fix T training memory usage (due for more improvement)

This commit is contained in:
Dobromir Popov
2025-11-06 15:54:26 +02:00
parent 738c7cb854
commit 76e3bb6a61
3 changed files with 114 additions and 72 deletions

View File

@@ -836,22 +836,10 @@ class TradingOrchestrator:
try:
from NN.models.dqn_agent import DQNAgent
# Determine actual state size from BaseDataInput
try:
base_data = self.data_provider.build_base_data_input(self.symbol)
if base_data:
actual_state_size = len(base_data.get_feature_vector())
logger.info(f"Detected actual state size: {actual_state_size}")
else:
actual_state_size = 7850 # Fallback based on error message
logger.warning(
f"Could not determine state size, using fallback: {actual_state_size}"
)
except Exception as e:
actual_state_size = 7850 # Fallback based on error message
logger.warning(
f"Error determining state size: {e}, using fallback: {actual_state_size}"
)
# Use known state size instead of building data (which triggers massive API calls)
# The state size is determined by BaseDataInput structure and doesn't change
actual_state_size = 7850 # Known size from BaseDataInput.get_feature_vector()
logger.info(f"Using known state size: {actual_state_size}")
action_size = self.config.rl.get("action_space", 3)
self.rl_agent = DQNAgent(