tter pivots

This commit is contained in:
Dobromir Popov
2025-05-30 03:03:51 +03:00
parent 1130e02f35
commit 75dbac1761
6 changed files with 1459 additions and 1830 deletions

View File

@ -0,0 +1,160 @@
# Williams Market Structure CNN Integration Summary
## 🎯 Overview
The Williams Market Structure has been enhanced with CNN-based pivot prediction capabilities, enabling real-time training and prediction at each detected pivot point using multi-timeframe, multi-symbol data.
## ✅ Key Features Implemented
### 🔄 **Recursive Pivot Structure**
- **Level 0**: Raw OHLCV price data → Swing points using multiple strengths [2, 3, 5, 8, 13]
- **Level 1**: Level 0 pivot points → Treated as "price bars" for higher-level pivots
- **Level 2-4**: Recursive application on previous level's pivots
- **True Recursion**: Each level builds on the previous level's pivot points
### 🧠 **CNN Integration Architecture**
```
Each Pivot Detection Triggers:
1. Train CNN on previous pivot (features) → current pivot (ground truth)
2. Predict next pivot using current pivot features
3. Store current features for next training cycle
```
### 📊 **Multi-Timeframe Input Features**
- **ETH Primary Symbol**:
- 900 x 1s bars with indicators (10 features)
- 900 x 1m bars with indicators (10 features)
- 900 x 1h bars with indicators (10 features)
- 5 minutes of tick-derived features (10 features)
- **BTC Reference Symbol**:
- 5 minutes of tick-derived features (4 features)
- **Pivot Context**: Recent pivot characteristics (3 features)
- **Chart Labels**: Symbol/timeframe identification (3 features)
- **Total**: 900 timesteps × 50 features
### 🎯 **Multi-Level Output Prediction**
- **10 Outputs Total**: 5 Williams levels × (type + price)
- Level 0-4: [swing_type (0=LOW, 1=HIGH), normalized_price]
- Allows prediction across all recursive levels simultaneously
### 📐 **Smart Normalization Strategy**
- **Data Flow**: Keep actual values throughout pipeline for validation
- **Final Step**: Normalize using 1h timeframe min/max range
- **Cross-Timeframe Preservation**: Maintains relationships between different timeframes
- **Price Features**: Normalized with 1h range
- **Non-Price Features**: Feature-wise normalization (indicators, counts, etc.)
## 🔧 **Integration with TrainingDataPacket**
Successfully leverages existing `TrainingDataPacket` from `core/unified_data_stream.py`:
```python
@dataclass
class TrainingDataPacket:
timestamp: datetime
symbol: str
tick_cache: List[Dict[str, Any]] # ✅ Used for tick features
one_second_bars: List[Dict[str, Any]] # ✅ Used for 1s data
multi_timeframe_data: Dict[str, List[Dict[str, Any]]] # ✅ Used for 1m, 1h data
cnn_features: Optional[Dict[str, np.ndarray]] # ✅ Populated by Williams
cnn_predictions: Optional[Dict[str, np.ndarray]] # ✅ Populated by Williams
```
## 🚀 **CNN Training Flow**
### **At Each Pivot Point Detection:**
1. **Training Phase** (if previous pivot exists):
```python
X_train = previous_pivot_features # (900, 50)
y_train = current_actual_pivot # (10,) for all levels
model.fit(X_train, y_train, epochs=1) # Online learning
```
2. **Prediction Phase**:
```python
X_predict = current_pivot_features # (900, 50)
y_predict = model.predict(X_predict) # (10,) predictions for all levels
```
3. **State Management**:
```python
previous_pivot_details = {
'features': X_predict,
'pivot': current_pivot_object
}
```
## 🛠 **Implementation Status**
### ✅ **Completed Components**
- [x] Recursive Williams pivot calculation (5 levels)
- [x] CNN integration hooks at each pivot detection
- [x] Multi-timeframe feature extraction from TrainingDataPacket
- [x] 1h-based normalization strategy
- [x] Multi-level output prediction (10 outputs)
- [x] Online learning with single-step training
- [x] Dashboard integration with proper diagnostics
- [x] Comprehensive test suite
### ⚠ **Current Limitations**
- CNN disabled due to TensorFlow dependencies not installed
- Placeholder technical indicators (TODO: Add real SMA, EMA, RSI, MACD, etc.)
- Higher-level ground truth uses simplified logic (needs full Williams context)
### 🔄 **Real-Time Dashboard Integration**
Fixed dashboard Williams integration:
- **Reduced data requirement**: 20 bars minimum (from 50)
- **Proper configuration**: Uses swing_strengths=[2, 3, 5]
- **Enhanced diagnostics**: Data quality validation and pivot detection logging
- **Consistent timezone handling**: Proper timestamp conversion for pivot display
## 📈 **Performance Characteristics**
### **Pivot Detection Performance** (from diagnostics):
- ✅ Clear test patterns: Successfully detects obvious pivot points
- ✅ Realistic data: Handles real market volatility and timing
- ✅ Multi-level recursion: Properly builds higher levels from lower levels
### **CNN Training Frequency**:
- **Level 0**: Most frequent (every raw price pivot)
- **Level 1-4**: Less frequent (requires sufficient lower-level pivots)
- **Online Learning**: Single epoch per pivot for real-time adaptation
## 🎓 **Usage Example**
```python
# Initialize Williams with CNN integration
williams = WilliamsMarketStructure(
swing_strengths=[2, 3, 5, 8, 13],
cnn_input_shape=(900, 50), # 900 timesteps, 50 features
cnn_output_size=10, # 5 levels × 2 outputs
enable_cnn_feature=True,
training_data_provider=data_stream # TrainingDataPacket provider
)
# Calculate pivots (automatically triggers CNN training/prediction)
structure_levels = williams.calculate_recursive_pivot_points(ohlcv_data)
# Extract RL features (250 features for reinforcement learning)
rl_features = williams.extract_features_for_rl(structure_levels)
```
## 🔮 **Next Steps**
1. **Install TensorFlow**: Enable CNN functionality
2. **Add Real Indicators**: Replace placeholder technical indicators
3. **Enhanced Ground Truth**: Implement proper multi-level pivot relationships
4. **Model Persistence**: Save/load trained CNN models
5. **Performance Metrics**: Track CNN prediction accuracy over time
## 📊 **Key Benefits**
- **Real-Time Learning**: CNN adapts to market conditions at each pivot
- **Multi-Scale Analysis**: Captures patterns across 5 recursive levels
- **Rich Context**: 50 features per timestep covering multiple timeframes and symbols
- **Consistent Data Flow**: Leverages existing TrainingDataPacket infrastructure
- **Market Structure Awareness**: Predictions based on Williams methodology
This implementation provides a robust foundation for CNN-enhanced pivot prediction while maintaining the proven Williams Market Structure methodology.