LR module possibly working
This commit is contained in:
627
core/unified_data_stream.py
Normal file
627
core/unified_data_stream.py
Normal file
@ -0,0 +1,627 @@
|
||||
"""
|
||||
Unified Data Stream Architecture for Dashboard and Enhanced RL Training
|
||||
|
||||
This module provides a centralized data streaming architecture that:
|
||||
1. Serves real-time data to the dashboard UI
|
||||
2. Feeds the enhanced RL training pipeline with comprehensive data
|
||||
3. Maintains data consistency across all consumers
|
||||
4. Provides efficient data distribution without duplication
|
||||
5. Supports multiple data consumers with different requirements
|
||||
|
||||
Key Features:
|
||||
- Single source of truth for all market data
|
||||
- Real-time tick processing and aggregation
|
||||
- Multi-timeframe OHLCV generation
|
||||
- CNN feature extraction and caching
|
||||
- RL state building with comprehensive data
|
||||
- Dashboard-ready formatted data
|
||||
- Training data collection and buffering
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import time
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Dict, List, Optional, Tuple, Any, Callable
|
||||
from dataclasses import dataclass, field
|
||||
from collections import deque
|
||||
from threading import Thread, Lock
|
||||
import json
|
||||
|
||||
from .config import get_config
|
||||
from .data_provider import DataProvider, MarketTick
|
||||
from .universal_data_adapter import UniversalDataAdapter, UniversalDataStream
|
||||
from .enhanced_orchestrator import MarketState, TradingAction
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@dataclass
|
||||
class StreamConsumer:
|
||||
"""Data stream consumer configuration"""
|
||||
consumer_id: str
|
||||
consumer_name: str
|
||||
callback: Callable[[Dict[str, Any]], None]
|
||||
data_types: List[str] # ['ticks', 'ohlcv', 'training_data', 'ui_data']
|
||||
active: bool = True
|
||||
last_update: datetime = field(default_factory=datetime.now)
|
||||
update_count: int = 0
|
||||
|
||||
@dataclass
|
||||
class TrainingDataPacket:
|
||||
"""Training data packet for RL pipeline"""
|
||||
timestamp: datetime
|
||||
symbol: str
|
||||
tick_cache: List[Dict[str, Any]]
|
||||
one_second_bars: List[Dict[str, Any]]
|
||||
multi_timeframe_data: Dict[str, List[Dict[str, Any]]]
|
||||
cnn_features: Optional[Dict[str, np.ndarray]]
|
||||
cnn_predictions: Optional[Dict[str, np.ndarray]]
|
||||
market_state: Optional[MarketState]
|
||||
universal_stream: Optional[UniversalDataStream]
|
||||
|
||||
@dataclass
|
||||
class UIDataPacket:
|
||||
"""UI data packet for dashboard"""
|
||||
timestamp: datetime
|
||||
current_prices: Dict[str, float]
|
||||
tick_cache_size: int
|
||||
one_second_bars_count: int
|
||||
streaming_status: str
|
||||
training_data_available: bool
|
||||
model_training_status: Dict[str, Any]
|
||||
orchestrator_status: Dict[str, Any]
|
||||
|
||||
class UnifiedDataStream:
|
||||
"""
|
||||
Unified data stream manager for dashboard and training pipeline integration
|
||||
"""
|
||||
|
||||
def __init__(self, data_provider: DataProvider, orchestrator=None):
|
||||
"""Initialize unified data stream"""
|
||||
self.config = get_config()
|
||||
self.data_provider = data_provider
|
||||
self.orchestrator = orchestrator
|
||||
|
||||
# Initialize universal data adapter
|
||||
self.universal_adapter = UniversalDataAdapter(data_provider)
|
||||
|
||||
# Data consumers registry
|
||||
self.consumers: Dict[str, StreamConsumer] = {}
|
||||
self.consumer_lock = Lock()
|
||||
|
||||
# Data buffers for different consumers
|
||||
self.tick_cache = deque(maxlen=5000) # Raw tick cache
|
||||
self.one_second_bars = deque(maxlen=1000) # 1s OHLCV bars
|
||||
self.training_data_buffer = deque(maxlen=100) # Training data packets
|
||||
self.ui_data_buffer = deque(maxlen=50) # UI data packets
|
||||
|
||||
# Multi-timeframe data storage
|
||||
self.multi_timeframe_data = {
|
||||
'ETH/USDT': {
|
||||
'1s': deque(maxlen=300),
|
||||
'1m': deque(maxlen=300),
|
||||
'1h': deque(maxlen=300),
|
||||
'1d': deque(maxlen=300)
|
||||
},
|
||||
'BTC/USDT': {
|
||||
'1s': deque(maxlen=300),
|
||||
'1m': deque(maxlen=300),
|
||||
'1h': deque(maxlen=300),
|
||||
'1d': deque(maxlen=300)
|
||||
}
|
||||
}
|
||||
|
||||
# CNN features cache
|
||||
self.cnn_features_cache = {}
|
||||
self.cnn_predictions_cache = {}
|
||||
|
||||
# Stream status
|
||||
self.streaming = False
|
||||
self.stream_thread = None
|
||||
|
||||
# Performance tracking
|
||||
self.stream_stats = {
|
||||
'total_ticks_processed': 0,
|
||||
'total_packets_sent': 0,
|
||||
'consumers_served': 0,
|
||||
'last_tick_time': None,
|
||||
'processing_errors': 0,
|
||||
'data_quality_score': 1.0
|
||||
}
|
||||
|
||||
# Data validation
|
||||
self.last_prices = {}
|
||||
self.price_change_threshold = 0.1 # 10% change threshold
|
||||
|
||||
logger.info("Unified Data Stream initialized")
|
||||
logger.info(f"Symbols: {self.config.symbols}")
|
||||
logger.info(f"Timeframes: {self.config.timeframes}")
|
||||
|
||||
def register_consumer(self, consumer_name: str, callback: Callable[[Dict[str, Any]], None],
|
||||
data_types: List[str]) -> str:
|
||||
"""Register a data consumer"""
|
||||
consumer_id = f"{consumer_name}_{int(time.time())}"
|
||||
|
||||
with self.consumer_lock:
|
||||
consumer = StreamConsumer(
|
||||
consumer_id=consumer_id,
|
||||
consumer_name=consumer_name,
|
||||
callback=callback,
|
||||
data_types=data_types
|
||||
)
|
||||
self.consumers[consumer_id] = consumer
|
||||
|
||||
logger.info(f"Registered consumer: {consumer_name} ({consumer_id})")
|
||||
logger.info(f"Data types: {data_types}")
|
||||
|
||||
return consumer_id
|
||||
|
||||
def unregister_consumer(self, consumer_id: str):
|
||||
"""Unregister a data consumer"""
|
||||
with self.consumer_lock:
|
||||
if consumer_id in self.consumers:
|
||||
consumer = self.consumers.pop(consumer_id)
|
||||
logger.info(f"Unregistered consumer: {consumer.consumer_name} ({consumer_id})")
|
||||
|
||||
async def start_streaming(self):
|
||||
"""Start unified data streaming"""
|
||||
if self.streaming:
|
||||
logger.warning("Data streaming already active")
|
||||
return
|
||||
|
||||
self.streaming = True
|
||||
|
||||
# Subscribe to data provider ticks
|
||||
self.data_provider.subscribe_to_ticks(
|
||||
callback=self._handle_tick,
|
||||
symbols=self.config.symbols,
|
||||
subscriber_name="UnifiedDataStream"
|
||||
)
|
||||
|
||||
# Start background processing
|
||||
self.stream_thread = Thread(target=self._stream_processor, daemon=True)
|
||||
self.stream_thread.start()
|
||||
|
||||
logger.info("Unified data streaming started")
|
||||
|
||||
async def stop_streaming(self):
|
||||
"""Stop unified data streaming"""
|
||||
self.streaming = False
|
||||
|
||||
if self.stream_thread:
|
||||
self.stream_thread.join(timeout=5)
|
||||
|
||||
logger.info("Unified data streaming stopped")
|
||||
|
||||
def _handle_tick(self, tick: MarketTick):
|
||||
"""Handle incoming tick data"""
|
||||
try:
|
||||
# Validate tick data
|
||||
if not self._validate_tick(tick):
|
||||
return
|
||||
|
||||
# Add to tick cache
|
||||
tick_data = {
|
||||
'symbol': tick.symbol,
|
||||
'timestamp': tick.timestamp,
|
||||
'price': tick.price,
|
||||
'volume': tick.volume,
|
||||
'quantity': tick.quantity,
|
||||
'side': tick.side
|
||||
}
|
||||
|
||||
self.tick_cache.append(tick_data)
|
||||
|
||||
# Update current prices
|
||||
self.last_prices[tick.symbol] = tick.price
|
||||
|
||||
# Generate 1s bars if needed
|
||||
self._update_one_second_bars(tick_data)
|
||||
|
||||
# Update multi-timeframe data
|
||||
self._update_multi_timeframe_data(tick_data)
|
||||
|
||||
# Update statistics
|
||||
self.stream_stats['total_ticks_processed'] += 1
|
||||
self.stream_stats['last_tick_time'] = tick.timestamp
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error handling tick: {e}")
|
||||
self.stream_stats['processing_errors'] += 1
|
||||
|
||||
def _validate_tick(self, tick: MarketTick) -> bool:
|
||||
"""Validate tick data quality"""
|
||||
try:
|
||||
# Check for valid price
|
||||
if tick.price <= 0:
|
||||
return False
|
||||
|
||||
# Check for reasonable price change
|
||||
if tick.symbol in self.last_prices:
|
||||
last_price = self.last_prices[tick.symbol]
|
||||
if last_price > 0:
|
||||
price_change = abs(tick.price - last_price) / last_price
|
||||
if price_change > self.price_change_threshold:
|
||||
logger.warning(f"Large price change detected for {tick.symbol}: {price_change:.2%}")
|
||||
return False
|
||||
|
||||
# Check timestamp
|
||||
if tick.timestamp > datetime.now() + timedelta(seconds=10):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error validating tick: {e}")
|
||||
return False
|
||||
|
||||
def _update_one_second_bars(self, tick_data: Dict[str, Any]):
|
||||
"""Update 1-second OHLCV bars"""
|
||||
try:
|
||||
symbol = tick_data['symbol']
|
||||
price = tick_data['price']
|
||||
volume = tick_data['volume']
|
||||
timestamp = tick_data['timestamp']
|
||||
|
||||
# Round timestamp to nearest second
|
||||
bar_timestamp = timestamp.replace(microsecond=0)
|
||||
|
||||
# Check if we need a new bar
|
||||
if (not self.one_second_bars or
|
||||
self.one_second_bars[-1]['timestamp'] != bar_timestamp or
|
||||
self.one_second_bars[-1]['symbol'] != symbol):
|
||||
|
||||
# Create new 1s bar
|
||||
bar_data = {
|
||||
'symbol': symbol,
|
||||
'timestamp': bar_timestamp,
|
||||
'open': price,
|
||||
'high': price,
|
||||
'low': price,
|
||||
'close': price,
|
||||
'volume': volume
|
||||
}
|
||||
self.one_second_bars.append(bar_data)
|
||||
else:
|
||||
# Update existing bar
|
||||
bar = self.one_second_bars[-1]
|
||||
bar['high'] = max(bar['high'], price)
|
||||
bar['low'] = min(bar['low'], price)
|
||||
bar['close'] = price
|
||||
bar['volume'] += volume
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error updating 1s bars: {e}")
|
||||
|
||||
def _update_multi_timeframe_data(self, tick_data: Dict[str, Any]):
|
||||
"""Update multi-timeframe OHLCV data"""
|
||||
try:
|
||||
symbol = tick_data['symbol']
|
||||
if symbol not in self.multi_timeframe_data:
|
||||
return
|
||||
|
||||
# Update each timeframe
|
||||
for timeframe in ['1s', '1m', '1h', '1d']:
|
||||
self._update_timeframe_bar(symbol, timeframe, tick_data)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error updating multi-timeframe data: {e}")
|
||||
|
||||
def _update_timeframe_bar(self, symbol: str, timeframe: str, tick_data: Dict[str, Any]):
|
||||
"""Update specific timeframe bar"""
|
||||
try:
|
||||
price = tick_data['price']
|
||||
volume = tick_data['volume']
|
||||
timestamp = tick_data['timestamp']
|
||||
|
||||
# Calculate bar timestamp based on timeframe
|
||||
if timeframe == '1s':
|
||||
bar_timestamp = timestamp.replace(microsecond=0)
|
||||
elif timeframe == '1m':
|
||||
bar_timestamp = timestamp.replace(second=0, microsecond=0)
|
||||
elif timeframe == '1h':
|
||||
bar_timestamp = timestamp.replace(minute=0, second=0, microsecond=0)
|
||||
elif timeframe == '1d':
|
||||
bar_timestamp = timestamp.replace(hour=0, minute=0, second=0, microsecond=0)
|
||||
else:
|
||||
return
|
||||
|
||||
timeframe_buffer = self.multi_timeframe_data[symbol][timeframe]
|
||||
|
||||
# Check if we need a new bar
|
||||
if (not timeframe_buffer or
|
||||
timeframe_buffer[-1]['timestamp'] != bar_timestamp):
|
||||
|
||||
# Create new bar
|
||||
bar_data = {
|
||||
'timestamp': bar_timestamp,
|
||||
'open': price,
|
||||
'high': price,
|
||||
'low': price,
|
||||
'close': price,
|
||||
'volume': volume
|
||||
}
|
||||
timeframe_buffer.append(bar_data)
|
||||
else:
|
||||
# Update existing bar
|
||||
bar = timeframe_buffer[-1]
|
||||
bar['high'] = max(bar['high'], price)
|
||||
bar['low'] = min(bar['low'], price)
|
||||
bar['close'] = price
|
||||
bar['volume'] += volume
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error updating {timeframe} bar for {symbol}: {e}")
|
||||
|
||||
def _stream_processor(self):
|
||||
"""Background stream processor"""
|
||||
logger.info("Stream processor started")
|
||||
|
||||
while self.streaming:
|
||||
try:
|
||||
# Process training data packets
|
||||
self._process_training_data()
|
||||
|
||||
# Process UI data packets
|
||||
self._process_ui_data()
|
||||
|
||||
# Update CNN features if orchestrator available
|
||||
if self.orchestrator:
|
||||
self._update_cnn_features()
|
||||
|
||||
# Distribute data to consumers
|
||||
self._distribute_data()
|
||||
|
||||
# Sleep briefly
|
||||
time.sleep(0.1) # 100ms processing cycle
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in stream processor: {e}")
|
||||
time.sleep(1)
|
||||
|
||||
logger.info("Stream processor stopped")
|
||||
|
||||
def _process_training_data(self):
|
||||
"""Process and package training data"""
|
||||
try:
|
||||
if len(self.tick_cache) < 10: # Need minimum data
|
||||
return
|
||||
|
||||
# Create training data packet
|
||||
training_packet = TrainingDataPacket(
|
||||
timestamp=datetime.now(),
|
||||
symbol='ETH/USDT', # Primary symbol
|
||||
tick_cache=list(self.tick_cache)[-300:], # Last 300 ticks
|
||||
one_second_bars=list(self.one_second_bars)[-300:], # Last 300 1s bars
|
||||
multi_timeframe_data=self._get_multi_timeframe_snapshot(),
|
||||
cnn_features=self.cnn_features_cache.copy(),
|
||||
cnn_predictions=self.cnn_predictions_cache.copy(),
|
||||
market_state=self._build_market_state(),
|
||||
universal_stream=self._get_universal_stream()
|
||||
)
|
||||
|
||||
self.training_data_buffer.append(training_packet)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing training data: {e}")
|
||||
|
||||
def _process_ui_data(self):
|
||||
"""Process and package UI data"""
|
||||
try:
|
||||
# Create UI data packet
|
||||
ui_packet = UIDataPacket(
|
||||
timestamp=datetime.now(),
|
||||
current_prices=self.last_prices.copy(),
|
||||
tick_cache_size=len(self.tick_cache),
|
||||
one_second_bars_count=len(self.one_second_bars),
|
||||
streaming_status='LIVE' if self.streaming else 'STOPPED',
|
||||
training_data_available=len(self.training_data_buffer) > 0,
|
||||
model_training_status=self._get_model_training_status(),
|
||||
orchestrator_status=self._get_orchestrator_status()
|
||||
)
|
||||
|
||||
self.ui_data_buffer.append(ui_packet)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing UI data: {e}")
|
||||
|
||||
def _update_cnn_features(self):
|
||||
"""Update CNN features cache"""
|
||||
try:
|
||||
if not self.orchestrator:
|
||||
return
|
||||
|
||||
# Get CNN features from orchestrator
|
||||
for symbol in self.config.symbols:
|
||||
if hasattr(self.orchestrator, '_get_cnn_features_for_rl'):
|
||||
hidden_features, predictions = self.orchestrator._get_cnn_features_for_rl(symbol)
|
||||
|
||||
if hidden_features:
|
||||
self.cnn_features_cache[symbol] = hidden_features
|
||||
|
||||
if predictions:
|
||||
self.cnn_predictions_cache[symbol] = predictions
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error updating CNN features: {e}")
|
||||
|
||||
def _distribute_data(self):
|
||||
"""Distribute data to registered consumers"""
|
||||
try:
|
||||
with self.consumer_lock:
|
||||
for consumer_id, consumer in self.consumers.items():
|
||||
if not consumer.active:
|
||||
continue
|
||||
|
||||
try:
|
||||
# Prepare data based on consumer requirements
|
||||
data_packet = self._prepare_consumer_data(consumer)
|
||||
|
||||
if data_packet:
|
||||
# Send data to consumer
|
||||
consumer.callback(data_packet)
|
||||
consumer.update_count += 1
|
||||
consumer.last_update = datetime.now()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error sending data to consumer {consumer.consumer_name}: {e}")
|
||||
consumer.active = False
|
||||
|
||||
self.stream_stats['consumers_served'] = len([c for c in self.consumers.values() if c.active])
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error distributing data: {e}")
|
||||
|
||||
def _prepare_consumer_data(self, consumer: StreamConsumer) -> Optional[Dict[str, Any]]:
|
||||
"""Prepare data packet for specific consumer"""
|
||||
try:
|
||||
data_packet = {
|
||||
'timestamp': datetime.now(),
|
||||
'consumer_id': consumer.consumer_id,
|
||||
'consumer_name': consumer.consumer_name
|
||||
}
|
||||
|
||||
# Add requested data types
|
||||
if 'ticks' in consumer.data_types:
|
||||
data_packet['ticks'] = list(self.tick_cache)[-100:] # Last 100 ticks
|
||||
|
||||
if 'ohlcv' in consumer.data_types:
|
||||
data_packet['one_second_bars'] = list(self.one_second_bars)[-100:]
|
||||
data_packet['multi_timeframe'] = self._get_multi_timeframe_snapshot()
|
||||
|
||||
if 'training_data' in consumer.data_types:
|
||||
if self.training_data_buffer:
|
||||
data_packet['training_data'] = self.training_data_buffer[-1]
|
||||
|
||||
if 'ui_data' in consumer.data_types:
|
||||
if self.ui_data_buffer:
|
||||
data_packet['ui_data'] = self.ui_data_buffer[-1]
|
||||
|
||||
return data_packet
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error preparing data for consumer {consumer.consumer_name}: {e}")
|
||||
return None
|
||||
|
||||
def _get_multi_timeframe_snapshot(self) -> Dict[str, Dict[str, List[Dict[str, Any]]]]:
|
||||
"""Get snapshot of multi-timeframe data"""
|
||||
snapshot = {}
|
||||
for symbol, timeframes in self.multi_timeframe_data.items():
|
||||
snapshot[symbol] = {}
|
||||
for timeframe, data in timeframes.items():
|
||||
snapshot[symbol][timeframe] = list(data)
|
||||
return snapshot
|
||||
|
||||
def _build_market_state(self) -> Optional[MarketState]:
|
||||
"""Build market state for training"""
|
||||
try:
|
||||
if not self.orchestrator:
|
||||
return None
|
||||
|
||||
# Get universal stream
|
||||
universal_stream = self._get_universal_stream()
|
||||
if not universal_stream:
|
||||
return None
|
||||
|
||||
# Build market state using orchestrator
|
||||
symbol = 'ETH/USDT'
|
||||
current_price = self.last_prices.get(symbol, 0.0)
|
||||
|
||||
market_state = MarketState(
|
||||
symbol=symbol,
|
||||
timestamp=datetime.now(),
|
||||
prices={'current': current_price},
|
||||
features={},
|
||||
volatility=0.0,
|
||||
volume=0.0,
|
||||
trend_strength=0.0,
|
||||
market_regime='unknown',
|
||||
universal_data=universal_stream,
|
||||
raw_ticks=list(self.tick_cache)[-300:],
|
||||
ohlcv_data=self._get_multi_timeframe_snapshot(),
|
||||
btc_reference_data=self._get_btc_reference_data(),
|
||||
cnn_hidden_features=self.cnn_features_cache.copy(),
|
||||
cnn_predictions=self.cnn_predictions_cache.copy()
|
||||
)
|
||||
|
||||
return market_state
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error building market state: {e}")
|
||||
return None
|
||||
|
||||
def _get_universal_stream(self) -> Optional[UniversalDataStream]:
|
||||
"""Get universal data stream"""
|
||||
try:
|
||||
if self.universal_adapter:
|
||||
return self.universal_adapter.get_universal_stream()
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting universal stream: {e}")
|
||||
return None
|
||||
|
||||
def _get_btc_reference_data(self) -> Dict[str, List[Dict[str, Any]]]:
|
||||
"""Get BTC reference data"""
|
||||
btc_data = {}
|
||||
if 'BTC/USDT' in self.multi_timeframe_data:
|
||||
for timeframe, data in self.multi_timeframe_data['BTC/USDT'].items():
|
||||
btc_data[timeframe] = list(data)
|
||||
return btc_data
|
||||
|
||||
def _get_model_training_status(self) -> Dict[str, Any]:
|
||||
"""Get model training status"""
|
||||
try:
|
||||
if self.orchestrator and hasattr(self.orchestrator, 'get_performance_metrics'):
|
||||
return self.orchestrator.get_performance_metrics()
|
||||
|
||||
return {
|
||||
'cnn_status': 'TRAINING',
|
||||
'rl_status': 'TRAINING',
|
||||
'data_available': len(self.training_data_buffer) > 0
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting model training status: {e}")
|
||||
return {}
|
||||
|
||||
def _get_orchestrator_status(self) -> Dict[str, Any]:
|
||||
"""Get orchestrator status"""
|
||||
try:
|
||||
if self.orchestrator:
|
||||
return {
|
||||
'active': True,
|
||||
'symbols': self.config.symbols,
|
||||
'streaming': self.streaming,
|
||||
'tick_processor_active': hasattr(self.orchestrator, 'tick_processor')
|
||||
}
|
||||
|
||||
return {'active': False}
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting orchestrator status: {e}")
|
||||
return {'active': False}
|
||||
|
||||
def get_stream_stats(self) -> Dict[str, Any]:
|
||||
"""Get stream statistics"""
|
||||
stats = self.stream_stats.copy()
|
||||
stats.update({
|
||||
'tick_cache_size': len(self.tick_cache),
|
||||
'one_second_bars_count': len(self.one_second_bars),
|
||||
'training_data_packets': len(self.training_data_buffer),
|
||||
'ui_data_packets': len(self.ui_data_buffer),
|
||||
'active_consumers': len([c for c in self.consumers.values() if c.active]),
|
||||
'total_consumers': len(self.consumers)
|
||||
})
|
||||
return stats
|
||||
|
||||
def get_latest_training_data(self) -> Optional[TrainingDataPacket]:
|
||||
"""Get latest training data packet"""
|
||||
if self.training_data_buffer:
|
||||
return self.training_data_buffer[-1]
|
||||
return None
|
||||
|
||||
def get_latest_ui_data(self) -> Optional[UIDataPacket]:
|
||||
"""Get latest UI data packet"""
|
||||
if self.ui_data_buffer:
|
||||
return self.ui_data_buffer[-1]
|
||||
return None
|
Reference in New Issue
Block a user