fixes
This commit is contained in:
@ -7,6 +7,7 @@ if sys.platform == 'win32':
|
|||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
|
import json
|
||||||
import ccxt.async_support as ccxt
|
import ccxt.async_support as ccxt
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
@ -14,13 +15,35 @@ import torch.optim as optim
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from collections import deque
|
from collections import deque
|
||||||
|
|
||||||
|
# -------------------------------------
|
||||||
|
# Utility functions for caching candles to file
|
||||||
|
# -------------------------------------
|
||||||
|
CACHE_FILE = "candles_cache.json"
|
||||||
|
|
||||||
|
def load_candles_cache(filename):
|
||||||
|
if os.path.exists(filename):
|
||||||
|
try:
|
||||||
|
with open(filename, "r") as f:
|
||||||
|
data = json.load(f)
|
||||||
|
print(f"Loaded {len(data)} candles from cache.")
|
||||||
|
return data
|
||||||
|
except Exception as e:
|
||||||
|
print("Error reading cache file:", e)
|
||||||
|
return []
|
||||||
|
|
||||||
|
def save_candles_cache(filename, candles):
|
||||||
|
try:
|
||||||
|
with open(filename, "w") as f:
|
||||||
|
json.dump(candles, f)
|
||||||
|
except Exception as e:
|
||||||
|
print("Error saving cache file:", e)
|
||||||
|
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
# Neural Network Architecture Definition
|
# Neural Network Architecture Definition
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
class TradingModel(nn.Module):
|
class TradingModel(nn.Module):
|
||||||
def __init__(self, input_dim, hidden_dim, output_dim):
|
def __init__(self, input_dim, hidden_dim, output_dim):
|
||||||
super(TradingModel, self).__init__()
|
super(TradingModel, self).__init__()
|
||||||
# This is a minimal feed-forward network.
|
|
||||||
self.net = nn.Sequential(
|
self.net = nn.Sequential(
|
||||||
nn.Linear(input_dim, hidden_dim),
|
nn.Linear(input_dim, hidden_dim),
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
@ -56,68 +79,65 @@ def compute_indicators(candle, additional_data):
|
|||||||
"""
|
"""
|
||||||
Combine OHLCV candle data with extra indicator information.
|
Combine OHLCV candle data with extra indicator information.
|
||||||
Base features: open, high, low, close, volume.
|
Base features: open, high, low, close, volume.
|
||||||
Additional channels (e.g. sentiment score, news volume, etc.) are appended.
|
Additional channels (e.g. simulated sentiment) are appended.
|
||||||
"""
|
"""
|
||||||
features = []
|
features = [
|
||||||
features.extend([
|
|
||||||
candle.get('open', 0.0),
|
candle.get('open', 0.0),
|
||||||
candle.get('high', 0.0),
|
candle.get('high', 0.0),
|
||||||
candle.get('low', 0.0),
|
candle.get('low', 0.0),
|
||||||
candle.get('close', 0.0),
|
candle.get('close', 0.0),
|
||||||
candle.get('volume', 0.0)
|
candle.get('volume', 0.0),
|
||||||
])
|
]
|
||||||
# Append additional indicators (e.g., simulated sentiment here)
|
|
||||||
for key, value in additional_data.items():
|
for key, value in additional_data.items():
|
||||||
features.append(value)
|
features.append(value)
|
||||||
return np.array(features, dtype=np.float32)
|
return np.array(features, dtype=np.float32)
|
||||||
|
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
# RL Agent that Uses the Neural Network
|
# RL Agent with Q-Learning Update and Epsilon-Greedy Exploration
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
class ContinuousRLAgent:
|
class ContinuousRLAgent:
|
||||||
def __init__(self, model, optimizer, replay_buffer, batch_size=32):
|
def __init__(self, model, optimizer, replay_buffer, batch_size=32, gamma=0.99):
|
||||||
self.model = model
|
self.model = model
|
||||||
self.optimizer = optimizer
|
self.optimizer = optimizer
|
||||||
self.replay_buffer = replay_buffer
|
self.replay_buffer = replay_buffer
|
||||||
self.batch_size = batch_size
|
self.batch_size = batch_size
|
||||||
self.loss_fn = nn.MSELoss() # Using a simple MSE loss for demonstration.
|
self.loss_fn = nn.MSELoss()
|
||||||
|
self.gamma = gamma
|
||||||
|
|
||||||
def act(self, state):
|
def act(self, state, epsilon=0.1):
|
||||||
"""
|
# ε-greedy: with probability epsilon take a random action
|
||||||
Given state features, output an action.
|
if np.random.rand() < epsilon:
|
||||||
Mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
|
return np.random.randint(0, 3)
|
||||||
"""
|
state_tensor = torch.from_numpy(np.array(state, dtype=np.float32)).unsqueeze(0)
|
||||||
state_tensor = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
output = self.model(state_tensor)
|
output = self.model(state_tensor)
|
||||||
action = torch.argmax(output, dim=1).item()
|
action = torch.argmax(output, dim=1).item()
|
||||||
return action
|
return action
|
||||||
|
|
||||||
def train_step(self):
|
def train_step(self):
|
||||||
"""
|
# Only train if we have enough samples
|
||||||
Sample a batch from the replay buffer and update the network.
|
|
||||||
(Note: A real RL algorithm will have a more-complex target calculation.)
|
|
||||||
"""
|
|
||||||
if len(self.replay_buffer) < self.batch_size:
|
if len(self.replay_buffer) < self.batch_size:
|
||||||
return # Not enough samples yet
|
return
|
||||||
|
|
||||||
|
# Convert lists to numpy arrays in one shot for performance
|
||||||
batch = self.replay_buffer.sample(self.batch_size)
|
batch = self.replay_buffer.sample(self.batch_size)
|
||||||
states, rewards, next_states, dones = [], [], [], []
|
states, actions, rewards, next_states, dones = zip(*batch)
|
||||||
for experience in batch:
|
states_tensor = torch.from_numpy(np.array(states, dtype=np.float32))
|
||||||
state, reward, next_state, done = experience
|
actions_tensor = torch.tensor(actions, dtype=torch.int64)
|
||||||
states.append(state)
|
rewards_tensor = torch.from_numpy(np.array(rewards, dtype=np.float32)).unsqueeze(1)
|
||||||
rewards.append(reward)
|
next_states_tensor = torch.from_numpy(np.array(next_states, dtype=np.float32))
|
||||||
next_states.append(next_state)
|
dones_tensor = torch.tensor(dones, dtype=torch.float32).unsqueeze(1)
|
||||||
dones.append(done)
|
|
||||||
|
|
||||||
states_tensor = torch.tensor(states, dtype=torch.float32)
|
# Current Q-value for the chosen actions
|
||||||
targets_tensor = torch.tensor(rewards, dtype=torch.float32).unsqueeze(1)
|
Q_values = self.model(states_tensor)
|
||||||
|
current_Q = Q_values.gather(1, actions_tensor.unsqueeze(1))
|
||||||
|
|
||||||
outputs = self.model(states_tensor)
|
with torch.no_grad():
|
||||||
# For this simple demonstration we use the first output as the value estimate.
|
next_Q_values = self.model(next_states_tensor)
|
||||||
predictions = outputs[:, 0].unsqueeze(1)
|
max_next_Q = next_Q_values.max(1)[0].unsqueeze(1)
|
||||||
loss = self.loss_fn(predictions, targets_tensor)
|
target = rewards_tensor + self.gamma * max_next_Q * (1.0 - dones_tensor)
|
||||||
|
|
||||||
|
loss = self.loss_fn(current_Q, target)
|
||||||
self.optimizer.zero_grad()
|
self.optimizer.zero_grad()
|
||||||
loss.backward()
|
loss.backward()
|
||||||
self.optimizer.step()
|
self.optimizer.step()
|
||||||
@ -128,7 +148,7 @@ class ContinuousRLAgent:
|
|||||||
async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size=500):
|
async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size=500):
|
||||||
"""
|
"""
|
||||||
Fetch historical OHLCV data for the given symbol and timeframe.
|
Fetch historical OHLCV data for the given symbol and timeframe.
|
||||||
The "since" and "end_time" parameters are in milliseconds.
|
The 'since' and 'end_time' parameters are in milliseconds.
|
||||||
"""
|
"""
|
||||||
candles = []
|
candles = []
|
||||||
since_ms = since
|
since_ms = since
|
||||||
@ -140,7 +160,6 @@ async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, ba
|
|||||||
break
|
break
|
||||||
if not batch:
|
if not batch:
|
||||||
break
|
break
|
||||||
# Convert each candle from a list to a dict.
|
|
||||||
for c in batch:
|
for c in batch:
|
||||||
candle_dict = {
|
candle_dict = {
|
||||||
'timestamp': c[0],
|
'timestamp': c[0],
|
||||||
@ -158,6 +177,22 @@ async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, ba
|
|||||||
print(f"Fetched {len(candles)} candles.")
|
print(f"Fetched {len(candles)} candles.")
|
||||||
return candles
|
return candles
|
||||||
|
|
||||||
|
async def get_cached_or_fetch_data(exchange, symbol, timeframe, since, end_time, cache_file=CACHE_FILE, batch_size=500):
|
||||||
|
cached_candles = load_candles_cache(cache_file)
|
||||||
|
if cached_candles:
|
||||||
|
last_ts = cached_candles[-1]['timestamp']
|
||||||
|
# If the cached candles do not extend to 'end_time', fetch new ones.
|
||||||
|
if last_ts < end_time:
|
||||||
|
print("Fetching new candles to update cache...")
|
||||||
|
new_candles = await fetch_historical_data(exchange, symbol, timeframe, last_ts + 1, end_time, batch_size)
|
||||||
|
cached_candles.extend(new_candles)
|
||||||
|
else:
|
||||||
|
print("Cache covers the requested period.")
|
||||||
|
return cached_candles
|
||||||
|
else:
|
||||||
|
candles = await fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size)
|
||||||
|
return candles
|
||||||
|
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
# Backtest Environment Class Definition
|
# Backtest Environment Class Definition
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
@ -165,7 +200,7 @@ class BacktestEnvironment:
|
|||||||
def __init__(self, candles):
|
def __init__(self, candles):
|
||||||
self.candles = candles
|
self.candles = candles
|
||||||
self.current_index = 0
|
self.current_index = 0
|
||||||
self.position = None # Will hold a dict once a BUY is simulated.
|
self.position = None # Holds an open position, if any
|
||||||
|
|
||||||
def reset(self):
|
def reset(self):
|
||||||
self.current_index = 0
|
self.current_index = 0
|
||||||
@ -185,18 +220,15 @@ class BacktestEnvironment:
|
|||||||
def step(self, action):
|
def step(self, action):
|
||||||
"""
|
"""
|
||||||
Simulate a trading step.
|
Simulate a trading step.
|
||||||
• Uses the current candle as state.
|
- If not in a position and action is BUY (2), buy at the next candle's open.
|
||||||
• Decides on an action:
|
- If in a position and action is SELL (0), sell at the next candle's open and compute reward.
|
||||||
- If not in a position and action is BUY (2), we buy at the next candle's open.
|
- Otherwise, no trade is executed.
|
||||||
- If in position and action is SELL (0), we sell at the next candle's open.
|
Returns: (state, reward, next_state, done)
|
||||||
- Otherwise, no trade is executed.
|
|
||||||
• Returns: (state, reward, next_state, done)
|
|
||||||
"""
|
"""
|
||||||
if self.current_index >= len(self.candles) - 1:
|
if self.current_index >= len(self.candles) - 1:
|
||||||
# End of the historical data.
|
return self.get_state(self.current_index), 0.0, None, True
|
||||||
return self.get_state(self.current_index), 0, None, True
|
|
||||||
|
|
||||||
state = self.get_state(self.current_index)
|
current_state = self.get_state(self.current_index)
|
||||||
next_index = self.current_index + 1
|
next_index = self.current_index + 1
|
||||||
next_state = self.get_state(next_index)
|
next_state = self.get_state(next_index)
|
||||||
current_candle = self.candles[self.current_index]
|
current_candle = self.candles[self.current_index]
|
||||||
@ -205,28 +237,26 @@ class BacktestEnvironment:
|
|||||||
|
|
||||||
# Action mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
|
# Action mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
|
||||||
if self.position is None:
|
if self.position is None:
|
||||||
if action == 2: # BUY signal: enter a long position.
|
if action == 2: # BUY: enter long position at next candle's open.
|
||||||
# Buy at the next candle's open price.
|
|
||||||
entry_price = next_candle['open']
|
entry_price = next_candle['open']
|
||||||
self.position = {'entry_price': entry_price, 'entry_index': self.current_index}
|
self.position = {'entry_price': entry_price, 'entry_index': self.current_index}
|
||||||
# No immediate reward on entry.
|
|
||||||
else:
|
else:
|
||||||
if action == 0: # SELL signal: exit the long position.
|
if action == 0: # SELL: close long position.
|
||||||
sell_price = next_candle['open']
|
sell_price = next_candle['open']
|
||||||
reward = sell_price - self.position['entry_price']
|
reward = sell_price - self.position['entry_price']
|
||||||
self.position = None
|
self.position = None
|
||||||
self.current_index = next_index
|
self.current_index = next_index
|
||||||
done = (self.current_index >= len(self.candles) - 1)
|
done = (self.current_index >= len(self.candles) - 1)
|
||||||
return state, reward, next_state, done
|
return current_state, reward, next_state, done
|
||||||
|
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
# Training Loop Over Historical Data (Backtest)
|
# Training Loop Over Historical Data (Backtest)
|
||||||
# -------------------------------------
|
# -------------------------------------
|
||||||
def train_on_historical_data(env, rl_agent, num_epochs=10):
|
def train_on_historical_data(env, rl_agent, num_epochs=10, epsilon=0.1):
|
||||||
"""
|
"""
|
||||||
For each epoch, run through the historical data episode.
|
For each epoch, run through the entire historical data.
|
||||||
At every step, let the agent decide an action and simulate a trade.
|
At each step, choose an action using ε‑greedy policy, simulate a trade,
|
||||||
The experience (state, reward, next_state, done) is stored and used to update the network.
|
store the experience (state, action, reward, next_state, done), and update the model.
|
||||||
"""
|
"""
|
||||||
for epoch in range(num_epochs):
|
for epoch in range(num_epochs):
|
||||||
state = env.reset()
|
state = env.reset()
|
||||||
@ -234,13 +264,14 @@ def train_on_historical_data(env, rl_agent, num_epochs=10):
|
|||||||
total_reward = 0.0
|
total_reward = 0.0
|
||||||
steps = 0
|
steps = 0
|
||||||
while not done:
|
while not done:
|
||||||
action = rl_agent.act(state)
|
action = rl_agent.act(state, epsilon=epsilon)
|
||||||
state_next, reward, next_state, done = env.step(action)
|
prev_state = state
|
||||||
|
state, reward, next_state, done = env.step(action)
|
||||||
if next_state is None:
|
if next_state is None:
|
||||||
next_state = np.zeros_like(state)
|
next_state = np.zeros_like(prev_state)
|
||||||
rl_agent.replay_buffer.add((state, reward, next_state, done))
|
# Store the experience including the action taken.
|
||||||
|
rl_agent.replay_buffer.add((prev_state, action, reward, next_state, done))
|
||||||
rl_agent.train_step()
|
rl_agent.train_step()
|
||||||
state = next_state
|
|
||||||
total_reward += reward
|
total_reward += reward
|
||||||
steps += 1
|
steps += 1
|
||||||
print(f"Epoch {epoch+1}/{num_epochs} completed, total reward: {total_reward:.4f} over {steps} steps.")
|
print(f"Epoch {epoch+1}/{num_epochs} completed, total reward: {total_reward:.4f} over {steps} steps.")
|
||||||
@ -254,11 +285,11 @@ async def main_backtest():
|
|||||||
timeframe = '1m'
|
timeframe = '1m'
|
||||||
now = int(time.time() * 1000)
|
now = int(time.time() * 1000)
|
||||||
one_day_ms = 24 * 60 * 60 * 1000
|
one_day_ms = 24 * 60 * 60 * 1000
|
||||||
# For example, fetch a 1-day period from 2 days ago until 1 day ago.
|
# Fetch a 1-day period from 2 days ago until 1 day ago.
|
||||||
since = now - one_day_ms * 2
|
since = now - one_day_ms * 2
|
||||||
end_time = now - one_day_ms
|
end_time = now - one_day_ms
|
||||||
|
|
||||||
# Initialize the exchange (using MEXC in this example).
|
# Initialize exchange (using MEXC for example).
|
||||||
mexc_api_key = os.environ.get('MEXC_API_KEY', 'YOUR_API_KEY')
|
mexc_api_key = os.environ.get('MEXC_API_KEY', 'YOUR_API_KEY')
|
||||||
mexc_api_secret = os.environ.get('MEXC_API_SECRET', 'YOUR_SECRET_KEY')
|
mexc_api_secret = os.environ.get('MEXC_API_SECRET', 'YOUR_SECRET_KEY')
|
||||||
exchange = ccxt.mexc({
|
exchange = ccxt.mexc({
|
||||||
@ -268,38 +299,41 @@ async def main_backtest():
|
|||||||
})
|
})
|
||||||
|
|
||||||
print("Fetching historical data...")
|
print("Fetching historical data...")
|
||||||
candles = await fetch_historical_data(exchange, symbol, timeframe, since, end_time)
|
candles = await get_cached_or_fetch_data(exchange, symbol, timeframe, since, end_time)
|
||||||
if not candles:
|
if not candles:
|
||||||
print("No historical data fetched.")
|
print("No historical data fetched.")
|
||||||
await exchange.close()
|
await exchange.close()
|
||||||
return
|
return
|
||||||
|
|
||||||
# Initialize the backtest environment with the historical candles.
|
# Save/Update cache file.
|
||||||
|
save_candles_cache(CACHE_FILE, candles)
|
||||||
|
|
||||||
|
# Initialize the backtest environment with the candles.
|
||||||
env = BacktestEnvironment(candles)
|
env = BacktestEnvironment(candles)
|
||||||
|
|
||||||
# Model dimensions:
|
# Model dimensions: 5 base OHLCV features + 3 simulated sentiment features = 8.
|
||||||
# 5 base OHLCV features + 3 simulated sentiment features.
|
input_dim = 8
|
||||||
input_dim = 5 + 3
|
|
||||||
hidden_dim = 128
|
hidden_dim = 128
|
||||||
output_dim = 3 # SELL, HOLD, BUY
|
output_dim = 3 # SELL, HOLD, BUY
|
||||||
|
|
||||||
model = TradingModel(input_dim, hidden_dim, output_dim)
|
model = TradingModel(input_dim, hidden_dim, output_dim)
|
||||||
optimizer = optim.Adam(model.parameters(), lr=1e-4)
|
optimizer = optim.Adam(model.parameters(), lr=1e-4)
|
||||||
replay_buffer = ReplayBuffer(capacity=10000)
|
replay_buffer = ReplayBuffer(capacity=10000)
|
||||||
rl_agent = ContinuousRLAgent(model, optimizer, replay_buffer, batch_size=32)
|
rl_agent = ContinuousRLAgent(model, optimizer, replay_buffer, batch_size=32, gamma=0.99)
|
||||||
|
|
||||||
# Train the RL agent via backtesting.
|
# Run training over historical data.
|
||||||
num_epochs = 10 # Adjust number of epochs as needed.
|
num_epochs = 10 # Adjust as needed.
|
||||||
train_on_historical_data(env, rl_agent, num_epochs=num_epochs)
|
train_on_historical_data(env, rl_agent, num_epochs=num_epochs, epsilon=0.1)
|
||||||
|
|
||||||
# Optionally, perform a final test episode to simulate trading with the trained model.
|
# Optionally, perform a final test run (without exploration) to check cumulative profit.
|
||||||
state = env.reset()
|
state = env.reset()
|
||||||
done = False
|
done = False
|
||||||
cumulative_reward = 0.0
|
cumulative_reward = 0.0
|
||||||
while not done:
|
while not done:
|
||||||
action = rl_agent.act(state)
|
action = rl_agent.act(state, epsilon=0.0)
|
||||||
state, reward, next_state, done = env.step(action)
|
state, reward, next_state, done = env.step(action)
|
||||||
cumulative_reward += reward
|
cumulative_reward += reward
|
||||||
|
state = next_state
|
||||||
print("Final backtest simulation cumulative profit:", cumulative_reward)
|
print("Final backtest simulation cumulative profit:", cumulative_reward)
|
||||||
|
|
||||||
await exchange.close()
|
await exchange.close()
|
||||||
|
Reference in New Issue
Block a user