dratsic NN changes
This commit is contained in:
@ -1,23 +1,26 @@
|
||||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import asyncio
|
||||
import os
|
||||
import time
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from collections import deque
|
||||
from datetime import datetime
|
||||
import matplotlib.pyplot as plt
|
||||
import ccxt.async_support as ccxt
|
||||
|
||||
# Load environment variables
|
||||
if sys.platform == 'win32':
|
||||
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
||||
|
||||
from dotenv import load_dotenv
|
||||
import os
|
||||
import time
|
||||
import json
|
||||
import ccxt.async_support as ccxt
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import numpy as np
|
||||
from collections import deque
|
||||
from datetime import datetime
|
||||
import matplotlib.pyplot as plt
|
||||
load_dotenv()
|
||||
|
||||
# --- Directories for saving models ---
|
||||
# Directory setup
|
||||
LAST_DIR = os.path.join("models", "last")
|
||||
BEST_DIR = os.path.join("models", "best")
|
||||
os.makedirs(LAST_DIR, exist_ok=True)
|
||||
@ -25,36 +28,33 @@ os.makedirs(BEST_DIR, exist_ok=True)
|
||||
|
||||
CACHE_FILE = "candles_cache.json"
|
||||
|
||||
# -------------------------------------
|
||||
# Utility functions for caching candles to file
|
||||
# -------------------------------------
|
||||
# -----------------
|
||||
# Helper Functions
|
||||
# -----------------
|
||||
|
||||
def load_candles_cache(filename):
|
||||
if os.path.exists(filename):
|
||||
try:
|
||||
with open(filename, "r") as f:
|
||||
data = json.load(f)
|
||||
print(f"Loaded cached data from {filename}.")
|
||||
return data
|
||||
except Exception as e:
|
||||
print("Error reading cache file:", e)
|
||||
return {}
|
||||
try:
|
||||
with open(filename, "r") as f:
|
||||
data = json.load(f)
|
||||
print(f"Loaded cached data from {filename}.")
|
||||
return data
|
||||
except Exception as e:
|
||||
print(f"Error reading cache file: {e}")
|
||||
return {}
|
||||
|
||||
def save_candles_cache(filename, candles_dict):
|
||||
try:
|
||||
with open(filename, "w") as f:
|
||||
json.dump(candles_dict, f)
|
||||
except Exception as e:
|
||||
print("Error saving cache file:", e)
|
||||
print(f"Error saving cache file: {e}")
|
||||
|
||||
# -------------------------------------
|
||||
# Checkpoint Functions (same as before)
|
||||
# -------------------------------------
|
||||
def maintain_checkpoint_directory(directory, max_files=10):
|
||||
files = os.listdir(directory)
|
||||
if len(files) > max_files:
|
||||
full_paths = [os.path.join(directory, f) for f in files]
|
||||
full_paths.sort(key=lambda x: os.path.getmtime(x))
|
||||
for f in full_paths[: len(files) - max_files]:
|
||||
for f in full_paths[:len(files) - max_files]:
|
||||
os.remove(f)
|
||||
|
||||
def get_best_models(directory):
|
||||
@ -73,9 +73,9 @@ def save_checkpoint(model, epoch, reward, last_dir=LAST_DIR, best_dir=BEST_DIR):
|
||||
last_filename = f"model_last_epoch_{epoch}_{timestamp}.pt"
|
||||
last_path = os.path.join(last_dir, last_filename)
|
||||
torch.save({
|
||||
"epoch": epoch,
|
||||
"reward": reward,
|
||||
"model_state_dict": model.state_dict()
|
||||
"epoch": epoch,
|
||||
"reward": reward,
|
||||
"model_state_dict": model.state_dict()
|
||||
}, last_path)
|
||||
maintain_checkpoint_directory(last_dir, max_files=10)
|
||||
|
||||
@ -110,9 +110,9 @@ def load_best_checkpoint(model, best_dir=BEST_DIR):
|
||||
model.load_state_dict(checkpoint["model_state_dict"])
|
||||
return checkpoint
|
||||
|
||||
# -------------------------------------
|
||||
# Technical Indicator Helper Functions
|
||||
# -------------------------------------
|
||||
# --------------------------
|
||||
# Technical Indicators
|
||||
# --------------------------
|
||||
def compute_sma(candles_list, index, period=10):
|
||||
start = max(0, index - period + 1)
|
||||
values = [candle["close"] for candle in candles_list[start:index+1]]
|
||||
@ -123,8 +123,25 @@ def compute_sma_volume(candles_list, index, period=10):
|
||||
values = [candle["volume"] for candle in candles_list[start:index+1]]
|
||||
return sum(values) / len(values) if values else 0.0
|
||||
|
||||
def compute_rsi(candles_list, index, period=14):
|
||||
start = max(0, index - period + 1)
|
||||
values = [candle["close"] for candle in candles_list[start:index+1]]
|
||||
delta = [values[i+1] - values[i] for i in range(len(values)-1)]
|
||||
gain, loss = [], []
|
||||
for d in delta:
|
||||
if d > 0:
|
||||
gain.append(d)
|
||||
loss.append(0)
|
||||
else:
|
||||
gain.append(0)
|
||||
loss.append(abs(d))
|
||||
avg_gain = sum(gain) / len(gain) if gain else 0
|
||||
avg_loss = sum(loss) / len(loss) if loss else 0
|
||||
rs = avg_gain / avg_loss if avg_loss != 0 else 0
|
||||
rsi = 100 - (100 / (1 + rs)) if avg_loss != 0 else 0
|
||||
return rsi
|
||||
|
||||
def get_aligned_candle_with_index(candles_list, target_ts):
|
||||
"""Find the candle in the list whose timestamp is the largest that is <= target_ts."""
|
||||
best_idx = 0
|
||||
for i, candle in enumerate(candles_list):
|
||||
if candle["timestamp"] <= target_ts:
|
||||
@ -134,27 +151,41 @@ def get_aligned_candle_with_index(candles_list, target_ts):
|
||||
return best_idx, candles_list[best_idx]
|
||||
|
||||
def get_features_for_tf(candles_list, index, period=10):
|
||||
"""Return a vector of 7 features: open, high, low, close, volume, sma_close, sma_volume."""
|
||||
features = []
|
||||
candle = candles_list[index]
|
||||
f_open = candle["open"]
|
||||
f_high = candle["high"]
|
||||
f_low = candle["low"]
|
||||
f_close = candle["close"]
|
||||
f_volume = candle["volume"]
|
||||
sma_close = compute_sma(candles_list, index, period)
|
||||
sma_volume = compute_sma_volume(candles_list, index, period)
|
||||
return [f_open, f_high, f_low, f_close, f_volume, sma_close, sma_volume]
|
||||
features.extend([
|
||||
candle["open"], candle["high"], candle["low"], candle["close"], candle["volume"],
|
||||
compute_sma(candles_list, index, period), compute_sma_volume(candles_list, index, period),
|
||||
compute_rsi(candles_list, index, period)
|
||||
])
|
||||
return features
|
||||
|
||||
# -------------------
|
||||
# Neural Network
|
||||
# -------------------
|
||||
class TransformerModel(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim, output_dim, n_heads=2, dropout=0.1):
|
||||
super().__init__()
|
||||
self.input_linear = nn.Linear(input_dim, hidden_dim)
|
||||
self.transformer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=n_heads, dropout=dropout)
|
||||
self.output_linear = nn.Linear(hidden_dim, output_dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.input_linear(x)
|
||||
x = x.unsqueeze(1)
|
||||
x = self.transformer(x)
|
||||
x = x.squeeze(1)
|
||||
return self.output_linear(x)
|
||||
|
||||
# -------------------------------------
|
||||
# Neural Network Architecture Definition
|
||||
# -------------------------------------
|
||||
class TradingModel(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim, output_dim):
|
||||
super(TradingModel, self).__init__()
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.LayerNorm(hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.LayerNorm(hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, output_dim)
|
||||
)
|
||||
@ -162,9 +193,9 @@ class TradingModel(nn.Module):
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
# -------------------------------------
|
||||
# Replay Buffer for Experience Storage
|
||||
# -------------------------------------
|
||||
# -----------------
|
||||
# Replay Buffer
|
||||
# -----------------
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity=10000):
|
||||
self.buffer = deque(maxlen=capacity)
|
||||
@ -179,9 +210,9 @@ class ReplayBuffer:
|
||||
def __len__(self):
|
||||
return len(self.buffer)
|
||||
|
||||
# -------------------------------------
|
||||
# RL Agent with Q-Learning and Epsilon-Greedy Exploration
|
||||
# -------------------------------------
|
||||
# -----------------
|
||||
# RL Agent
|
||||
# -----------------
|
||||
class ContinuousRLAgent:
|
||||
def __init__(self, model, optimizer, replay_buffer, batch_size=32, gamma=0.99):
|
||||
self.model = model
|
||||
@ -206,13 +237,13 @@ class ContinuousRLAgent:
|
||||
batch = self.replay_buffer.sample(self.batch_size)
|
||||
states, actions, rewards, next_states, dones = zip(*batch)
|
||||
states_tensor = torch.from_numpy(np.array(states, dtype=np.float32))
|
||||
actions_tensor = torch.tensor(actions, dtype=torch.int64)
|
||||
rewards_tensor = torch.from_numpy(np.array(rewards, dtype=np.float32)).unsqueeze(1)
|
||||
actions_tensor = torch.tensor(actions, dtype=torch.int64).unsqueeze(1)
|
||||
rewards_tensor = torch.tensor(rewards, dtype=torch.float32).unsqueeze(1)
|
||||
next_states_tensor = torch.from_numpy(np.array(next_states, dtype=np.float32))
|
||||
dones_tensor = torch.tensor(dones, dtype=torch.float32).unsqueeze(1)
|
||||
|
||||
Q_values = self.model(states_tensor)
|
||||
current_Q = Q_values.gather(1, actions_tensor.unsqueeze(1))
|
||||
current_Q = Q_values.gather(1, actions_tensor)
|
||||
with torch.no_grad():
|
||||
next_Q_values = self.model(next_states_tensor)
|
||||
max_next_Q = next_Q_values.max(1)[0].unsqueeze(1)
|
||||
@ -222,9 +253,66 @@ class ContinuousRLAgent:
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
|
||||
# -------------------------------------
|
||||
# Historical Data Fetching Function (for a given timeframe)
|
||||
# -------------------------------------
|
||||
# -----------------
|
||||
# Trading Environment
|
||||
# -----------------
|
||||
class TradingEnvironment:
|
||||
def __init__(self, candles_dict, base_tf="1m", timeframes=None):
|
||||
self.candles_dict = candles_dict
|
||||
self.base_tf = base_tf
|
||||
self.timeframes = timeframes if timeframes else [base_tf]
|
||||
self.current_index = 0
|
||||
self.position = None
|
||||
self.trade_history = []
|
||||
|
||||
def reset(self):
|
||||
self.current_index = 0
|
||||
self.position = None
|
||||
return self.get_state()
|
||||
|
||||
def get_state(self):
|
||||
state_features = []
|
||||
for tf in self.timeframes:
|
||||
candles = self.candles_dict[tf]
|
||||
aligned_idx, candle = get_aligned_candle_with_index(candles, self.candles_dict[self.base_tf][self.current_index]["timestamp"])
|
||||
features = get_features_for_tf(candles, aligned_idx)
|
||||
state_features.extend(features)
|
||||
return np.array(state_features, dtype=np.float32)
|
||||
|
||||
def step(self, action):
|
||||
done = self.current_index >= len(self.candles_dict[self.base_tf]) - 1
|
||||
if done:
|
||||
return self.get_state(), 0.0, None, True
|
||||
|
||||
current_candle = self.candles_dict[self.base_tf][self.current_index]
|
||||
next_candle = self.candles_dict[self.base_tf][self.current_index + 1]
|
||||
|
||||
if self.position is None:
|
||||
if action == 2: # Buy
|
||||
self.position = {"type": "long", "entry_price": next_candle["open"]}
|
||||
else:
|
||||
if action == 0: # Sell
|
||||
exit_price = next_candle["open"]
|
||||
reward = exit_price - self.position["entry_price"]
|
||||
self.trade_history.append({
|
||||
"entry_index": self.current_index,
|
||||
"exit_index": self.current_index + 1,
|
||||
"entry_price": self.position["entry_price"],
|
||||
"exit_price": exit_price,
|
||||
"pnl": reward
|
||||
})
|
||||
self.position = None
|
||||
elif action == 1: # Hold
|
||||
reward = 0.0
|
||||
|
||||
self.current_index += 1
|
||||
next_state = self.get_state()
|
||||
done = self.current_index >= len(self.candles_dict[self.base_tf]) - 1
|
||||
return current_candle, reward, next_state, done
|
||||
|
||||
# -----------------
|
||||
# Fetching Data
|
||||
# -----------------
|
||||
async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size=500):
|
||||
candles = []
|
||||
since_ms = since
|
||||
@ -232,7 +320,7 @@ async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, ba
|
||||
try:
|
||||
batch = await exchange.fetch_ohlcv(symbol, timeframe=timeframe, since=since_ms, limit=batch_size)
|
||||
except Exception as e:
|
||||
print(f"Error fetching historical data for {timeframe}:", e)
|
||||
print(f"Error fetching historical data for {timeframe}: {e}")
|
||||
break
|
||||
if not batch:
|
||||
break
|
||||
@ -250,239 +338,73 @@ async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, ba
|
||||
if last_timestamp >= end_time:
|
||||
break
|
||||
since_ms = last_timestamp + 1
|
||||
print(f"Fetched {len(candles)} candles for timeframe {timeframe}.")
|
||||
return candles
|
||||
|
||||
# -------------------------------------
|
||||
# Backtest Environment with Multi-Timeframe State
|
||||
# -------------------------------------
|
||||
class BacktestEnvironment:
|
||||
def __init__(self, candles_dict, base_tf="1m", timeframes=None):
|
||||
self.candles_dict = candles_dict # dict of timeframe: candles_list
|
||||
self.base_tf = base_tf
|
||||
if timeframes is None:
|
||||
self.timeframes = [base_tf] # fallback to single timeframe
|
||||
else:
|
||||
self.timeframes = timeframes
|
||||
self.trade_history = [] # record of closed trades
|
||||
self.current_index = 0 # index on base_tf candles
|
||||
self.position = None # active position record
|
||||
|
||||
def reset(self, clear_trade_history=True):
|
||||
self.current_index = 0
|
||||
self.position = None
|
||||
if clear_trade_history:
|
||||
self.trade_history = []
|
||||
return self.get_state(self.current_index)
|
||||
|
||||
def get_state(self, index):
|
||||
"""Construct the state as the concatenated features of all timeframes.
|
||||
For each timeframe, find the aligned candle for the base timeframe’s timestamp."""
|
||||
state_features = []
|
||||
base_candle = self.candles_dict[self.base_tf][index]
|
||||
base_ts = base_candle["timestamp"]
|
||||
for tf in self.timeframes:
|
||||
candles_list = self.candles_dict[tf]
|
||||
# Get the candle from this timeframe that is closest to (and <=) base_ts.
|
||||
aligned_index, _ = get_aligned_candle_with_index(candles_list, base_ts)
|
||||
features = get_features_for_tf(candles_list, aligned_index, period=10)
|
||||
state_features.extend(features)
|
||||
return np.array(state_features, dtype=np.float32)
|
||||
|
||||
def step(self, action):
|
||||
"""
|
||||
Simulate a trading step based on the base timeframe.
|
||||
- If not in a position and action is BUY (2), record entry at next candle's open.
|
||||
- If in a position and action is SELL (0), record exit at next candle's open, computing PnL.
|
||||
Returns: (current_state, reward, next_state, done)
|
||||
"""
|
||||
base_candles = self.candles_dict[self.base_tf]
|
||||
if self.current_index >= len(base_candles) - 1:
|
||||
return self.get_state(self.current_index), 0.0, None, True
|
||||
|
||||
current_state = self.get_state(self.current_index)
|
||||
next_index = self.current_index + 1
|
||||
next_state = self.get_state(next_index)
|
||||
current_candle = base_candles[self.current_index]
|
||||
next_candle = base_candles[next_index]
|
||||
reward = 0.0
|
||||
|
||||
# Action mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
|
||||
if self.position is None:
|
||||
if action == 2: # BUY signal: enter position at next candle's open.
|
||||
entry_price = next_candle["open"]
|
||||
self.position = {"entry_price": entry_price, "entry_index": self.current_index}
|
||||
else:
|
||||
if action == 0: # SELL signal: close position at next candle's open.
|
||||
exit_price = next_candle["open"]
|
||||
reward = exit_price - self.position["entry_price"]
|
||||
trade = {
|
||||
"entry_index": self.position["entry_index"],
|
||||
"entry_price": self.position["entry_price"],
|
||||
"exit_index": next_index,
|
||||
"exit_price": exit_price,
|
||||
"pnl": reward
|
||||
}
|
||||
self.trade_history.append(trade)
|
||||
self.position = None
|
||||
|
||||
self.current_index = next_index
|
||||
done = (self.current_index >= len(base_candles) - 1)
|
||||
return current_state, reward, next_state, done
|
||||
|
||||
# -------------------------------------
|
||||
# Chart Plotting: Trade History & PnL
|
||||
# -------------------------------------
|
||||
def plot_trade_history(candles, trade_history):
|
||||
close_prices = [candle["close"] for candle in candles]
|
||||
x = list(range(len(close_prices)))
|
||||
plt.figure(figsize=(12, 6))
|
||||
plt.plot(x, close_prices, label="Close Price", color="black", linewidth=1)
|
||||
|
||||
# Use these flags so that the label "BUY" or "SELL" is only shown once in the legend.
|
||||
buy_label_added = False
|
||||
sell_label_added = False
|
||||
|
||||
for trade in trade_history:
|
||||
in_idx = trade["entry_index"]
|
||||
out_idx = trade["exit_index"]
|
||||
in_price = trade["entry_price"]
|
||||
out_price = trade["exit_price"]
|
||||
pnl = trade["pnl"]
|
||||
|
||||
# Plot BUY marker ("IN")
|
||||
if not buy_label_added:
|
||||
plt.plot(in_idx, in_price, marker="^", color="green", markersize=10, label="BUY (IN)")
|
||||
buy_label_added = True
|
||||
else:
|
||||
plt.plot(in_idx, in_price, marker="^", color="green", markersize=10)
|
||||
plt.text(in_idx, in_price, " IN", color="green", fontsize=8, verticalalignment="bottom")
|
||||
|
||||
# Plot SELL marker ("OUT")
|
||||
if not sell_label_added:
|
||||
plt.plot(out_idx, out_price, marker="v", color="red", markersize=10, label="SELL (OUT)")
|
||||
sell_label_added = True
|
||||
else:
|
||||
plt.plot(out_idx, out_price, marker="v", color="red", markersize=10)
|
||||
plt.text(out_idx, out_price, " OUT", color="red", fontsize=8, verticalalignment="top")
|
||||
|
||||
# Annotate the PnL near the SELL marker.
|
||||
plt.text(out_idx, out_price, f" {pnl:+.2f}", color="blue", fontsize=8, verticalalignment="bottom")
|
||||
|
||||
# Choose line color based on profitability.
|
||||
if pnl > 0:
|
||||
line_color = "green"
|
||||
elif pnl < 0:
|
||||
line_color = "red"
|
||||
else:
|
||||
line_color = "gray"
|
||||
# Draw a dotted line between the buy and sell points.
|
||||
plt.plot([in_idx, out_idx], [in_price, out_price], linestyle="dotted", color=line_color)
|
||||
|
||||
plt.title("Trade History with PnL")
|
||||
plt.xlabel("Base Candle Index (1m)")
|
||||
plt.ylabel("Price")
|
||||
plt.legend()
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
# -------------------------------------
|
||||
# Training Loop: Backtesting Trading Episodes
|
||||
# -------------------------------------
|
||||
def train_on_historical_data(env, rl_agent, num_epochs=10, epsilon=0.1):
|
||||
for epoch in range(1, num_epochs + 1):
|
||||
state = env.reset() # clear trade history each epoch
|
||||
done = False
|
||||
total_reward = 0.0
|
||||
steps = 0
|
||||
while not done:
|
||||
action = rl_agent.act(state, epsilon=epsilon)
|
||||
prev_state = state
|
||||
state, reward, next_state, done = env.step(action)
|
||||
if next_state is None:
|
||||
next_state = np.zeros_like(prev_state)
|
||||
rl_agent.replay_buffer.add((prev_state, action, reward, next_state, done))
|
||||
rl_agent.train_step()
|
||||
total_reward += reward
|
||||
steps += 1
|
||||
print(f"Epoch {epoch}/{num_epochs} completed, total reward: {total_reward:.4f} over {steps} steps.")
|
||||
save_checkpoint(rl_agent.model, epoch, total_reward, LAST_DIR, BEST_DIR)
|
||||
|
||||
# -------------------------------------
|
||||
# Main Asynchronous Function for Training & Charting
|
||||
# -------------------------------------
|
||||
async def main_backtest():
|
||||
symbol = 'BTC/USDT'
|
||||
# Define timeframes: we'll use 5 different ones.
|
||||
timeframes = ["1m", "5m", "15m", "1h", "1d"]
|
||||
now = int(time.time() * 1000)
|
||||
# Use the base timeframe period of 1500 candles. For 1m, that is 1500 minutes.
|
||||
period_ms = 1500 * 60 * 1000
|
||||
since = now - period_ms
|
||||
end_time = now
|
||||
|
||||
# Initialize exchange using MEXC (or your preferred exchange).
|
||||
mexc_api_key = os.environ.get('MEXC_API_KEY', 'YOUR_API_KEY')
|
||||
mexc_api_secret = os.environ.get('MEXC_API_SECRET', 'YOUR_SECRET_KEY')
|
||||
# -----------------
|
||||
# Training Loop
|
||||
# -----------------
|
||||
async def train_model(symbol, timeframes, model, optimizer, replay_buffer, num_epochs=10, epsilon=0.1):
|
||||
exchange = ccxt.mexc({
|
||||
'apiKey': mexc_api_key,
|
||||
'secret': mexc_api_secret,
|
||||
'apiKey': os.environ.get('MEXC_API_KEY'),
|
||||
'secret': os.environ.get('MEXC_API_SECRET'),
|
||||
'enableRateLimit': True,
|
||||
})
|
||||
|
||||
now = int(time.time() * 1000)
|
||||
period_ms = 1500 * 60 * 1000 # 1500 minutes
|
||||
since = now - period_ms
|
||||
end_time = now
|
||||
|
||||
candles_dict = {}
|
||||
for tf in timeframes:
|
||||
print(f"Fetching historical data for timeframe {tf}...")
|
||||
candles = await fetch_historical_data(exchange, symbol, tf, since, end_time, batch_size=500)
|
||||
candles = await fetch_historical_data(exchange, symbol, tf, since, end_time)
|
||||
candles_dict[tf] = candles
|
||||
|
||||
# Optionally, save the multi-timeframe cache.
|
||||
save_candles_cache(CACHE_FILE, candles_dict)
|
||||
|
||||
# Create the backtest environment using multi-timeframe data.
|
||||
env = BacktestEnvironment(candles_dict, base_tf="1m", timeframes=timeframes)
|
||||
env = TradingEnvironment(candles_dict, base_tf=timeframes[0], timeframes=timeframes)
|
||||
|
||||
# Neural Network dimensions: each timeframe produces 7 features.
|
||||
input_dim = len(timeframes) * 7 # 7 features * 5 timeframes = 35.
|
||||
hidden_dim = 128
|
||||
output_dim = 3 # Actions: SELL, HOLD, BUY.
|
||||
for epoch in range(1, num_epochs + 1):
|
||||
state = env.reset()
|
||||
done = False
|
||||
total_reward = 0.0
|
||||
steps = 0
|
||||
while not done:
|
||||
action = model.act(state, epsilon)
|
||||
next_state, reward, done_flag, _ = env.step(action)
|
||||
env_step_result = env.step(action)
|
||||
current_state = state
|
||||
action_taken = action
|
||||
reward_received = env_step_result[1]
|
||||
next_state = env_step_result[2]
|
||||
done = env_step_result[3]
|
||||
|
||||
replay_buffer.add((current_state, action_taken, reward_received, next_state, done))
|
||||
if len(replay_buffer) >= replay_buffer.maxlen:
|
||||
model.train_step()
|
||||
|
||||
total_reward += reward_received
|
||||
steps += 1
|
||||
state = next_state
|
||||
|
||||
print(f"Epoch {epoch}/{num_epochs} completed, total reward: {total_reward:.4f} over {steps} steps.")
|
||||
save_checkpoint(model, epoch, total_reward)
|
||||
|
||||
# -----------------
|
||||
# Main Function
|
||||
# -----------------
|
||||
async def main():
|
||||
symbol = 'BTC/USDT'
|
||||
timeframes = ["1m", "5m", "15m", "1h", "1d"]
|
||||
|
||||
input_dim = len(timeframes) * 7 # 7 features per timeframe
|
||||
hidden_dim = 128
|
||||
output_dim = 3 # Buy, Hold, Sell
|
||||
|
||||
model = TradingModel(input_dim, hidden_dim, output_dim)
|
||||
optimizer = optim.Adam(model.parameters(), lr=1e-4)
|
||||
replay_buffer = ReplayBuffer(capacity=10000)
|
||||
rl_agent = ContinuousRLAgent(model, optimizer, replay_buffer, batch_size=32, gamma=0.99)
|
||||
|
||||
# Load best checkpoint if available.
|
||||
load_best_checkpoint(model, BEST_DIR)
|
||||
|
||||
# Train the agent over the historical period.
|
||||
num_epochs = 10 # Adjust as needed.
|
||||
train_on_historical_data(env, rl_agent, num_epochs=num_epochs, epsilon=0.1)
|
||||
|
||||
# Run a final simulation (without exploration) to record trade history.
|
||||
state = env.reset(clear_trade_history=True)
|
||||
done = False
|
||||
cumulative_reward = 0.0
|
||||
while not done:
|
||||
action = rl_agent.act(state, epsilon=0.0)
|
||||
state, reward, next_state, done = env.step(action)
|
||||
cumulative_reward += reward
|
||||
state = next_state
|
||||
print("Final simulation cumulative profit:", cumulative_reward)
|
||||
|
||||
# Evaluate trade performance.
|
||||
trades = env.trade_history
|
||||
num_trades = len(trades)
|
||||
num_wins = sum(1 for trade in trades if trade["pnl"] > 0)
|
||||
win_rate = (num_wins / num_trades * 100) if num_trades > 0 else 0.0
|
||||
total_profit = sum(trade["pnl"] for trade in trades)
|
||||
print(f"Total trades: {num_trades}, Wins: {num_wins}, Win rate: {win_rate:.2f}%, Total Profit: {total_profit:.4f}")
|
||||
|
||||
# Plot chart with buy/sell markers on the base timeframe ("1m").
|
||||
plot_trade_history(candles_dict["1m"], trades)
|
||||
|
||||
await exchange.close()
|
||||
await train_model(symbol, timeframes, model, optimizer, replay_buffer)
|
||||
|
||||
if __name__ == "__main__":
|
||||
load_dotenv()
|
||||
asyncio.run(main_backtest())
|
||||
asyncio.run(main())
|
Reference in New Issue
Block a user