
|
||||
# Use actual data only, up to 300 frames
|
||||
ohlcv_frames = ohlcv_list[-300:] if len(ohlcv_list) >= 300 else ohlcv_list
|
||||
|
||||
# Extract features from actual frames
|
||||
for bar in ohlcv_frames:
|
||||
features.extend([bar.open, bar.high, bar.low, bar.close, bar.volume])
|
||||
for i, bar in enumerate(ohlcv_frames):
|
||||
# Basic OHLCV (5 features) - normalized to 0-1 range
|
||||
if normalize:
|
||||
features.extend([
|
||||
norm_bounds.normalize_price(bar.open),
|
||||
norm_bounds.normalize_price(bar.high),
|
||||
norm_bounds.normalize_price(bar.low),
|
||||
norm_bounds.normalize_price(bar.close),
|
||||
norm_bounds.normalize_volume(bar.volume)
|
||||
])
|
||||
else:
|
||||
features.extend([bar.open, bar.high, bar.low, bar.close, bar.volume])
|
||||
|
||||
# Enhanced candle TA features (10 additional features per bar)
|
||||
if include_candle_ta:
|
||||
# Get reference bars for relative sizing (last 10 bars)
|
||||
ref_start = max(0, i - 10)
|
||||
reference_bars = ohlcv_frames[ref_start:i] if i > 0 else []
|
||||
|
||||
ta_features = bar.get_ta_features(reference_bars)
|
||||
# Extract key features in fixed order
|
||||
features.extend([
|
||||
ta_features.get('is_bullish', 0.0),
|
||||
ta_features.get('body_to_range_ratio', 0.0),
|
||||
ta_features.get('upper_wick_ratio', 0.0),
|
||||
ta_features.get('lower_wick_ratio', 0.0),
|
||||
ta_features.get('body_size_pct', 0.0),
|
||||
ta_features.get('total_range_pct', 0.0),
|
||||
ta_features.get('relative_size_avg', 1.0),
|
||||
ta_features.get('pattern_doji', 0.0),
|
||||
ta_features.get('pattern_hammer', 0.0),
|
||||
ta_features.get('pattern_shooting_star', 0.0),
|
||||
])
|
||||
|
||||
# Pad with zeros only if we have some data but less than 300 frames
|
||||
frames_needed = 300 - len(ohlcv_frames)
|
||||
if frames_needed > 0:
|
||||
features.extend([0.0] * (frames_needed * 5)) # 5 features per frame
|
||||
features_per_frame = 15 if include_candle_ta else 5
|
||||
features.extend([0.0] * (frames_needed * features_per_frame))
|
||||
|
||||
# BTC OHLCV features (up to 300 frames x 5 features = 1500 features)
|
||||
# BTC OHLCV features (up to 300 frames x 5 or 15 features)
|
||||
btc_frames = self.btc_ohlcv_1s[-300:] if len(self.btc_ohlcv_1s) >= 300 else self.btc_ohlcv_1s
|
||||
|
||||
# Get BTC normalization bounds (cached, independent from primary symbol)
|
||||
if normalize:
|
||||
btc_norm_bounds = self._compute_btc_normalization_bounds()
|
||||
|
||||
# Extract features from actual BTC frames
|
||||
for bar in btc_frames:
|
||||
features.extend([bar.open, bar.high, bar.low, bar.close, bar.volume])
|
||||
for i, bar in enumerate(btc_frames):
|
||||
# Basic OHLCV (5 features) - normalized to 0-1 range
|
||||
if normalize:
|
||||
features.extend([
|
||||
btc_norm_bounds.normalize_price(bar.open),
|
||||
btc_norm_bounds.normalize_price(bar.high),
|
||||
btc_norm_bounds.normalize_price(bar.low),
|
||||
btc_norm_bounds.normalize_price(bar.close),
|
||||
btc_norm_bounds.normalize_volume(bar.volume)
|
||||
])
|
||||
else:
|
||||
features.extend([bar.open, bar.high, bar.low, bar.close, bar.volume])
|
||||
|
||||
# Enhanced candle TA features (10 additional features per bar)
|
||||
if include_candle_ta:
|
||||
ref_start = max(0, i - 10)
|
||||
reference_bars = btc_frames[ref_start:i] if i > 0 else []
|
||||
|
||||
ta_features = bar.get_ta_features(reference_bars)
|
||||
features.extend([
|
||||
ta_features.get('is_bullish', 0.0),
|
||||
ta_features.get('body_to_range_ratio', 0.0),
|
||||
ta_features.get('upper_wick_ratio', 0.0),
|
||||
ta_features.get('lower_wick_ratio', 0.0),
|
||||
ta_features.get('body_size_pct', 0.0),
|
||||
ta_features.get('total_range_pct', 0.0),
|
||||
ta_features.get('relative_size_avg', 1.0),
|
||||
ta_features.get('pattern_doji', 0.0),
|
||||
ta_features.get('pattern_hammer', 0.0),
|
||||
ta_features.get('pattern_shooting_star', 0.0),
|
||||
])
|
||||
|
||||
# Pad with zeros only if we have some data but less than 300 frames
|
||||
btc_frames_needed = 300 - len(btc_frames)
|
||||
if btc_frames_needed > 0:
|
||||
features.extend([0.0] * (btc_frames_needed * 5)) # 5 features per frame
|
||||
features_per_frame = 15 if include_candle_ta else 5
|
||||
features.extend([0.0] * (btc_frames_needed * features_per_frame))
|
||||
|
||||
# COB features (FIXED SIZE: 200 features)
|
||||
cob_features = []
|
||||
@@ -209,10 +618,42 @@ class BaseDataInput:
|
||||
cob_features.extend([0.0] * (200 - len(cob_features)))
|
||||
features.extend(cob_features[:200]) # Ensure exactly 200 COB features
|
||||
|
||||
# Technical indicators (FIXED SIZE: 100 features)
|
||||
# Technical indicators (FIXED SIZE: 110 features - expanded to accommodate more indicators)
|
||||
indicator_values = list(self.technical_indicators.values())
|
||||
features.extend(indicator_values[:100]) # Take first 100 indicators
|
||||
features.extend([0.0] * max(0, 100 - len(indicator_values))) # Pad to exactly 100
|
||||
features.extend(indicator_values[:110]) # Take first 110 indicators
|
||||
features.extend([0.0] * max(0, 110 - len(indicator_values))) # Pad to exactly 110
|
||||
|
||||
# Pivot points metadata (FIXED SIZE: 10 features)
|
||||
# Extract pivot context from most recent OHLCV bars
|
||||
pivot_features = []
|
||||
if self.ohlcv_1m and len(self.ohlcv_1m) > 0:
|
||||
latest_bar = self.ohlcv_1m[-1]
|
||||
pivot_features.extend([
|
||||
latest_bar.pivot_distance_to_support if latest_bar.pivot_distance_to_support is not None else 0.0,
|
||||
latest_bar.pivot_distance_to_resistance if latest_bar.pivot_distance_to_resistance is not None else 0.0,
|
||||
1.0 if latest_bar.near_pivot_support else 0.0,
|
||||
1.0 if latest_bar.near_pivot_resistance else 0.0,
|
||||
])
|
||||
# Add pivot level context if available
|
||||
if latest_bar.pivot_level_context:
|
||||
ctx = latest_bar.pivot_level_context
|
||||
pivot_features.extend([
|
||||
ctx.get('trend_strength', 0.0),
|
||||
ctx.get('support_count', 0.0),
|
||||
ctx.get('resistance_count', 0.0),
|
||||
ctx.get('price_position_in_range', 0.5), # 0=at support, 1=at resistance
|
||||
ctx.get('distance_to_nearest_level', 0.0),
|
||||
ctx.get('level_strength', 0.0),
|
||||
])
|
||||
else:
|
||||
pivot_features.extend([0.0] * 6)
|
||||
else:
|
||||
pivot_features = [0.0] * 10
|
||||
|
||||
# Ensure exactly 10 pivot features
|
||||
pivot_features = pivot_features[:10]
|
||||
pivot_features.extend([0.0] * (10 - len(pivot_features)))
|
||||
features.extend(pivot_features)
|
||||
|
||||
# Last predictions from other models (FIXED SIZE: 45 features)
|
||||
prediction_features = []
|
||||
|
||||
Reference in New Issue
Block a user