requirements
This commit is contained in:
910
crypto/brian/index-gem.py
Normal file
910
crypto/brian/index-gem.py
Normal file
@ -0,0 +1,910 @@
|
||||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import asyncio
|
||||
|
||||
if sys.platform == 'win32':
|
||||
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
||||
|
||||
import os
|
||||
import time
|
||||
import json
|
||||
import argparse
|
||||
import threading
|
||||
import random
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from datetime import datetime
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
||||
import matplotlib.dates as mdates
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
# Define global constants FIRST.
|
||||
CACHE_FILE = "candles_cache.json"
|
||||
TRAINING_CACHE_FILE = "training_cache.json"
|
||||
|
||||
# --- Helper Function for Timestamp Conversion ---
|
||||
def convert_timestamp(ts):
|
||||
ts = float(ts)
|
||||
if ts > 1e10: # Handle milliseconds
|
||||
ts /= 1000.0
|
||||
return datetime.fromtimestamp(ts)
|
||||
|
||||
# -------------------------------
|
||||
# Historical Data Fetching Functions (Using CCXT)
|
||||
# -------------------------------
|
||||
async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size=500):
|
||||
candles = []
|
||||
since_ms = since
|
||||
while True:
|
||||
try:
|
||||
batch = await exchange.fetch_ohlcv(symbol, timeframe=timeframe, since=since_ms, limit=batch_size)
|
||||
except Exception as e:
|
||||
print("Error fetching historical data:", e)
|
||||
break
|
||||
if not batch:
|
||||
break
|
||||
for c in batch:
|
||||
candle_dict = {
|
||||
'timestamp': c[0],
|
||||
'open': c[1],
|
||||
'high': c[2],
|
||||
'low': c[3],
|
||||
'close': c[4],
|
||||
'volume': c[5]
|
||||
}
|
||||
candles.append(candle_dict)
|
||||
last_timestamp = batch[-1][0]
|
||||
if last_timestamp >= end_time:
|
||||
break
|
||||
since_ms = last_timestamp + 1
|
||||
print(f"Fetched {len(candles)} candles for timeframe {timeframe}.")
|
||||
|
||||
return candles
|
||||
|
||||
async def get_cached_or_fetch_data(exchange, symbol, timeframe, since, end_time, cache_file=CACHE_FILE, batch_size=500):
|
||||
cached_candles = load_candles_cache(cache_file)
|
||||
|
||||
if cached_candles and timeframe in cached_candles:
|
||||
last_ts = cached_candles[timeframe][-1]['timestamp']
|
||||
if last_ts < end_time:
|
||||
print("Fetching new candles to update cache...")
|
||||
new_candles = await fetch_historical_data(exchange, symbol, timeframe, last_ts + 1, end_time, batch_size)
|
||||
cached_candles[timeframe].extend(new_candles)
|
||||
else:
|
||||
print("Cache covers the requested period.")
|
||||
return cached_candles[timeframe]
|
||||
else:
|
||||
candles = await fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size)
|
||||
return candles
|
||||
|
||||
# -------------------------------
|
||||
# Cache and Training Cache Helpers
|
||||
# -------------------------------
|
||||
def load_candles_cache(filename):
|
||||
if os.path.exists(filename):
|
||||
try:
|
||||
with open(filename, "r") as f:
|
||||
data = json.load(f)
|
||||
print(f"Loaded cached data from {filename}.")
|
||||
return data
|
||||
except Exception as e:
|
||||
print("Error reading cache file:", e)
|
||||
return {} # Return empty dict if no cache
|
||||
|
||||
|
||||
def save_candles_cache(filename, candles_dict):
|
||||
try:
|
||||
with open(filename, "w") as f:
|
||||
json.dump(candles_dict, f)
|
||||
except Exception as e:
|
||||
print("Error saving cache file:", e)
|
||||
|
||||
def load_training_cache(filename):
|
||||
if os.path.exists(filename):
|
||||
try:
|
||||
with open(filename, "r") as f:
|
||||
cache = json.load(f)
|
||||
print(f"Loaded training cache from {filename}.")
|
||||
return cache
|
||||
except Exception as e:
|
||||
print("Error loading training cache:", e)
|
||||
return {"total_pnl": 0.0} # Initialize if not found
|
||||
|
||||
|
||||
def save_training_cache(filename, cache):
|
||||
try:
|
||||
with open(filename, "w") as f:
|
||||
json.dump(cache, f)
|
||||
except Exception as e:
|
||||
print("Error saving training cache:", e)
|
||||
|
||||
# -------------------------------
|
||||
# Checkpoint Functions
|
||||
# -------------------------------
|
||||
LAST_DIR = os.path.join("models", "last")
|
||||
BEST_DIR = os.path.join("models", "best")
|
||||
os.makedirs(LAST_DIR, exist_ok=True)
|
||||
os.makedirs(BEST_DIR, exist_ok=True)
|
||||
|
||||
def maintain_checkpoint_directory(directory, max_files=10):
|
||||
files = os.listdir(directory)
|
||||
if len(files) > max_files:
|
||||
full_paths = [os.path.join(directory, f) for f in files]
|
||||
full_paths.sort(key=lambda x: os.path.getmtime(x))
|
||||
for f in full_paths[:len(files) - max_files]:
|
||||
os.remove(f)
|
||||
|
||||
def get_best_models(directory):
|
||||
best_files = []
|
||||
for file in os.listdir(directory):
|
||||
parts = file.split("_")
|
||||
try:
|
||||
loss = float(parts[1]) # Get loss from filename
|
||||
best_files.append((loss, file))
|
||||
except Exception:
|
||||
continue
|
||||
return best_files
|
||||
|
||||
def save_checkpoint(model, optimizer, epoch, loss, last_dir=LAST_DIR, best_dir=BEST_DIR):
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
last_filename = f"model_last_epoch_{epoch}_{timestamp}.pt"
|
||||
last_path = os.path.join(last_dir, last_filename)
|
||||
torch.save({
|
||||
"epoch": epoch,
|
||||
"loss": loss,
|
||||
"model_state_dict": model.state_dict(),
|
||||
"optimizer_state_dict": optimizer.state_dict()
|
||||
}, last_path)
|
||||
maintain_checkpoint_directory(last_dir, max_files=10)
|
||||
|
||||
best_models = get_best_models(best_dir)
|
||||
add_to_best = False
|
||||
if len(best_models) < 10:
|
||||
add_to_best = True
|
||||
else:
|
||||
worst_loss, worst_file = max(best_models, key=lambda x: x[0])
|
||||
if loss < worst_loss: # Save if better than worst
|
||||
add_to_best = True
|
||||
os.remove(os.path.join(best_dir, worst_file)) # Remove worst
|
||||
|
||||
if add_to_best:
|
||||
best_filename = f"best_{loss:.4f}_epoch_{epoch}_{timestamp}.pt" # Include loss in name
|
||||
best_path = os.path.join(best_dir, best_filename)
|
||||
torch.save({
|
||||
"epoch": epoch,
|
||||
"loss": loss,
|
||||
"model_state_dict": model.state_dict(),
|
||||
"optimizer_state_dict": optimizer.state_dict()
|
||||
}, best_path)
|
||||
maintain_checkpoint_directory(best_dir, max_files=10)
|
||||
|
||||
print(f"Saved checkpoint for epoch {epoch} with loss {loss:.4f}")
|
||||
|
||||
def load_best_checkpoint(model, best_dir=BEST_DIR):
|
||||
best_models = get_best_models(best_dir)
|
||||
if not best_models:
|
||||
return None
|
||||
best_loss, best_file = min(best_models, key=lambda x: x[0]) # Load best (lowest loss)
|
||||
path = os.path.join(best_dir, best_file)
|
||||
print(f"Loading best model from checkpoint: {best_file} with loss {best_loss:.4f}")
|
||||
checkpoint = torch.load(path)
|
||||
|
||||
# Handle potential embedding size mismatch
|
||||
old_state = checkpoint["model_state_dict"]
|
||||
new_state = model.state_dict()
|
||||
|
||||
if "timeframe_embed.weight" in old_state:
|
||||
old_embed = old_state["timeframe_embed.weight"]
|
||||
new_embed = new_state["timeframe_embed.weight"]
|
||||
|
||||
if old_embed.shape[0] < new_embed.shape[0]:
|
||||
# Copy old embeddings to the new embedding, handling size increase
|
||||
new_embed[:old_embed.shape[0]] = old_embed
|
||||
old_state["timeframe_embed.weight"] = new_embed
|
||||
|
||||
model.load_state_dict(old_state, strict=False) # Allow for size differences
|
||||
return checkpoint
|
||||
|
||||
# -------------------------------
|
||||
# Positional Encoding and Transformer-Based Model
|
||||
# -------------------------------
|
||||
class PositionalEncoding(nn.Module):
|
||||
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
||||
super().__init__()
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
position = torch.arange(max_len).unsqueeze(1)
|
||||
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
||||
pe = torch.zeros(max_len, 1, d_model)
|
||||
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x: Tensor, shape [seq_len, batch_size, embedding_dim]
|
||||
"""
|
||||
x = x + self.pe[:x.size(0)]
|
||||
return self.dropout(x)
|
||||
|
||||
class TradingModel(nn.Module):
|
||||
def __init__(self, num_channels, num_timeframes, hidden_dim=128):
|
||||
super().__init__()
|
||||
self.channel_branches = nn.ModuleList([
|
||||
nn.Sequential(
|
||||
nn.Linear(FEATURES_PER_CHANNEL, hidden_dim),
|
||||
nn.LayerNorm(hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(0.1)
|
||||
) for _ in range(num_channels)
|
||||
])
|
||||
# Embedding for each timeframe
|
||||
self.timeframe_embed = nn.Embedding(num_timeframes, hidden_dim)
|
||||
self.pos_encoder = PositionalEncoding(hidden_dim)
|
||||
# Increased number of layers and heads for larger model
|
||||
encoder_layers = TransformerEncoderLayer(
|
||||
d_model=hidden_dim, nhead=8, dim_feedforward=2048, # Increased nhead and dim_feedforward
|
||||
dropout=0.1, activation='gelu', batch_first=True
|
||||
)
|
||||
self.transformer = TransformerEncoder(encoder_layers, num_layers=6) # More layers
|
||||
|
||||
# Attention pooling to aggregate channel outputs
|
||||
self.attn_pool = nn.Linear(hidden_dim, 1)
|
||||
|
||||
# Separate prediction heads for high and low
|
||||
self.high_pred = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim // 2),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim // 2, 1)
|
||||
)
|
||||
self.low_pred = nn.Sequential(
|
||||
nn.Linear(hidden_dim, hidden_dim // 2),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim // 2, 1)
|
||||
)
|
||||
|
||||
def forward(self, x, timeframe_ids):
|
||||
# x shape: (batch, num_channels, features_per_channel)
|
||||
batch_size, num_channels, _ = x.shape
|
||||
channel_outs = []
|
||||
|
||||
# Process each channel through its branch
|
||||
for i in range(num_channels):
|
||||
channel_out = self.channel_branches[i](x[:, i, :])
|
||||
channel_outs.append(channel_out)
|
||||
|
||||
# Stack channel outputs
|
||||
stacked = torch.stack(channel_outs, dim=1) # (batch, num_channels, hidden_dim)
|
||||
|
||||
# Add timeframe embeddings
|
||||
tf_embeds = self.timeframe_embed(timeframe_ids) # (num_timeframes, hidden_dim)
|
||||
stacked = stacked + tf_embeds.unsqueeze(0) # Add to each item in batch
|
||||
|
||||
# Transformer
|
||||
transformer_out = self.transformer(stacked) # (batch, num_channels, hidden_dim)
|
||||
|
||||
# Attention pooling
|
||||
attn_weights = torch.softmax(self.attn_pool(transformer_out), dim=1) # (batch, num_channels, 1)
|
||||
aggregated = (transformer_out * attn_weights).sum(dim=1) # (batch, hidden_dim)
|
||||
|
||||
# Predict high and low
|
||||
return self.high_pred(aggregated).squeeze(), self.low_pred(aggregated).squeeze()
|
||||
|
||||
# -------------------------------
|
||||
# Technical Indicator Helpers
|
||||
# -------------------------------
|
||||
def compute_sma(candles_list, index, period=10):
|
||||
start = max(0, index - period + 1)
|
||||
values = [candle["close"] for candle in candles_list[start:index + 1]]
|
||||
return sum(values) / len(values) if values else 0.0
|
||||
|
||||
def compute_sma_volume(candles_list, index, period=10):
|
||||
start = max(0, index - period + 1)
|
||||
values = [candle["volume"] for candle in candles_list[start:index + 1]]
|
||||
return sum(values) / len(values) if values else 0.0
|
||||
|
||||
def get_aligned_candle_with_index(candles_list, target_ts):
|
||||
"""Find the candle in the list whose timestamp is the largest that is <= target_ts."""
|
||||
best_idx = 0
|
||||
for i, candle in enumerate(candles_list):
|
||||
if candle["timestamp"] <= target_ts:
|
||||
best_idx = i
|
||||
else:
|
||||
break # Stop once we go past the target
|
||||
return best_idx, candles_list[best_idx]
|
||||
|
||||
def get_features_for_tf(candles_list, index, period=10):
|
||||
"""Return a vector of 7 features: open, high, low, close, volume, sma_close, sma_volume."""
|
||||
candle = candles_list[index]
|
||||
f_open = candle["open"]
|
||||
f_high = candle["high"]
|
||||
f_low = candle["low"]
|
||||
f_close = candle["close"]
|
||||
f_volume = candle["volume"]
|
||||
sma_close = compute_sma(candles_list, index, period)
|
||||
sma_volume = compute_sma_volume(candles_list, index, period)
|
||||
return [f_open, f_high, f_low, f_close, f_volume, sma_close, sma_volume]
|
||||
|
||||
# -------------------------------
|
||||
# Backtest Environment Class
|
||||
# -------------------------------
|
||||
class BacktestEnvironment:
|
||||
def __init__(self, candles_dict, base_tf, timeframes, window_size=None):
|
||||
self.candles_dict = candles_dict
|
||||
self.base_tf = base_tf
|
||||
self.timeframes = timeframes
|
||||
self.full_candles = candles_dict[base_tf] # All candles for base timeframe
|
||||
|
||||
# Define window size (or use a reasonable default if not provided)
|
||||
if window_size is None:
|
||||
window_size = 100 if len(self.full_candles) >= 100 else len(self.full_candles) # Use 100 or total length
|
||||
self.window_size = window_size
|
||||
|
||||
self.reset() # Initialize
|
||||
|
||||
def reset(self):
|
||||
# Randomly select a starting point for the window
|
||||
self.start_index = random.randint(0, len(self.full_candles) - self.window_size)
|
||||
self.candle_window = self.full_candles[self.start_index:self.start_index + self.window_size]
|
||||
self.current_index = 0
|
||||
self.trade_history = []
|
||||
self.position = None # Track if we're in a trade: None, or {"entry_price": ..., "entry_index": ...}
|
||||
return self.get_state(self.current_index) # Return initial state
|
||||
|
||||
def __len__(self):
|
||||
return self.window_size # Length of the environment is the window size
|
||||
|
||||
def get_order_features(self, index):
|
||||
"""Get features related to the current order (if any)."""
|
||||
candle = self.candle_window[index]
|
||||
if self.position is None:
|
||||
# No position: all zeros
|
||||
return [0.0] * FEATURES_PER_CHANNEL # 7 zeros
|
||||
else:
|
||||
# In a position: [1.0, price_diff, 0, 0, 0, 0, 0]
|
||||
flag = 1.0
|
||||
diff = (candle["open"] - self.position["entry_price"]) / candle["open"] # Relative difference
|
||||
return [flag, diff] + [0.0] * (FEATURES_PER_CHANNEL - 2)
|
||||
|
||||
def get_state(self, index):
|
||||
"""Construct state for the given index."""
|
||||
state_features = []
|
||||
base_ts = self.candle_window[index]["timestamp"]
|
||||
|
||||
# Get features for each timeframe
|
||||
for tf in self.timeframes:
|
||||
if tf == self.base_tf:
|
||||
# For the base timeframe, use the candle directly from the window
|
||||
candle = self.candle_window[index]
|
||||
features = get_features_for_tf([candle], 0) # Pass as a list with single candle
|
||||
else:
|
||||
# For other timeframes, align with the base timestamp
|
||||
aligned_idx, _ = get_aligned_candle_with_index(self.candles_dict[tf], base_ts)
|
||||
features = get_features_for_tf(self.candles_dict[tf], aligned_idx)
|
||||
state_features.append(features)
|
||||
|
||||
# Add order features
|
||||
order_features = self.get_order_features(index)
|
||||
state_features.append(order_features)
|
||||
|
||||
# Add placeholder channels for additional indicators (if needed)
|
||||
for _ in range(NUM_INDICATORS):
|
||||
state_features.append([0.0] * FEATURES_PER_CHANNEL)
|
||||
|
||||
|
||||
return np.array(state_features, dtype=np.float32)
|
||||
|
||||
def step(self, action):
|
||||
"""Take a step, given an action."""
|
||||
base = self.candle_window # Shorter name
|
||||
if self.current_index >= len(base) - 1:
|
||||
current_state = self.get_state(self.current_index)
|
||||
return current_state, 0.0, None, True, 0.0, 0.0 # No reward at very end, and done
|
||||
|
||||
current_state = self.get_state(self.current_index)
|
||||
next_index = self.current_index + 1
|
||||
next_state = self.get_state(next_index)
|
||||
next_candle = base[next_index] # Next candle for open, high, low
|
||||
|
||||
reward = 0.0
|
||||
|
||||
# Handle actions (simplified for clarity)
|
||||
if self.position is None:
|
||||
if action == 2: # BUY
|
||||
self.position = {"entry_price": next_candle["open"], "entry_index": self.current_index}
|
||||
else:
|
||||
if action == 0: # SELL
|
||||
exit_price = next_candle["close"]
|
||||
reward = exit_price - self.position["entry_price"] # PnL is reward
|
||||
trade = {
|
||||
"entry_index": self.position["entry_index"],
|
||||
"entry_price": self.position["entry_price"],
|
||||
"exit_index": next_index,
|
||||
"exit_price": exit_price,
|
||||
"pnl": reward
|
||||
}
|
||||
self.trade_history.append(trade)
|
||||
self.position = None # Exit position
|
||||
|
||||
self.current_index = next_index
|
||||
done = (self.current_index >= len(base) - 1) # Done if at end of window
|
||||
actual_high = next_candle["high"]
|
||||
actual_low = next_candle["low"]
|
||||
return current_state, reward, next_state, done, actual_high, actual_low # Return next high/low
|
||||
|
||||
# -------------------------------
|
||||
# Enhanced Training Loop
|
||||
# -------------------------------
|
||||
def train_on_historical_data(env, model, device, args, start_epoch, optimizer, scheduler):
|
||||
|
||||
lambda_trade = args.lambda_trade # Weight for trade loss
|
||||
|
||||
# Load training cache (for total PnL tracking)
|
||||
training_cache = load_training_cache(TRAINING_CACHE_FILE)
|
||||
total_pnl = training_cache.get("total_pnl", 0.0)
|
||||
|
||||
|
||||
for epoch in range(start_epoch, args.epochs):
|
||||
env.reset() # Reset environment for each epoch
|
||||
loss_accum = 0.0
|
||||
steps = len(env) - 1 # Number of steps in the episode
|
||||
|
||||
for i in range(steps): # Iterate through the episode
|
||||
state = env.get_state(i)
|
||||
current_open = env.candle_window[i]["open"] # Current candle's open
|
||||
actual_high = env.candle_window[i + 1]["high"] # Next candle's high
|
||||
actual_low = env.candle_window[i + 1]["low"] # Next candle's low
|
||||
|
||||
# Forward pass
|
||||
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device) # Add batch dimension
|
||||
timeframe_ids = torch.arange(state.shape[0]).to(device) # Create timeframe IDs
|
||||
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
||||
|
||||
# Calculate prediction loss (L_pred)
|
||||
L_pred = torch.abs(pred_high - torch.tensor(actual_high, device=device)) + \
|
||||
torch.abs(pred_low - torch.tensor(actual_low, device=device))
|
||||
|
||||
# Calculate trade surrogate loss (L_trade)
|
||||
profit_buy = pred_high - current_open # Potential profit if buying
|
||||
profit_sell = current_open - pred_low # Potential profit if selling
|
||||
L_trade = - torch.max(profit_buy, profit_sell) # Minimize negative profit
|
||||
|
||||
# Calculate no-action penalty (encourage taking action when profitable)
|
||||
current_open_tensor = torch.tensor(current_open, device=device)
|
||||
signal_strength = torch.max(pred_high - current_open_tensor, current_open_tensor - pred_low)
|
||||
penalty_term = args.penalty_noaction * torch.clamp(args.threshold - signal_strength, min=0)
|
||||
|
||||
# Total loss
|
||||
loss = L_pred + lambda_trade * L_trade + penalty_term
|
||||
|
||||
# Backpropagation
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) # Gradient clipping
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
|
||||
loss_accum += loss.item()
|
||||
|
||||
epoch_loss = loss_accum / steps # Average loss per step
|
||||
if len(env.trade_history) == 0:
|
||||
epoch_loss *= 3
|
||||
epoch_pnl = sum(trade["pnl"] for trade in env.trade_history) # PnL for the epoch
|
||||
total_pnl += epoch_pnl # Update total PnL
|
||||
|
||||
print(f"Epoch {epoch + 1} Loss: {epoch_loss:.4f} | Epoch PnL: {epoch_pnl:.2f} | Total PnL: {total_pnl:.2f}")
|
||||
|
||||
save_checkpoint(model, optimizer, epoch, loss_accum) # Save with accumulated loss
|
||||
simulate_trades(model, env, device, args) # Simulate trades after each epoch
|
||||
update_live_html(env.candle_window, env.trade_history, epoch + 1, epoch_loss, total_pnl) # Update HTML visualization
|
||||
|
||||
# Save training cache (for total PnL tracking)
|
||||
training_cache["total_pnl"] = total_pnl
|
||||
save_training_cache(TRAINING_CACHE_FILE, training_cache)
|
||||
|
||||
# -------------------------------
|
||||
# Live Plotting (for Live Mode)
|
||||
# -------------------------------
|
||||
def live_preview_loop(candles, env):
|
||||
plt.ion() # Interactive mode
|
||||
fig, ax = plt.subplots(figsize=(12, 6))
|
||||
|
||||
while True:
|
||||
update_live_chart(ax, candles, env.trade_history)
|
||||
plt.draw()
|
||||
plt.pause(1) # Update every second
|
||||
|
||||
# -------------------------------
|
||||
# Live HTML Chart Update (with Volume and Loss)
|
||||
# -------------------------------
|
||||
def update_live_html(candles, trade_history, epoch, loss, total_pnl):
|
||||
from io import BytesIO
|
||||
import base64
|
||||
# Create a new figure and axes for each update
|
||||
fig, ax = plt.subplots(figsize=(12, 6))
|
||||
|
||||
# Draw the chart
|
||||
update_live_chart(ax, candles, trade_history)
|
||||
|
||||
epoch_pnl = sum(trade["pnl"] for trade in trade_history) # PnL for this window
|
||||
ax.set_title(f"Epoch {epoch} | Loss: {loss:.4f} | PnL: {epoch_pnl:.2f}| Total PnL: {total_pnl:.2f}")
|
||||
|
||||
# Save the plot to a BytesIO buffer
|
||||
buf = BytesIO()
|
||||
fig.savefig(buf, format='png')
|
||||
plt.close(fig) # Close the figure to free memory
|
||||
buf.seek(0)
|
||||
image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
||||
|
||||
# Generate HTML content
|
||||
html_content = f"""
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<meta http-equiv="refresh" content="1"> <!-- Refresh every second -->
|
||||
<title>Live Trading Chart - Epoch {epoch}</title>
|
||||
<style>
|
||||
body {{
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
display: flex;
|
||||
justify-content: center;
|
||||
align-items: center;
|
||||
background-color: #f4f4f4;
|
||||
}}
|
||||
.chart-container {{
|
||||
text-align: center;
|
||||
}}
|
||||
img {{
|
||||
max-width: 100%;
|
||||
height: auto;
|
||||
}}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="chart-container">
|
||||
<h2>Epoch {epoch} | Loss: {loss:.4f} | PnL: {epoch_pnl:.2f}| Total PnL: {total_pnl:.2f}</h2>
|
||||
<img src="data:image/png;base64,{image_base64}" alt="Live Chart"/>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
with open("live_chart.html", "w") as f:
|
||||
f.write(html_content)
|
||||
print("Updated live_chart.html.")
|
||||
|
||||
# -------------------------------
|
||||
# Chart Drawing Helpers (with Volume and Date+Time)
|
||||
# -------------------------------
|
||||
def update_live_chart(ax, candles, trade_history):
|
||||
ax.clear() # Clear previous data
|
||||
|
||||
# Extract data for plotting
|
||||
times = [convert_timestamp(candle["timestamp"]) for candle in candles]
|
||||
close_prices = [candle["close"] for candle in candles]
|
||||
|
||||
# Plot close prices
|
||||
ax.plot(times, close_prices, label="Close Price", color="black", linewidth=1)
|
||||
ax.set_xlabel("Time")
|
||||
ax.set_ylabel("Price")
|
||||
|
||||
# Format x-axis to show dates and times
|
||||
ax.xaxis.set_major_formatter(mdates.DateFormatter('%m-%d %H:%M'))
|
||||
|
||||
# Create a second y-axis for volume
|
||||
ax2 = ax.twinx()
|
||||
volumes = [candle["volume"] for candle in candles]
|
||||
if len(times) > 1:
|
||||
times_num = mdates.date2num(times)
|
||||
bar_width = (times_num[-1] - times_num[0]) / len(times) * 0.8 # Relative width
|
||||
else:
|
||||
bar_width = 0.01
|
||||
|
||||
ax2.bar(times, volumes, width=bar_width, alpha=0.3, color="grey", label="Volume")
|
||||
ax2.set_ylabel("Volume")
|
||||
|
||||
# Plot trade markers (buy/sell)
|
||||
for trade in trade_history:
|
||||
entry_time = convert_timestamp(candles[trade["entry_index"]]["timestamp"])
|
||||
exit_time = convert_timestamp(candles[trade["exit_index"]]["timestamp"])
|
||||
in_price = trade["entry_price"]
|
||||
out_price = trade["exit_price"]
|
||||
ax.plot(entry_time, in_price, marker="^", color="green", markersize=10, label="BUY") # Buy marker
|
||||
ax.plot(exit_time, out_price, marker="v", color="red", markersize=10, label="SELL") # Sell marker
|
||||
ax.plot([entry_time, exit_time], [in_price, out_price], linestyle="dotted", color="blue") # Dotted line
|
||||
|
||||
# Combine legends from both axes
|
||||
lines, labels = ax.get_legend_handles_labels()
|
||||
lines2, labels2 = ax2.get_legend_handles_labels()
|
||||
ax.legend(lines + lines2, labels + labels2)
|
||||
ax.grid(True)
|
||||
|
||||
# Auto-format x-axis labels for better readability
|
||||
fig = ax.get_figure()
|
||||
fig.autofmt_xdate()
|
||||
|
||||
# -------------------------------
|
||||
# Global Constants for Features
|
||||
# -------------------------------
|
||||
NUM_INDICATORS = 20 # Number of additional indicator channels
|
||||
FEATURES_PER_CHANNEL = 7
|
||||
ORDER_CHANNELS = 1
|
||||
|
||||
# -------------------------------
|
||||
# General Simulation of Trades Function
|
||||
# -------------------------------
|
||||
def simulate_trades(model, env, device, args):
|
||||
if args.main_tf == "1s":
|
||||
simulate_trades_1s(env)
|
||||
return
|
||||
env.reset() # Reset to a random starting point
|
||||
while True:
|
||||
i = env.current_index
|
||||
if i >= len(env.candle_window) - 1:
|
||||
break # Exit if at the end of the window
|
||||
|
||||
state = env.get_state(i)
|
||||
current_open = env.candle_window[i]["open"] # Get current open
|
||||
|
||||
# Make predictions
|
||||
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device) # Add batch dimension
|
||||
timeframe_ids = torch.arange(state.shape[0]).to(device) # IDs for timeframes
|
||||
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
||||
pred_high = pred_high.item() # Convert to Python number
|
||||
pred_low = pred_low.item()
|
||||
|
||||
# Decide on action (simplified for clarity)
|
||||
if (pred_high - current_open) > args.threshold or (current_open - pred_low) > args.threshold:
|
||||
if (pred_high - current_open) >= (current_open - pred_low):
|
||||
action = 2 # BUY
|
||||
else:
|
||||
action = 0 # SELL
|
||||
_, _, _, done, _, _ = env.step(action) # Take the step
|
||||
else:
|
||||
manual_trade(env)
|
||||
if env.current_index >= len(env.candle_window) - 1:
|
||||
break
|
||||
|
||||
def simulate_trades_1s(env):
|
||||
# Ensure main_tf is 1s
|
||||
if env.base_tf != "1s":
|
||||
raise ValueError("simulate_trades_1s can only be used with base_tf='1s'")
|
||||
|
||||
env.reset()
|
||||
|
||||
current_second = env.candle_window[env.current_index]['timestamp'] // 1000
|
||||
|
||||
# Simulate trading for the entire window
|
||||
while True:
|
||||
|
||||
if env.current_index >= len(env.candle_window) - 1:
|
||||
break # Break if end of the window is reached.
|
||||
|
||||
# Check if a new second has started
|
||||
next_second = env.candle_window[env.current_index]['timestamp'] // 1000
|
||||
|
||||
if next_second != current_second: # A new second has started. Take random action (buy/sell/hold).
|
||||
action = random_action()
|
||||
_, _, _, done, _, _ = env.step(action) # Take the step
|
||||
current_second = next_second # Update the current second
|
||||
|
||||
else:
|
||||
# Still the same second, hold position
|
||||
manual_trade(env)
|
||||
|
||||
if env.current_index >= len(env.candle_window) - 1:
|
||||
break
|
||||
|
||||
def manual_trade(env):
|
||||
#If we are in a position, hold it. Otherwise, do nothing
|
||||
if env.position is not None:
|
||||
#In position, take 'HOLD' action implicitly by doing nothing
|
||||
pass
|
||||
|
||||
# -------------------------------
|
||||
# Argument Parsing
|
||||
# -------------------------------
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--mode', choices=['train', 'live', 'inference'], default='train',
|
||||
help="Operating mode: 'train', 'live', or 'inference'.")
|
||||
parser.add_argument('--epochs', type=int, default=1000,
|
||||
help="Number of training epochs.")
|
||||
parser.add_argument('--lr', type=float, default=3e-4,
|
||||
help="Learning rate.")
|
||||
parser.add_argument('--threshold', type=float, default=0.005,
|
||||
help="Minimum predicted move to trigger trade (used in loss; model may override manual trades).")
|
||||
parser.add_argument('--lambda_trade', type=float, default=1.0,
|
||||
help="Weight for the trade surrogate loss.")
|
||||
parser.add_argument('--penalty_noaction', type=float, default=10.0,
|
||||
help="Penalty if no action is taken (used in loss).")
|
||||
parser.add_argument('--start_fresh', action='store_true',
|
||||
help="Start training from scratch.")
|
||||
parser.add_argument('--main_tf', type=str, default='1m',
|
||||
help="Desired main timeframe to focus on (e.g., '1s' or '1m').")
|
||||
# Instead of --fetch, we now provide a --no-fetch flag that will override the default behavior.
|
||||
parser.add_argument('--no-fetch', dest='fetch', action='store_false',
|
||||
help="Do NOT fetch fresh data from exchange on start.")
|
||||
parser.set_defaults(fetch=True)
|
||||
parser.add_argument('--symbol', type=str, default='BTC/USDT', help="Trading pair symbol.")
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
def random_action():
|
||||
return random.randint(0, 2) # 0: SELL, 1: HOLD, 2: BUY
|
||||
|
||||
# -------------------------------
|
||||
# Main Function
|
||||
# -------------------------------
|
||||
async def main():
|
||||
args = parse_args()
|
||||
|
||||
# Use GPU if available
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
print("Using device:", device)
|
||||
|
||||
# Fetch data (if not --no-fetch)
|
||||
# With fetch defaulting to True, live mode will always try to top-up the cache.
|
||||
if args.fetch:
|
||||
import ccxt.async_support as ccxt
|
||||
exchange = ccxt.binance({'enableRateLimit': True}) # Use Binance
|
||||
now_ms = int(time.time() * 1000)
|
||||
|
||||
# Check if we have cached data. If so, only fetch what we need to update the cache.
|
||||
cached = load_candles_cache(CACHE_FILE)
|
||||
if cached and args.main_tf in cached and len(cached[args.main_tf]) > 0:
|
||||
last_ts = cached[args.main_tf][-1]['timestamp']
|
||||
since = last_ts + 1
|
||||
else:
|
||||
# Fetch a reasonable amount of historical data initially (e.g., last 2 days)
|
||||
since = now_ms - 2 * 24 * 60 * 60 * 1000
|
||||
|
||||
print(f"Fetching fresh data for {args.symbol} on timeframe {args.main_tf} from {since} to {now_ms}...")
|
||||
|
||||
fresh_candles = await get_cached_or_fetch_data(exchange, args.symbol, args.main_tf, since, now_ms)
|
||||
candles_dict = {args.main_tf: fresh_candles} # Initially, only main timeframe
|
||||
|
||||
# Save (or update) the cache
|
||||
save_candles_cache(CACHE_FILE, candles_dict)
|
||||
await exchange.close()
|
||||
else:
|
||||
# Load from cache
|
||||
candles_dict = load_candles_cache(CACHE_FILE)
|
||||
if not candles_dict:
|
||||
print("No cached data available. Run without --no-fetch (default) to load fresh data from the exchange.")
|
||||
return
|
||||
|
||||
# --- Timeframe Setup ---
|
||||
default_timeframes = ["1s", "1m", "5m", "15m", "1h", "1d"] # All supported timeframes
|
||||
timeframes = [tf for tf in default_timeframes if tf in candles_dict] # Use available timeframes
|
||||
if args.main_tf not in timeframes:
|
||||
print(f"Desired main timeframe {args.main_tf} is not available. Available: {timeframes}")
|
||||
return
|
||||
base_tf = args.main_tf
|
||||
|
||||
# --- Model Initialization ---
|
||||
hidden_dim = 128 # Hidden dimension for the Transformer
|
||||
total_channels = len(timeframes) + ORDER_CHANNELS + NUM_INDICATORS # Input channels
|
||||
model = TradingModel(total_channels, len(timeframes)).to(device)
|
||||
|
||||
if args.mode == 'train':
|
||||
# --- Training Setup ---
|
||||
env = BacktestEnvironment(candles_dict, base_tf, timeframes, window_size=100)
|
||||
start_epoch = 0
|
||||
checkpoint = None
|
||||
|
||||
# Load checkpoint (if not starting fresh)
|
||||
if not args.start_fresh:
|
||||
checkpoint = load_best_checkpoint(model)
|
||||
if checkpoint is not None:
|
||||
start_epoch = checkpoint.get("epoch", 0) + 1 # Start from next epoch
|
||||
print(f"Resuming training from epoch {start_epoch}.")
|
||||
else:
|
||||
print("No checkpoint found. Starting training from scratch.")
|
||||
else:
|
||||
print("Starting training from scratch as requested.")
|
||||
|
||||
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-5) # AdamW optimizer
|
||||
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs - start_epoch) # Cosine annealing
|
||||
|
||||
# Load optimizer state (if checkpoint exists)
|
||||
if checkpoint is not None:
|
||||
optim_state = checkpoint.get("optimizer_state_dict", None)
|
||||
if optim_state is not None and "param_groups" in optim_state:
|
||||
try:
|
||||
optimizer.load_state_dict(optim_state)
|
||||
print("Loaded optimizer state from checkpoint.")
|
||||
except Exception as e:
|
||||
print("Failed to load optimizer state due to:", e)
|
||||
print("Deleting all checkpoints and starting fresh.")
|
||||
for chk_dir in [LAST_DIR, BEST_DIR]:
|
||||
for f in os.listdir(chk_dir):
|
||||
os.remove(os.path.join(chk_dir, f))
|
||||
else:
|
||||
print("No valid optimizer state found; using fresh optimizer state.")
|
||||
|
||||
train_on_historical_data(env, model, device, args, start_epoch, optimizer, scheduler)
|
||||
|
||||
elif args.mode == 'live':
|
||||
import ccxt.async_support as ccxt
|
||||
exchange = ccxt.binance({'enableRateLimit': True}) # Use Binance
|
||||
POLL_INTERVAL = 60 # seconds
|
||||
|
||||
async def update_live_candles():
|
||||
nonlocal exchange, args, candles_dict
|
||||
|
||||
while True:
|
||||
now_ms = int(time.time() * 1000)
|
||||
# Fetch just the most recent candles
|
||||
new_candles = await get_cached_or_fetch_data(exchange, args.symbol, args.main_tf,
|
||||
since=now_ms - 2 * 60 * 1000, end_time=now_ms) # Fetch last 2 mins
|
||||
if args.main_tf in candles_dict:
|
||||
candles_dict[args.main_tf] = new_candles # Update
|
||||
else:
|
||||
candles_dict[args.main_tf] = new_candles # Or add if not present
|
||||
|
||||
print("Live candles updated.")
|
||||
await asyncio.sleep(POLL_INTERVAL)
|
||||
|
||||
# Start the candle update task
|
||||
asyncio.create_task(update_live_candles())
|
||||
|
||||
load_best_checkpoint(model) # Load the best model for live trading
|
||||
env = BacktestEnvironment(candles_dict, base_tf, timeframes, window_size=100)
|
||||
|
||||
# Start live preview (optional)
|
||||
preview_thread = threading.Thread(target=live_preview_loop, args=(env.candle_window, env), daemon=True)
|
||||
preview_thread.start()
|
||||
|
||||
print("Starting live trading loop. (Using live updated data now.)")
|
||||
while True:
|
||||
if args.main_tf == "1s":
|
||||
simulate_trades_1s(env) # Run 1s trading loop
|
||||
else:
|
||||
# Get the current state
|
||||
state = env.get_state(env.current_index)
|
||||
current_open = env.candle_window[env.current_index]["open"] # Get current open
|
||||
|
||||
# Make predictions
|
||||
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||
timeframe_ids = torch.arange(state.shape[0]).to(device) # Create timeframe IDs
|
||||
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
||||
pred_high = pred_high.item() # Convert to Python number
|
||||
pred_low = pred_low.item()
|
||||
|
||||
|
||||
# Decide on action
|
||||
if (pred_high - current_open) > args.threshold or (current_open - pred_low) > args.threshold:
|
||||
if (pred_high - current_open) >= (current_open - pred_low):
|
||||
action = 2 # BUY
|
||||
else:
|
||||
action = 0 # SELL
|
||||
_, _, _, done, _, _ = env.step(action) # Take the step
|
||||
else:
|
||||
manual_trade(env)
|
||||
|
||||
if env.current_index >= len(env.candle_window) - 1:
|
||||
print("Reached end of simulation window; resetting environment.")
|
||||
env.reset() # Reset environment when reaching end
|
||||
|
||||
await asyncio.sleep(1) # Short delay for live mode
|
||||
|
||||
|
||||
elif args.mode == 'inference':
|
||||
load_best_checkpoint(model) # Load the best model for inference
|
||||
print("Running inference...")
|
||||
# Add inference logic here (e.g., load data, make predictions, print results)
|
||||
else:
|
||||
print("Invalid mode specified.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
Reference in New Issue
Block a user