stability fixes, lower updates

This commit is contained in:
Dobromir Popov
2025-07-26 22:32:45 +03:00
parent 9576c52039
commit 7c61c12b70
9 changed files with 1210 additions and 45 deletions

View File

@ -16,11 +16,17 @@ matplotlib.use('Agg') # Use non-interactive Agg backend
import asyncio
import logging
import sys
import platform
from safe_logging import setup_safe_logging
import threading
import time
from pathlib import Path
# Windows-specific async event loop configuration
if platform.system() == "Windows":
# Use ProactorEventLoop on Windows for better I/O handling
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
@ -37,11 +43,25 @@ setup_safe_logging()
logger = logging.getLogger(__name__)
async def start_training_pipeline(orchestrator, trading_executor):
"""Start the training pipeline in the background"""
"""Start the training pipeline in the background with comprehensive error handling"""
logger.info("=" * 70)
logger.info("STARTING TRAINING PIPELINE WITH CLEAN DASHBOARD")
logger.info("=" * 70)
# Set up async exception handler
def handle_async_exception(loop, context):
"""Handle uncaught async exceptions"""
exception = context.get('exception')
if exception:
logger.error(f"Uncaught async exception: {exception}")
logger.error(f"Context: {context}")
else:
logger.error(f"Async error: {context.get('message', 'Unknown error')}")
# Get current event loop and set exception handler
loop = asyncio.get_running_loop()
loop.set_exception_handler(handle_async_exception)
# Initialize checkpoint management
checkpoint_manager = get_checkpoint_manager()
training_integration = get_training_integration()
@ -56,17 +76,23 @@ async def start_training_pipeline(orchestrator, trading_executor):
}
try:
# Start real-time processing (available in Enhanced orchestrator)
if hasattr(orchestrator, 'start_realtime_processing'):
await orchestrator.start_realtime_processing()
logger.info("Real-time processing started")
# Start real-time processing with error handling
try:
if hasattr(orchestrator, 'start_realtime_processing'):
await orchestrator.start_realtime_processing()
logger.info("Real-time processing started")
except Exception as e:
logger.error(f"Error starting real-time processing: {e}")
# Start COB integration (available in Enhanced orchestrator)
if hasattr(orchestrator, 'start_cob_integration'):
await orchestrator.start_cob_integration()
logger.info("COB integration started - 5-minute data matrix active")
else:
logger.info("COB integration not available")
# Start COB integration with error handling
try:
if hasattr(orchestrator, 'start_cob_integration'):
await orchestrator.start_cob_integration()
logger.info("COB integration started - 5-minute data matrix active")
else:
logger.info("COB integration not available")
except Exception as e:
logger.error(f"Error starting COB integration: {e}")
# Main training loop
iteration = 0
@ -170,6 +196,31 @@ def start_clean_dashboard_with_training():
orchestrator.trading_executor = trading_executor
logger.info("Trading Executor connected to Orchestrator")
# Initialize system resource monitoring
from utils.system_monitor import start_system_monitoring
system_monitor = start_system_monitoring()
# Set up cleanup callback for memory management
def cleanup_callback():
"""Custom cleanup for memory management"""
try:
# Clear orchestrator caches
if hasattr(orchestrator, 'recent_decisions'):
for symbol in orchestrator.recent_decisions:
if len(orchestrator.recent_decisions[symbol]) > 50:
orchestrator.recent_decisions[symbol] = orchestrator.recent_decisions[symbol][-25:]
# Clear data provider caches
if hasattr(data_provider, 'clear_old_data'):
data_provider.clear_old_data()
logger.info("Custom memory cleanup completed")
except Exception as e:
logger.error(f"Error in custom cleanup: {e}")
system_monitor.set_callbacks(cleanup=cleanup_callback)
logger.info("System resource monitoring started with memory cleanup")
# Import clean dashboard
from web.clean_dashboard import create_clean_dashboard
@ -178,17 +229,39 @@ def start_clean_dashboard_with_training():
dashboard = create_clean_dashboard(data_provider, orchestrator, trading_executor)
logger.info("Clean Trading Dashboard created")
# Start training pipeline in background thread
# Add memory cleanup method to dashboard
def cleanup_dashboard_memory():
"""Clean up dashboard memory caches"""
try:
if hasattr(dashboard, 'recent_decisions'):
dashboard.recent_decisions = dashboard.recent_decisions[-50:] # Keep last 50
if hasattr(dashboard, 'closed_trades'):
dashboard.closed_trades = dashboard.closed_trades[-100:] # Keep last 100
if hasattr(dashboard, 'tick_cache'):
dashboard.tick_cache = dashboard.tick_cache[-1000:] # Keep last 1000
logger.debug("Dashboard memory cleanup completed")
except Exception as e:
logger.error(f"Error in dashboard memory cleanup: {e}")
# Set cleanup method on dashboard
dashboard.cleanup_memory = cleanup_dashboard_memory
# Start training pipeline in background thread with enhanced error handling
def training_worker():
"""Run training pipeline in background"""
"""Run training pipeline in background with comprehensive error handling"""
try:
asyncio.run(start_training_pipeline(orchestrator, trading_executor))
except KeyboardInterrupt:
logger.info("Training worker stopped by user")
except Exception as e:
logger.error(f"Training worker error: {e}")
import traceback
logger.error(f"Training worker traceback: {traceback.format_exc()}")
# Don't exit - let main thread handle restart
training_thread = threading.Thread(target=training_worker, daemon=True)
training_thread.start()
logger.info("Training pipeline started in background")
logger.info("Training pipeline started in background with error handling")
# Wait a moment for training to initialize
time.sleep(3)
@ -205,9 +278,15 @@ def start_clean_dashboard_with_training():
else:
logger.warning("Failed to start TensorBoard - training metrics will not be visualized")
# Start dashboard server (this blocks)
logger.info(" Starting Clean Dashboard Server...")
dashboard.run_server(host='127.0.0.1', port=dashboard_port, debug=False)
# Start dashboard server with error handling (this blocks)
logger.info("Starting Clean Dashboard Server with error handling...")
try:
dashboard.run_server(host='127.0.0.1', port=dashboard_port, debug=False)
except Exception as e:
logger.error(f"Dashboard server error: {e}")
import traceback
logger.error(f"Dashboard server traceback: {traceback.format_exc()}")
raise # Re-raise to trigger main error handling
except KeyboardInterrupt:
logger.info("System stopped by user")
@ -224,8 +303,23 @@ def start_clean_dashboard_with_training():
sys.exit(1)
def main():
"""Main function"""
start_clean_dashboard_with_training()
"""Main function with comprehensive error handling"""
try:
start_clean_dashboard_with_training()
except KeyboardInterrupt:
logger.info("Dashboard stopped by user (Ctrl+C)")
sys.exit(0)
except Exception as e:
logger.error(f"Critical error in main: {e}")
import traceback
logger.error(traceback.format_exc())
sys.exit(1)
if __name__ == "__main__":
# Ensure logging is flushed on exit
import atexit
def flush_logs():
logging.shutdown()
atexit.register(flush_logs)
main()