fix T training memory usage (due for more improvement)

This commit is contained in:
Dobromir Popov
2025-11-06 15:54:26 +02:00
parent 738c7cb854
commit 76e3bb6a61
3 changed files with 114 additions and 72 deletions

View File

@@ -336,7 +336,9 @@ class RealTrainingAdapter:
# Get training config # Get training config
training_config = test_case.get('training_config', {}) training_config = test_case.get('training_config', {})
timeframes = training_config.get('timeframes', ['1s', '1m', '1h', '1d']) timeframes = training_config.get('timeframes', ['1s', '1m', '1h', '1d'])
candles_per_timeframe = training_config.get('candles_per_timeframe', 600) # 600 candles per batch # Reduce sequence length to avoid OOM - 200 candles is more reasonable
# With 5 timeframes, this gives 1000 total positions vs 3000 with 600 candles
candles_per_timeframe = training_config.get('candles_per_timeframe', 200) # 200 candles per batch
# Determine secondary symbol based on primary symbol # Determine secondary symbol based on primary symbol
# ETH/SOL -> BTC, BTC -> ETH # ETH/SOL -> BTC, BTC -> ETH
@@ -1183,8 +1185,13 @@ class RealTrainingAdapter:
timeframes = market_state.get('timeframes', {}) timeframes = market_state.get('timeframes', {})
secondary_timeframes = market_state.get('secondary_timeframes', {}) secondary_timeframes = market_state.get('secondary_timeframes', {})
# Target sequence length for all timeframes # Target sequence length - use actual data length (typically 200 candles)
target_seq_len = 600 # Find the first available timeframe to determine sequence length
target_seq_len = 200 # Default
for tf_data in timeframes.values():
if tf_data and 'close' in tf_data and len(tf_data['close']) > 0:
target_seq_len = min(len(tf_data['close']), 200) # Cap at 200 to avoid OOM
break
# Extract each timeframe (returns None if not available) # Extract each timeframe (returns None if not available)
price_data_1s = self._extract_timeframe_data(timeframes.get('1s', {}), target_seq_len) if '1s' in timeframes else None price_data_1s = self._extract_timeframe_data(timeframes.get('1s', {}), target_seq_len) if '1s' in timeframes else None
@@ -1219,8 +1226,8 @@ class RealTrainingAdapter:
return None return None
# Create placeholder COB data (zeros if not available) # Create placeholder COB data (zeros if not available)
# COB data shape: [1, 600, 100] to match new sequence length # COB data shape: [1, target_seq_len, 100] to match sequence length
cob_data = torch.zeros(1, 600, 100, dtype=torch.float32) cob_data = torch.zeros(1, target_seq_len, 100, dtype=torch.float32)
# Create technical indicators from reference timeframe # Create technical indicators from reference timeframe
tech_features = [] tech_features = []
@@ -1487,9 +1494,10 @@ class RealTrainingAdapter:
logger.info(f" Converted {len(training_data)} samples to {len(converted_batches)} training batches") logger.info(f" Converted {len(training_data)} samples to {len(converted_batches)} training batches")
# Group single-sample batches into mini-batches for efficient training # Use batch size of 1 to avoid OOM with large sequence lengths
# Small batch size (5) for better gradient updates with limited training data # With 5 timeframes * 600 candles = 3000 sequence positions per sample,
mini_batch_size = 5 # Small batches work better with ~255 samples # even batch_size=5 causes 15,000 positions which is too large for GPU
mini_batch_size = 1 # Process one sample at a time to avoid OOM
def _combine_batches(batch_list: List[Dict[str, 'torch.Tensor']]) -> Dict[str, 'torch.Tensor']: def _combine_batches(batch_list: List[Dict[str, 'torch.Tensor']]) -> Dict[str, 'torch.Tensor']:
combined: Dict[str, 'torch.Tensor'] = {} combined: Dict[str, 'torch.Tensor'] = {}
@@ -1521,7 +1529,10 @@ class RealTrainingAdapter:
logger.info(f" Grouped into {len(grouped_batches)} mini-batches (target size {mini_batch_size})") logger.info(f" Grouped into {len(grouped_batches)} mini-batches (target size {mini_batch_size})")
# Train using train_step for each mini-batch # Train using train_step for each mini-batch with gradient accumulation
# Accumulate gradients over multiple batches to simulate larger batch size
accumulation_steps = 5 # Accumulate 5 batches before optimizer step
for epoch in range(session.total_epochs): for epoch in range(session.total_epochs):
epoch_loss = 0.0 epoch_loss = 0.0
epoch_accuracy = 0.0 epoch_accuracy = 0.0
@@ -1529,8 +1540,11 @@ class RealTrainingAdapter:
for i, batch in enumerate(grouped_batches): for i, batch in enumerate(grouped_batches):
try: try:
# Determine if this is an accumulation step or optimizer step
is_accumulation_step = (i + 1) % accumulation_steps != 0
# Call the trainer's train_step method with proper batch format # Call the trainer's train_step method with proper batch format
result = trainer.train_step(batch) result = trainer.train_step(batch, accumulate_gradients=is_accumulation_step)
if result is not None: if result is not None:
batch_loss = result.get('total_loss', 0.0) batch_loss = result.get('total_loss', 0.0)
@@ -1539,14 +1553,14 @@ class RealTrainingAdapter:
epoch_accuracy += batch_accuracy epoch_accuracy += batch_accuracy
num_batches += 1 num_batches += 1
# Log first batch and every 100th batch for debugging # Log first batch and every 10th batch for debugging
if (i + 1) == 1 or (i + 1) % 100 == 0: if (i + 1) == 1 or (i + 1) % 10 == 0:
logger.info(f" Batch {i + 1}/{len(converted_batches)}, Loss: {batch_loss:.6f}, Accuracy: {batch_accuracy:.4f}") logger.info(f" Batch {i + 1}/{len(grouped_batches)}, Loss: {batch_loss:.6f}, Accuracy: {batch_accuracy:.4f}")
else: else:
logger.warning(f" Batch {i + 1} returned None result - skipping") logger.warning(f" Batch {i + 1} returned None result - skipping")
# Clear CUDA cache periodically to prevent memory leak # Clear CUDA cache after optimizer step (not accumulation step)
if torch.cuda.is_available() and (i + 1) % 5 == 0: if torch.cuda.is_available() and not is_accumulation_step:
torch.cuda.empty_cache() torch.cuda.empty_cache()
except Exception as e: except Exception as e:

View File

@@ -58,6 +58,9 @@ class TradingTransformerConfig:
use_residual_connections: bool = True # Enhanced residual connections use_residual_connections: bool = True # Enhanced residual connections
use_layer_norm_variants: bool = True # Advanced normalization use_layer_norm_variants: bool = True # Advanced normalization
# Memory optimization
use_gradient_checkpointing: bool = True # Trade compute for memory (saves ~30% memory)
class PositionalEncoding(nn.Module): class PositionalEncoding(nn.Module):
"""Sinusoidal positional encoding for transformer""" """Sinusoidal positional encoding for transformer"""
@@ -638,17 +641,17 @@ class AdvancedTradingTransformer(nn.Module):
stacked_tfs = torch.stack(timeframe_encodings, dim=1) # [batch, num_tfs, seq_len, d_model] stacked_tfs = torch.stack(timeframe_encodings, dim=1) # [batch, num_tfs, seq_len, d_model]
num_tfs = len(timeframe_encodings) num_tfs = len(timeframe_encodings)
# Reshape for cross-timeframe attention # MEMORY EFFICIENT: Process timeframes with shared weights
# [batch, num_tfs, seq_len, d_model] -> [batch, num_tfs * seq_len, d_model] # Reshape to process all timeframes in parallel: [batch*num_tfs, seq_len, d_model]
cross_tf_input = stacked_tfs.reshape(batch_size, num_tfs * seq_len, self.config.d_model) # This avoids creating huge concatenated sequences while still processing efficiently
batched_tfs = stacked_tfs.reshape(batch_size * num_tfs, seq_len, self.config.d_model)
# Apply cross-timeframe attention layers # Apply attention layers (shared across timeframes)
# This allows the model to see patterns ACROSS timeframes simultaneously
for layer in self.cross_timeframe_layers: for layer in self.cross_timeframe_layers:
cross_tf_input = layer(cross_tf_input) batched_tfs = layer(batched_tfs)
# Reshape back: [batch, num_tfs * seq_len, d_model] -> [batch, num_tfs, seq_len, d_model] # Reshape back: [batch*num_tfs, seq_len, d_model] -> [batch, num_tfs, seq_len, d_model]
cross_tf_output = cross_tf_input.reshape(batch_size, num_tfs, seq_len, self.config.d_model) cross_tf_output = batched_tfs.reshape(batch_size, num_tfs, seq_len, self.config.d_model)
# Average across timeframes to get unified representation # Average across timeframes to get unified representation
# [batch, num_tfs, seq_len, d_model] -> [batch, seq_len, d_model] # [batch, num_tfs, seq_len, d_model] -> [batch, seq_len, d_model]
@@ -706,10 +709,18 @@ class AdvancedTradingTransformer(nn.Module):
else: else:
x = self.pos_encoding(x.transpose(0, 1)).transpose(0, 1) x = self.pos_encoding(x.transpose(0, 1)).transpose(0, 1)
# Apply transformer layers # Apply transformer layers with optional gradient checkpointing
regime_probs_history = [] regime_probs_history = []
for layer in self.layers: for layer in self.layers:
if self.training and self.config.use_gradient_checkpointing:
# Use gradient checkpointing to save memory during training
# Trades compute for memory (recomputes activations during backward pass)
layer_output = torch.utils.checkpoint.checkpoint(
layer, x, mask, use_reentrant=False
)
else:
layer_output = layer(x, mask) layer_output = layer(x, mask)
x = layer_output['output'] x = layer_output['output']
if layer_output['regime_probs'] is not None: if layer_output['regime_probs'] is not None:
regime_probs_history.append(layer_output['regime_probs']) regime_probs_history.append(layer_output['regime_probs'])
@@ -1107,6 +1118,11 @@ class TradingTransformerTrainer:
# Move model to device # Move model to device
self.model.to(self.device) self.model.to(self.device)
# Mixed precision training disabled - causes dtype mismatches
# Can be re-enabled if needed, but requires careful dtype management
self.use_amp = False
self.scaler = None
# Optimizer with warmup # Optimizer with warmup
self.optimizer = optim.AdamW( self.optimizer = optim.AdamW(
model.parameters(), model.parameters(),
@@ -1136,10 +1152,18 @@ class TradingTransformerTrainer:
'learning_rates': [] 'learning_rates': []
} }
def train_step(self, batch: Dict[str, torch.Tensor]) -> Dict[str, float]: def train_step(self, batch: Dict[str, torch.Tensor], accumulate_gradients: bool = False) -> Dict[str, float]:
"""Single training step""" """Single training step with optional gradient accumulation
Args:
batch: Training batch
accumulate_gradients: If True, don't zero gradients or step optimizer (for gradient accumulation)
"""
try: try:
self.model.train() self.model.train()
# Only zero gradients if not accumulating
if not accumulate_gradients:
self.optimizer.zero_grad() self.optimizer.zero_grad()
# Move batch to device WITHOUT cloning to avoid version tracking issues # Move batch to device WITHOUT cloning to avoid version tracking issues
@@ -1147,6 +1171,8 @@ class TradingTransformerTrainer:
batch = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v batch = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v
for k, v in batch.items()} for k, v in batch.items()}
# Use automatic mixed precision (FP16) for memory efficiency
with torch.cuda.amp.autocast(enabled=self.use_amp):
# Forward pass with multi-timeframe data # Forward pass with multi-timeframe data
outputs = self.model( outputs = self.model(
price_data_1s=batch.get('price_data_1s'), price_data_1s=batch.get('price_data_1s'),
@@ -1199,8 +1225,11 @@ class TradingTransformerTrainer:
# Use addition instead of += to avoid inplace operation # Use addition instead of += to avoid inplace operation
total_loss = total_loss + 0.1 * confidence_loss total_loss = total_loss + 0.1 * confidence_loss
# Backward pass # Backward pass with mixed precision scaling
try: try:
if self.use_amp:
self.scaler.scale(total_loss).backward()
else:
total_loss.backward() total_loss.backward()
except RuntimeError as e: except RuntimeError as e:
if "inplace operation" in str(e): if "inplace operation" in str(e):
@@ -1216,11 +1245,22 @@ class TradingTransformerTrainer:
else: else:
raise raise
# Only clip gradients and step optimizer if not accumulating
if not accumulate_gradients:
if self.use_amp:
# Unscale gradients before clipping
self.scaler.unscale_(self.optimizer)
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.max_grad_norm)
# Optimizer step with scaling
self.scaler.step(self.optimizer)
self.scaler.update()
else:
# Gradient clipping # Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.max_grad_norm) torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.max_grad_norm)
# Optimizer step # Optimizer step
self.optimizer.step() self.optimizer.step()
self.scheduler.step() self.scheduler.step()
# Calculate accuracy without gradients # Calculate accuracy without gradients

View File

@@ -836,22 +836,10 @@ class TradingOrchestrator:
try: try:
from NN.models.dqn_agent import DQNAgent from NN.models.dqn_agent import DQNAgent
# Determine actual state size from BaseDataInput # Use known state size instead of building data (which triggers massive API calls)
try: # The state size is determined by BaseDataInput structure and doesn't change
base_data = self.data_provider.build_base_data_input(self.symbol) actual_state_size = 7850 # Known size from BaseDataInput.get_feature_vector()
if base_data: logger.info(f"Using known state size: {actual_state_size}")
actual_state_size = len(base_data.get_feature_vector())
logger.info(f"Detected actual state size: {actual_state_size}")
else:
actual_state_size = 7850 # Fallback based on error message
logger.warning(
f"Could not determine state size, using fallback: {actual_state_size}"
)
except Exception as e:
actual_state_size = 7850 # Fallback based on error message
logger.warning(
f"Error determining state size: {e}, using fallback: {actual_state_size}"
)
action_size = self.config.rl.get("action_space", 3) action_size = self.config.rl.get("action_space", 3)
self.rl_agent = DQNAgent( self.rl_agent = DQNAgent(