better train algo
This commit is contained in:
parent
967363378b
commit
615579d456
@ -18,6 +18,7 @@ from datetime import datetime
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
||||
import matplotlib.dates as mdates
|
||||
from dotenv import load_dotenv
|
||||
load_dotenv()
|
||||
|
||||
@ -31,7 +32,10 @@ CACHE_FILE = "candles_cache.json"
|
||||
# --- Constants ---
|
||||
NUM_TIMEFRAMES = 5 # e.g., ["1m", "5m", "15m", "1h", "1d"]
|
||||
NUM_INDICATORS = 20 # e.g., 20 technical indicators
|
||||
FEATURES_PER_CHANNEL = 7 # e.g., [open, high, low, close, volume, sma_close, sma_volume]
|
||||
# Each channel input will have 7 features.
|
||||
FEATURES_PER_CHANNEL = 7
|
||||
# We add one extra channel for order information.
|
||||
ORDER_CHANNELS = 1
|
||||
|
||||
# --- Positional Encoding Module ---
|
||||
class PositionalEncoding(nn.Module):
|
||||
@ -52,7 +56,7 @@ class PositionalEncoding(nn.Module):
|
||||
class TradingModel(nn.Module):
|
||||
def __init__(self, num_channels, num_timeframes, hidden_dim=128):
|
||||
super().__init__()
|
||||
# One branch per channel
|
||||
# Create one branch per channel.
|
||||
self.channel_branches = nn.ModuleList([
|
||||
nn.Sequential(
|
||||
nn.Linear(FEATURES_PER_CHANNEL, hidden_dim),
|
||||
@ -61,6 +65,7 @@ class TradingModel(nn.Module):
|
||||
nn.Dropout(0.1)
|
||||
) for _ in range(num_channels)
|
||||
])
|
||||
# Embedding for channels 0..num_channels-1.
|
||||
self.timeframe_embed = nn.Embedding(num_channels, hidden_dim)
|
||||
self.pos_encoder = PositionalEncoding(hidden_dim)
|
||||
encoder_layers = TransformerEncoderLayer(
|
||||
@ -86,8 +91,8 @@ class TradingModel(nn.Module):
|
||||
for i in range(num_channels):
|
||||
channel_out = self.channel_branches[i](x[:, i, :])
|
||||
channel_outs.append(channel_out)
|
||||
stacked = torch.stack(channel_outs, dim=1) # [batch, channels, hidden]
|
||||
stacked = stacked.permute(1, 0, 2) # [channels, batch, hidden]
|
||||
stacked = torch.stack(channel_outs, dim=1) # shape: [batch, channels, hidden]
|
||||
stacked = stacked.permute(1, 0, 2) # shape: [channels, batch, hidden]
|
||||
tf_embeds = self.timeframe_embed(timeframe_ids).unsqueeze(1)
|
||||
stacked = stacked + tf_embeds
|
||||
src_mask = torch.triu(torch.ones(stacked.size(0), stacked.size(0)), diagonal=1).bool().to(x.device)
|
||||
@ -211,15 +216,17 @@ def load_best_checkpoint(model, best_dir=BEST_DIR):
|
||||
# --- Live HTML Chart Update ---
|
||||
def update_live_html(candles, trade_history, epoch):
|
||||
"""
|
||||
Generate a chart image with buy/sell markers and dotted lines between entry and exit,
|
||||
then embed it in an auto-refreshing HTML page.
|
||||
Generate a chart image that uses actual timestamps on the x-axis and shows a cumulative epoch PnL.
|
||||
The chart (with buy/sell markers and dotted lines) is embedded in an HTML page that auto-refreshes.
|
||||
"""
|
||||
from io import BytesIO
|
||||
import base64
|
||||
|
||||
fig, ax = plt.subplots(figsize=(12, 6))
|
||||
update_live_chart(ax, candles, trade_history)
|
||||
ax.set_title(f"Live Trading Chart - Epoch {epoch}")
|
||||
# Compute cumulative epoch PnL.
|
||||
epoch_pnl = sum(trade["pnl"] for trade in trade_history)
|
||||
ax.set_title(f"Live Trading Chart - Epoch {epoch} | PnL: {epoch_pnl:.2f}")
|
||||
buf = BytesIO()
|
||||
fig.savefig(buf, format='png')
|
||||
plt.close(fig)
|
||||
@ -252,7 +259,7 @@ def update_live_html(candles, trade_history, epoch):
|
||||
</head>
|
||||
<body>
|
||||
<div class="chart-container">
|
||||
<h2>Live Trading Chart - Epoch {epoch}</h2>
|
||||
<h2>Live Trading Chart - Epoch {epoch} | PnL: {epoch_pnl:.2f}</h2>
|
||||
<img src="data:image/png;base64,{image_base64}" alt="Live Chart"/>
|
||||
</div>
|
||||
</body>
|
||||
@ -265,42 +272,51 @@ def update_live_html(candles, trade_history, epoch):
|
||||
# --- Chart Drawing Helpers ---
|
||||
def update_live_chart(ax, candles, trade_history):
|
||||
"""
|
||||
Draw the price chart with close prices and mark BUY (green) and SELL (red) actions.
|
||||
Plot the price chart using actual timestamps on the x-axis.
|
||||
Mark BUY (green) and SELL (red) actions, and draw dotted lines between entry and exit.
|
||||
"""
|
||||
ax.clear()
|
||||
# Convert timestamps to datetime objects.
|
||||
times = [datetime.fromtimestamp(candle["timestamp"]) for candle in candles]
|
||||
close_prices = [candle["close"] for candle in candles]
|
||||
x = list(range(len(close_prices)))
|
||||
ax.plot(x, close_prices, label="Close Price", color="black", linewidth=1)
|
||||
ax.plot(times, close_prices, label="Close Price", color="black", linewidth=1)
|
||||
# Format x-axis date labels.
|
||||
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
|
||||
# Calculate epoch PnL.
|
||||
epoch_pnl = sum(trade["pnl"] for trade in trade_history)
|
||||
# Plot each trade.
|
||||
buy_label_added = False
|
||||
sell_label_added = False
|
||||
for trade in trade_history:
|
||||
in_idx = trade["entry_index"]
|
||||
out_idx = trade["exit_index"]
|
||||
entry_time = datetime.fromtimestamp(candles[trade["entry_index"]]["timestamp"])
|
||||
exit_time = datetime.fromtimestamp(candles[trade["exit_index"]]["timestamp"])
|
||||
in_price = trade["entry_price"]
|
||||
out_price = trade["exit_price"]
|
||||
if not buy_label_added:
|
||||
ax.plot(in_idx, in_price, marker="^", color="green", markersize=10, label="BUY")
|
||||
ax.plot(entry_time, in_price, marker="^", color="green", markersize=10, label="BUY")
|
||||
buy_label_added = True
|
||||
else:
|
||||
ax.plot(in_idx, in_price, marker="^", color="green", markersize=10)
|
||||
ax.plot(entry_time, in_price, marker="^", color="green", markersize=10)
|
||||
if not sell_label_added:
|
||||
ax.plot(out_idx, out_price, marker="v", color="red", markersize=10, label="SELL")
|
||||
ax.plot(exit_time, out_price, marker="v", color="red", markersize=10, label="SELL")
|
||||
sell_label_added = True
|
||||
else:
|
||||
ax.plot(out_idx, out_price, marker="v", color="red", markersize=10)
|
||||
ax.plot([in_idx, out_idx], [in_price, out_price], linestyle="dotted", color="blue")
|
||||
ax.set_xlabel("Candle Index")
|
||||
ax.plot(exit_time, out_price, marker="v", color="red", markersize=10)
|
||||
ax.plot([entry_time, exit_time], [in_price, out_price], linestyle="dotted", color="blue")
|
||||
ax.set_xlabel("Time")
|
||||
ax.set_ylabel("Price")
|
||||
ax.legend()
|
||||
ax.grid(True)
|
||||
fig = ax.get_figure()
|
||||
fig.autofmt_xdate()
|
||||
|
||||
# --- Simulation of Trades for Visualization ---
|
||||
def simulate_trades(model, env, device, args):
|
||||
"""
|
||||
Run a complete simulation on the current sliding window using a decision rule based on model outputs.
|
||||
This simulation (which updates env.trade_history) is used only for visualization.
|
||||
Run a simulation on the current sliding window using the model's outputs and a decision rule.
|
||||
This simulation updates env.trade_history and is used for visualization only.
|
||||
"""
|
||||
env.reset() # resets the sliding window and index
|
||||
env.reset() # resets the window and index
|
||||
while True:
|
||||
i = env.current_index
|
||||
state = env.get_state(i)
|
||||
@ -310,7 +326,7 @@ def simulate_trades(model, env, device, args):
|
||||
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
||||
pred_high = pred_high.item()
|
||||
pred_low = pred_low.item()
|
||||
# Decision rule: if upward move larger than downward and above threshold, BUY; if downward is larger, SELL; else HOLD.
|
||||
# Simple decision rule based on predicted move.
|
||||
if (pred_high - current_open) >= (current_open - pred_low) and (pred_high - current_open) > args.threshold:
|
||||
action = 2 # BUY
|
||||
elif (current_open - pred_low) > (pred_high - current_open) and (current_open - pred_low) > args.threshold:
|
||||
@ -321,21 +337,20 @@ def simulate_trades(model, env, device, args):
|
||||
if done:
|
||||
break
|
||||
|
||||
# --- Backtest Environment with Sliding Window ---
|
||||
# --- Backtest Environment with Sliding Window and Order Info ---
|
||||
class BacktestEnvironment:
|
||||
def __init__(self, candles_dict, base_tf, timeframes, window_size=None):
|
||||
self.candles_dict = candles_dict # full candles dict for all timeframes
|
||||
self.candles_dict = candles_dict # full candles dict across timeframes
|
||||
self.base_tf = base_tf
|
||||
self.timeframes = timeframes
|
||||
self.full_candles = candles_dict[base_tf]
|
||||
if window_size is None:
|
||||
window_size = 100 if len(self.full_candles) >= 100 else len(self.full_candles)
|
||||
self.window_size = window_size
|
||||
self.hint_penalty = 0.001 # not used in the revised loss below
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
# Pick a random sliding window from the full dataset.
|
||||
# Randomly select a sliding window from the full dataset.
|
||||
self.start_index = random.randint(0, len(self.full_candles) - self.window_size)
|
||||
self.candle_window = self.full_candles[self.start_index: self.start_index + self.window_size]
|
||||
self.current_index = 0
|
||||
@ -346,7 +361,29 @@ class BacktestEnvironment:
|
||||
def __len__(self):
|
||||
return self.window_size
|
||||
|
||||
def get_order_features(self, index):
|
||||
"""
|
||||
Returns a list of 7 features for the order channel.
|
||||
If an order is open, the first element is 1.0 and the second is the normalized difference:
|
||||
(current open - entry_price) / current open.
|
||||
Otherwise, returns zeros.
|
||||
"""
|
||||
candle = self.candle_window[index]
|
||||
if self.position is None:
|
||||
return [0.0] * FEATURES_PER_CHANNEL
|
||||
else:
|
||||
flag = 1.0
|
||||
diff = (candle["open"] - self.position["entry_price"]) / candle["open"]
|
||||
return [flag, diff] + [0.0] * (FEATURES_PER_CHANNEL - 2)
|
||||
|
||||
def get_state(self, index):
|
||||
"""
|
||||
Build state features from:
|
||||
- For each timeframe: features from the aligned candle.
|
||||
- One extra channel: current order information.
|
||||
- NUM_INDICATORS channels of zeros.
|
||||
Each channel is a vector of length FEATURES_PER_CHANNEL.
|
||||
"""
|
||||
state_features = []
|
||||
base_ts = self.candle_window[index]["timestamp"]
|
||||
for tf in self.timeframes:
|
||||
@ -357,15 +394,19 @@ class BacktestEnvironment:
|
||||
aligned_idx, _ = get_aligned_candle_with_index(self.candles_dict[tf], base_ts)
|
||||
features = get_features_for_tf(self.candles_dict[tf], aligned_idx)
|
||||
state_features.append(features)
|
||||
# Append order channel.
|
||||
order_features = self.get_order_features(index)
|
||||
state_features.append(order_features)
|
||||
# Append technical indicator channels.
|
||||
for _ in range(NUM_INDICATORS):
|
||||
state_features.append([0.0] * FEATURES_PER_CHANNEL)
|
||||
return np.array(state_features, dtype=np.float32)
|
||||
|
||||
def step(self, action):
|
||||
"""
|
||||
Discrete simulation step.
|
||||
- Action: 0 (SELL), 1 (HOLD), 2 (BUY).
|
||||
- Trades are recorded when a BUY is followed by a SELL.
|
||||
Execute one step in the environment:
|
||||
- action: 0 => SELL, 1 => HOLD, 2 => BUY.
|
||||
- Trades recorded when a BUY is followed by a SELL.
|
||||
"""
|
||||
base = self.candle_window
|
||||
if self.current_index >= len(base) - 1:
|
||||
@ -378,7 +419,6 @@ class BacktestEnvironment:
|
||||
next_candle = base[next_index]
|
||||
reward = 0.0
|
||||
|
||||
# Simple trading logic (only one position allowed at a time)
|
||||
if self.position is None:
|
||||
if action == 2: # BUY signal: enter at next open.
|
||||
self.position = {"entry_price": next_candle["open"], "entry_index": self.current_index}
|
||||
@ -404,29 +444,25 @@ class BacktestEnvironment:
|
||||
|
||||
# --- Enhanced Training Loop ---
|
||||
def train_on_historical_data(env, model, device, args, start_epoch, optimizer, scheduler):
|
||||
# Weighting factor for trade surrogate loss.
|
||||
lambda_trade = 1.0
|
||||
lambda_trade = args.lambda_trade # Weight for the surrogate profit loss.
|
||||
for epoch in range(start_epoch, args.epochs):
|
||||
# Reset sliding window for each epoch.
|
||||
env.reset()
|
||||
env.reset() # Resets the sliding window.
|
||||
loss_accum = 0.0
|
||||
steps = len(env) - 1 # we use pairs of consecutive candles
|
||||
steps = len(env) - 1 # We assume steps over consecutive candle pairs.
|
||||
for i in range(steps):
|
||||
state = env.get_state(i)
|
||||
current_open = env.candle_window[i]["open"]
|
||||
# Next candle's actual values serve as targets.
|
||||
actual_high = env.candle_window[i+1]["high"]
|
||||
actual_low = env.candle_window[i+1]["low"]
|
||||
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||
timeframe_ids = torch.arange(state.shape[0]).to(device)
|
||||
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
||||
# Compute prediction loss (L1)
|
||||
# Prediction loss (L1 error).
|
||||
L_pred = torch.abs(pred_high - torch.tensor(actual_high, device=device)) + \
|
||||
torch.abs(pred_low - torch.tensor(actual_low, device=device))
|
||||
# Compute surrogate profit (differentiable estimate)
|
||||
# Surrogate profit loss:
|
||||
profit_buy = pred_high - current_open # potential long gain
|
||||
profit_sell = current_open - pred_low # potential short gain
|
||||
# Here we reward a higher potential move by subtracting it.
|
||||
L_trade = - torch.max(profit_buy, profit_sell)
|
||||
loss = L_pred + lambda_trade * L_trade
|
||||
optimizer.zero_grad()
|
||||
@ -438,7 +474,6 @@ def train_on_historical_data(env, model, device, args, start_epoch, optimizer, s
|
||||
epoch_loss = loss_accum / steps
|
||||
print(f"Epoch {epoch+1} Loss: {epoch_loss:.4f}")
|
||||
save_checkpoint(model, optimizer, epoch, loss_accum)
|
||||
# Update the trade simulation (for visualization) using the current model on the same window.
|
||||
simulate_trades(model, env, device, args)
|
||||
update_live_html(env.candle_window, env.trade_history, epoch+1)
|
||||
|
||||
@ -458,10 +493,13 @@ def parse_args():
|
||||
parser.add_argument('--epochs', type=int, default=100)
|
||||
parser.add_argument('--lr', type=float, default=3e-4)
|
||||
parser.add_argument('--threshold', type=float, default=0.005, help="Minimum predicted move to trigger trade.")
|
||||
parser.add_argument('--lambda_trade', type=float, default=1.0, help="Weight for the trade surrogate loss.")
|
||||
parser.add_argument('--lambda_trade', type=float, default=1.0, help="Weight for trade surrogate loss.")
|
||||
parser.add_argument('--start_fresh', action='store_true', help="Start training from scratch.")
|
||||
return parser.parse_args()
|
||||
|
||||
def random_action():
|
||||
return random.randint(0, 2)
|
||||
|
||||
# --- Main Function ---
|
||||
async def main():
|
||||
args = parse_args()
|
||||
@ -469,7 +507,8 @@ async def main():
|
||||
print("Using device:", device)
|
||||
timeframes = ["1m", "5m", "15m", "1h", "1d"]
|
||||
hidden_dim = 128
|
||||
total_channels = NUM_TIMEFRAMES + NUM_INDICATORS
|
||||
# Total channels: NUM_TIMEFRAMES + 1 (order info) + NUM_INDICATORS.
|
||||
total_channels = NUM_TIMEFRAMES + 1 + NUM_INDICATORS
|
||||
model = TradingModel(total_channels, NUM_TIMEFRAMES).to(device)
|
||||
|
||||
if args.mode == 'train':
|
||||
@ -478,7 +517,6 @@ async def main():
|
||||
print("No historical candle data available for backtesting.")
|
||||
return
|
||||
base_tf = "1m"
|
||||
# Use a sliding window of up to 100 candles (if available)
|
||||
env = BacktestEnvironment(candles_dict, base_tf, timeframes, window_size=100)
|
||||
start_epoch = 0
|
||||
checkpoint = None
|
||||
@ -513,7 +551,6 @@ async def main():
|
||||
preview_thread.start()
|
||||
print("Starting live trading loop. (Using model-based decision rule.)")
|
||||
while True:
|
||||
# In live mode, we use the simulation decision rule.
|
||||
state = env.get_state(env.current_index)
|
||||
current_open = env.candle_window[env.current_index]["open"]
|
||||
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||
@ -535,7 +572,7 @@ async def main():
|
||||
elif args.mode == 'inference':
|
||||
load_best_checkpoint(model)
|
||||
print("Running inference...")
|
||||
# Inference logic can use a similar decision rule as in live mode.
|
||||
# Your inference logic goes here.
|
||||
else:
|
||||
print("Invalid mode specified.")
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user