better train algo
This commit is contained in:
parent
967363378b
commit
615579d456
@ -18,6 +18,7 @@ from datetime import datetime
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import math
|
import math
|
||||||
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
||||||
|
import matplotlib.dates as mdates
|
||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
load_dotenv()
|
load_dotenv()
|
||||||
|
|
||||||
@ -31,7 +32,10 @@ CACHE_FILE = "candles_cache.json"
|
|||||||
# --- Constants ---
|
# --- Constants ---
|
||||||
NUM_TIMEFRAMES = 5 # e.g., ["1m", "5m", "15m", "1h", "1d"]
|
NUM_TIMEFRAMES = 5 # e.g., ["1m", "5m", "15m", "1h", "1d"]
|
||||||
NUM_INDICATORS = 20 # e.g., 20 technical indicators
|
NUM_INDICATORS = 20 # e.g., 20 technical indicators
|
||||||
FEATURES_PER_CHANNEL = 7 # e.g., [open, high, low, close, volume, sma_close, sma_volume]
|
# Each channel input will have 7 features.
|
||||||
|
FEATURES_PER_CHANNEL = 7
|
||||||
|
# We add one extra channel for order information.
|
||||||
|
ORDER_CHANNELS = 1
|
||||||
|
|
||||||
# --- Positional Encoding Module ---
|
# --- Positional Encoding Module ---
|
||||||
class PositionalEncoding(nn.Module):
|
class PositionalEncoding(nn.Module):
|
||||||
@ -52,7 +56,7 @@ class PositionalEncoding(nn.Module):
|
|||||||
class TradingModel(nn.Module):
|
class TradingModel(nn.Module):
|
||||||
def __init__(self, num_channels, num_timeframes, hidden_dim=128):
|
def __init__(self, num_channels, num_timeframes, hidden_dim=128):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
# One branch per channel
|
# Create one branch per channel.
|
||||||
self.channel_branches = nn.ModuleList([
|
self.channel_branches = nn.ModuleList([
|
||||||
nn.Sequential(
|
nn.Sequential(
|
||||||
nn.Linear(FEATURES_PER_CHANNEL, hidden_dim),
|
nn.Linear(FEATURES_PER_CHANNEL, hidden_dim),
|
||||||
@ -61,6 +65,7 @@ class TradingModel(nn.Module):
|
|||||||
nn.Dropout(0.1)
|
nn.Dropout(0.1)
|
||||||
) for _ in range(num_channels)
|
) for _ in range(num_channels)
|
||||||
])
|
])
|
||||||
|
# Embedding for channels 0..num_channels-1.
|
||||||
self.timeframe_embed = nn.Embedding(num_channels, hidden_dim)
|
self.timeframe_embed = nn.Embedding(num_channels, hidden_dim)
|
||||||
self.pos_encoder = PositionalEncoding(hidden_dim)
|
self.pos_encoder = PositionalEncoding(hidden_dim)
|
||||||
encoder_layers = TransformerEncoderLayer(
|
encoder_layers = TransformerEncoderLayer(
|
||||||
@ -86,8 +91,8 @@ class TradingModel(nn.Module):
|
|||||||
for i in range(num_channels):
|
for i in range(num_channels):
|
||||||
channel_out = self.channel_branches[i](x[:, i, :])
|
channel_out = self.channel_branches[i](x[:, i, :])
|
||||||
channel_outs.append(channel_out)
|
channel_outs.append(channel_out)
|
||||||
stacked = torch.stack(channel_outs, dim=1) # [batch, channels, hidden]
|
stacked = torch.stack(channel_outs, dim=1) # shape: [batch, channels, hidden]
|
||||||
stacked = stacked.permute(1, 0, 2) # [channels, batch, hidden]
|
stacked = stacked.permute(1, 0, 2) # shape: [channels, batch, hidden]
|
||||||
tf_embeds = self.timeframe_embed(timeframe_ids).unsqueeze(1)
|
tf_embeds = self.timeframe_embed(timeframe_ids).unsqueeze(1)
|
||||||
stacked = stacked + tf_embeds
|
stacked = stacked + tf_embeds
|
||||||
src_mask = torch.triu(torch.ones(stacked.size(0), stacked.size(0)), diagonal=1).bool().to(x.device)
|
src_mask = torch.triu(torch.ones(stacked.size(0), stacked.size(0)), diagonal=1).bool().to(x.device)
|
||||||
@ -211,15 +216,17 @@ def load_best_checkpoint(model, best_dir=BEST_DIR):
|
|||||||
# --- Live HTML Chart Update ---
|
# --- Live HTML Chart Update ---
|
||||||
def update_live_html(candles, trade_history, epoch):
|
def update_live_html(candles, trade_history, epoch):
|
||||||
"""
|
"""
|
||||||
Generate a chart image with buy/sell markers and dotted lines between entry and exit,
|
Generate a chart image that uses actual timestamps on the x-axis and shows a cumulative epoch PnL.
|
||||||
then embed it in an auto-refreshing HTML page.
|
The chart (with buy/sell markers and dotted lines) is embedded in an HTML page that auto-refreshes.
|
||||||
"""
|
"""
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
import base64
|
import base64
|
||||||
|
|
||||||
fig, ax = plt.subplots(figsize=(12, 6))
|
fig, ax = plt.subplots(figsize=(12, 6))
|
||||||
update_live_chart(ax, candles, trade_history)
|
update_live_chart(ax, candles, trade_history)
|
||||||
ax.set_title(f"Live Trading Chart - Epoch {epoch}")
|
# Compute cumulative epoch PnL.
|
||||||
|
epoch_pnl = sum(trade["pnl"] for trade in trade_history)
|
||||||
|
ax.set_title(f"Live Trading Chart - Epoch {epoch} | PnL: {epoch_pnl:.2f}")
|
||||||
buf = BytesIO()
|
buf = BytesIO()
|
||||||
fig.savefig(buf, format='png')
|
fig.savefig(buf, format='png')
|
||||||
plt.close(fig)
|
plt.close(fig)
|
||||||
@ -252,7 +259,7 @@ def update_live_html(candles, trade_history, epoch):
|
|||||||
</head>
|
</head>
|
||||||
<body>
|
<body>
|
||||||
<div class="chart-container">
|
<div class="chart-container">
|
||||||
<h2>Live Trading Chart - Epoch {epoch}</h2>
|
<h2>Live Trading Chart - Epoch {epoch} | PnL: {epoch_pnl:.2f}</h2>
|
||||||
<img src="data:image/png;base64,{image_base64}" alt="Live Chart"/>
|
<img src="data:image/png;base64,{image_base64}" alt="Live Chart"/>
|
||||||
</div>
|
</div>
|
||||||
</body>
|
</body>
|
||||||
@ -265,42 +272,51 @@ def update_live_html(candles, trade_history, epoch):
|
|||||||
# --- Chart Drawing Helpers ---
|
# --- Chart Drawing Helpers ---
|
||||||
def update_live_chart(ax, candles, trade_history):
|
def update_live_chart(ax, candles, trade_history):
|
||||||
"""
|
"""
|
||||||
Draw the price chart with close prices and mark BUY (green) and SELL (red) actions.
|
Plot the price chart using actual timestamps on the x-axis.
|
||||||
|
Mark BUY (green) and SELL (red) actions, and draw dotted lines between entry and exit.
|
||||||
"""
|
"""
|
||||||
ax.clear()
|
ax.clear()
|
||||||
|
# Convert timestamps to datetime objects.
|
||||||
|
times = [datetime.fromtimestamp(candle["timestamp"]) for candle in candles]
|
||||||
close_prices = [candle["close"] for candle in candles]
|
close_prices = [candle["close"] for candle in candles]
|
||||||
x = list(range(len(close_prices)))
|
ax.plot(times, close_prices, label="Close Price", color="black", linewidth=1)
|
||||||
ax.plot(x, close_prices, label="Close Price", color="black", linewidth=1)
|
# Format x-axis date labels.
|
||||||
|
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
|
||||||
|
# Calculate epoch PnL.
|
||||||
|
epoch_pnl = sum(trade["pnl"] for trade in trade_history)
|
||||||
|
# Plot each trade.
|
||||||
buy_label_added = False
|
buy_label_added = False
|
||||||
sell_label_added = False
|
sell_label_added = False
|
||||||
for trade in trade_history:
|
for trade in trade_history:
|
||||||
in_idx = trade["entry_index"]
|
entry_time = datetime.fromtimestamp(candles[trade["entry_index"]]["timestamp"])
|
||||||
out_idx = trade["exit_index"]
|
exit_time = datetime.fromtimestamp(candles[trade["exit_index"]]["timestamp"])
|
||||||
in_price = trade["entry_price"]
|
in_price = trade["entry_price"]
|
||||||
out_price = trade["exit_price"]
|
out_price = trade["exit_price"]
|
||||||
if not buy_label_added:
|
if not buy_label_added:
|
||||||
ax.plot(in_idx, in_price, marker="^", color="green", markersize=10, label="BUY")
|
ax.plot(entry_time, in_price, marker="^", color="green", markersize=10, label="BUY")
|
||||||
buy_label_added = True
|
buy_label_added = True
|
||||||
else:
|
else:
|
||||||
ax.plot(in_idx, in_price, marker="^", color="green", markersize=10)
|
ax.plot(entry_time, in_price, marker="^", color="green", markersize=10)
|
||||||
if not sell_label_added:
|
if not sell_label_added:
|
||||||
ax.plot(out_idx, out_price, marker="v", color="red", markersize=10, label="SELL")
|
ax.plot(exit_time, out_price, marker="v", color="red", markersize=10, label="SELL")
|
||||||
sell_label_added = True
|
sell_label_added = True
|
||||||
else:
|
else:
|
||||||
ax.plot(out_idx, out_price, marker="v", color="red", markersize=10)
|
ax.plot(exit_time, out_price, marker="v", color="red", markersize=10)
|
||||||
ax.plot([in_idx, out_idx], [in_price, out_price], linestyle="dotted", color="blue")
|
ax.plot([entry_time, exit_time], [in_price, out_price], linestyle="dotted", color="blue")
|
||||||
ax.set_xlabel("Candle Index")
|
ax.set_xlabel("Time")
|
||||||
ax.set_ylabel("Price")
|
ax.set_ylabel("Price")
|
||||||
ax.legend()
|
ax.legend()
|
||||||
ax.grid(True)
|
ax.grid(True)
|
||||||
|
fig = ax.get_figure()
|
||||||
|
fig.autofmt_xdate()
|
||||||
|
|
||||||
# --- Simulation of Trades for Visualization ---
|
# --- Simulation of Trades for Visualization ---
|
||||||
def simulate_trades(model, env, device, args):
|
def simulate_trades(model, env, device, args):
|
||||||
"""
|
"""
|
||||||
Run a complete simulation on the current sliding window using a decision rule based on model outputs.
|
Run a simulation on the current sliding window using the model's outputs and a decision rule.
|
||||||
This simulation (which updates env.trade_history) is used only for visualization.
|
This simulation updates env.trade_history and is used for visualization only.
|
||||||
"""
|
"""
|
||||||
env.reset() # resets the sliding window and index
|
env.reset() # resets the window and index
|
||||||
while True:
|
while True:
|
||||||
i = env.current_index
|
i = env.current_index
|
||||||
state = env.get_state(i)
|
state = env.get_state(i)
|
||||||
@ -310,7 +326,7 @@ def simulate_trades(model, env, device, args):
|
|||||||
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
||||||
pred_high = pred_high.item()
|
pred_high = pred_high.item()
|
||||||
pred_low = pred_low.item()
|
pred_low = pred_low.item()
|
||||||
# Decision rule: if upward move larger than downward and above threshold, BUY; if downward is larger, SELL; else HOLD.
|
# Simple decision rule based on predicted move.
|
||||||
if (pred_high - current_open) >= (current_open - pred_low) and (pred_high - current_open) > args.threshold:
|
if (pred_high - current_open) >= (current_open - pred_low) and (pred_high - current_open) > args.threshold:
|
||||||
action = 2 # BUY
|
action = 2 # BUY
|
||||||
elif (current_open - pred_low) > (pred_high - current_open) and (current_open - pred_low) > args.threshold:
|
elif (current_open - pred_low) > (pred_high - current_open) and (current_open - pred_low) > args.threshold:
|
||||||
@ -321,21 +337,20 @@ def simulate_trades(model, env, device, args):
|
|||||||
if done:
|
if done:
|
||||||
break
|
break
|
||||||
|
|
||||||
# --- Backtest Environment with Sliding Window ---
|
# --- Backtest Environment with Sliding Window and Order Info ---
|
||||||
class BacktestEnvironment:
|
class BacktestEnvironment:
|
||||||
def __init__(self, candles_dict, base_tf, timeframes, window_size=None):
|
def __init__(self, candles_dict, base_tf, timeframes, window_size=None):
|
||||||
self.candles_dict = candles_dict # full candles dict for all timeframes
|
self.candles_dict = candles_dict # full candles dict across timeframes
|
||||||
self.base_tf = base_tf
|
self.base_tf = base_tf
|
||||||
self.timeframes = timeframes
|
self.timeframes = timeframes
|
||||||
self.full_candles = candles_dict[base_tf]
|
self.full_candles = candles_dict[base_tf]
|
||||||
if window_size is None:
|
if window_size is None:
|
||||||
window_size = 100 if len(self.full_candles) >= 100 else len(self.full_candles)
|
window_size = 100 if len(self.full_candles) >= 100 else len(self.full_candles)
|
||||||
self.window_size = window_size
|
self.window_size = window_size
|
||||||
self.hint_penalty = 0.001 # not used in the revised loss below
|
|
||||||
self.reset()
|
self.reset()
|
||||||
|
|
||||||
def reset(self):
|
def reset(self):
|
||||||
# Pick a random sliding window from the full dataset.
|
# Randomly select a sliding window from the full dataset.
|
||||||
self.start_index = random.randint(0, len(self.full_candles) - self.window_size)
|
self.start_index = random.randint(0, len(self.full_candles) - self.window_size)
|
||||||
self.candle_window = self.full_candles[self.start_index: self.start_index + self.window_size]
|
self.candle_window = self.full_candles[self.start_index: self.start_index + self.window_size]
|
||||||
self.current_index = 0
|
self.current_index = 0
|
||||||
@ -346,7 +361,29 @@ class BacktestEnvironment:
|
|||||||
def __len__(self):
|
def __len__(self):
|
||||||
return self.window_size
|
return self.window_size
|
||||||
|
|
||||||
|
def get_order_features(self, index):
|
||||||
|
"""
|
||||||
|
Returns a list of 7 features for the order channel.
|
||||||
|
If an order is open, the first element is 1.0 and the second is the normalized difference:
|
||||||
|
(current open - entry_price) / current open.
|
||||||
|
Otherwise, returns zeros.
|
||||||
|
"""
|
||||||
|
candle = self.candle_window[index]
|
||||||
|
if self.position is None:
|
||||||
|
return [0.0] * FEATURES_PER_CHANNEL
|
||||||
|
else:
|
||||||
|
flag = 1.0
|
||||||
|
diff = (candle["open"] - self.position["entry_price"]) / candle["open"]
|
||||||
|
return [flag, diff] + [0.0] * (FEATURES_PER_CHANNEL - 2)
|
||||||
|
|
||||||
def get_state(self, index):
|
def get_state(self, index):
|
||||||
|
"""
|
||||||
|
Build state features from:
|
||||||
|
- For each timeframe: features from the aligned candle.
|
||||||
|
- One extra channel: current order information.
|
||||||
|
- NUM_INDICATORS channels of zeros.
|
||||||
|
Each channel is a vector of length FEATURES_PER_CHANNEL.
|
||||||
|
"""
|
||||||
state_features = []
|
state_features = []
|
||||||
base_ts = self.candle_window[index]["timestamp"]
|
base_ts = self.candle_window[index]["timestamp"]
|
||||||
for tf in self.timeframes:
|
for tf in self.timeframes:
|
||||||
@ -357,15 +394,19 @@ class BacktestEnvironment:
|
|||||||
aligned_idx, _ = get_aligned_candle_with_index(self.candles_dict[tf], base_ts)
|
aligned_idx, _ = get_aligned_candle_with_index(self.candles_dict[tf], base_ts)
|
||||||
features = get_features_for_tf(self.candles_dict[tf], aligned_idx)
|
features = get_features_for_tf(self.candles_dict[tf], aligned_idx)
|
||||||
state_features.append(features)
|
state_features.append(features)
|
||||||
|
# Append order channel.
|
||||||
|
order_features = self.get_order_features(index)
|
||||||
|
state_features.append(order_features)
|
||||||
|
# Append technical indicator channels.
|
||||||
for _ in range(NUM_INDICATORS):
|
for _ in range(NUM_INDICATORS):
|
||||||
state_features.append([0.0] * FEATURES_PER_CHANNEL)
|
state_features.append([0.0] * FEATURES_PER_CHANNEL)
|
||||||
return np.array(state_features, dtype=np.float32)
|
return np.array(state_features, dtype=np.float32)
|
||||||
|
|
||||||
def step(self, action):
|
def step(self, action):
|
||||||
"""
|
"""
|
||||||
Discrete simulation step.
|
Execute one step in the environment:
|
||||||
- Action: 0 (SELL), 1 (HOLD), 2 (BUY).
|
- action: 0 => SELL, 1 => HOLD, 2 => BUY.
|
||||||
- Trades are recorded when a BUY is followed by a SELL.
|
- Trades recorded when a BUY is followed by a SELL.
|
||||||
"""
|
"""
|
||||||
base = self.candle_window
|
base = self.candle_window
|
||||||
if self.current_index >= len(base) - 1:
|
if self.current_index >= len(base) - 1:
|
||||||
@ -378,7 +419,6 @@ class BacktestEnvironment:
|
|||||||
next_candle = base[next_index]
|
next_candle = base[next_index]
|
||||||
reward = 0.0
|
reward = 0.0
|
||||||
|
|
||||||
# Simple trading logic (only one position allowed at a time)
|
|
||||||
if self.position is None:
|
if self.position is None:
|
||||||
if action == 2: # BUY signal: enter at next open.
|
if action == 2: # BUY signal: enter at next open.
|
||||||
self.position = {"entry_price": next_candle["open"], "entry_index": self.current_index}
|
self.position = {"entry_price": next_candle["open"], "entry_index": self.current_index}
|
||||||
@ -404,29 +444,25 @@ class BacktestEnvironment:
|
|||||||
|
|
||||||
# --- Enhanced Training Loop ---
|
# --- Enhanced Training Loop ---
|
||||||
def train_on_historical_data(env, model, device, args, start_epoch, optimizer, scheduler):
|
def train_on_historical_data(env, model, device, args, start_epoch, optimizer, scheduler):
|
||||||
# Weighting factor for trade surrogate loss.
|
lambda_trade = args.lambda_trade # Weight for the surrogate profit loss.
|
||||||
lambda_trade = 1.0
|
|
||||||
for epoch in range(start_epoch, args.epochs):
|
for epoch in range(start_epoch, args.epochs):
|
||||||
# Reset sliding window for each epoch.
|
env.reset() # Resets the sliding window.
|
||||||
env.reset()
|
|
||||||
loss_accum = 0.0
|
loss_accum = 0.0
|
||||||
steps = len(env) - 1 # we use pairs of consecutive candles
|
steps = len(env) - 1 # We assume steps over consecutive candle pairs.
|
||||||
for i in range(steps):
|
for i in range(steps):
|
||||||
state = env.get_state(i)
|
state = env.get_state(i)
|
||||||
current_open = env.candle_window[i]["open"]
|
current_open = env.candle_window[i]["open"]
|
||||||
# Next candle's actual values serve as targets.
|
|
||||||
actual_high = env.candle_window[i+1]["high"]
|
actual_high = env.candle_window[i+1]["high"]
|
||||||
actual_low = env.candle_window[i+1]["low"]
|
actual_low = env.candle_window[i+1]["low"]
|
||||||
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||||
timeframe_ids = torch.arange(state.shape[0]).to(device)
|
timeframe_ids = torch.arange(state.shape[0]).to(device)
|
||||||
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
||||||
# Compute prediction loss (L1)
|
# Prediction loss (L1 error).
|
||||||
L_pred = torch.abs(pred_high - torch.tensor(actual_high, device=device)) + \
|
L_pred = torch.abs(pred_high - torch.tensor(actual_high, device=device)) + \
|
||||||
torch.abs(pred_low - torch.tensor(actual_low, device=device))
|
torch.abs(pred_low - torch.tensor(actual_low, device=device))
|
||||||
# Compute surrogate profit (differentiable estimate)
|
# Surrogate profit loss:
|
||||||
profit_buy = pred_high - current_open # potential long gain
|
profit_buy = pred_high - current_open # potential long gain
|
||||||
profit_sell = current_open - pred_low # potential short gain
|
profit_sell = current_open - pred_low # potential short gain
|
||||||
# Here we reward a higher potential move by subtracting it.
|
|
||||||
L_trade = - torch.max(profit_buy, profit_sell)
|
L_trade = - torch.max(profit_buy, profit_sell)
|
||||||
loss = L_pred + lambda_trade * L_trade
|
loss = L_pred + lambda_trade * L_trade
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
@ -438,7 +474,6 @@ def train_on_historical_data(env, model, device, args, start_epoch, optimizer, s
|
|||||||
epoch_loss = loss_accum / steps
|
epoch_loss = loss_accum / steps
|
||||||
print(f"Epoch {epoch+1} Loss: {epoch_loss:.4f}")
|
print(f"Epoch {epoch+1} Loss: {epoch_loss:.4f}")
|
||||||
save_checkpoint(model, optimizer, epoch, loss_accum)
|
save_checkpoint(model, optimizer, epoch, loss_accum)
|
||||||
# Update the trade simulation (for visualization) using the current model on the same window.
|
|
||||||
simulate_trades(model, env, device, args)
|
simulate_trades(model, env, device, args)
|
||||||
update_live_html(env.candle_window, env.trade_history, epoch+1)
|
update_live_html(env.candle_window, env.trade_history, epoch+1)
|
||||||
|
|
||||||
@ -458,10 +493,13 @@ def parse_args():
|
|||||||
parser.add_argument('--epochs', type=int, default=100)
|
parser.add_argument('--epochs', type=int, default=100)
|
||||||
parser.add_argument('--lr', type=float, default=3e-4)
|
parser.add_argument('--lr', type=float, default=3e-4)
|
||||||
parser.add_argument('--threshold', type=float, default=0.005, help="Minimum predicted move to trigger trade.")
|
parser.add_argument('--threshold', type=float, default=0.005, help="Minimum predicted move to trigger trade.")
|
||||||
parser.add_argument('--lambda_trade', type=float, default=1.0, help="Weight for the trade surrogate loss.")
|
parser.add_argument('--lambda_trade', type=float, default=1.0, help="Weight for trade surrogate loss.")
|
||||||
parser.add_argument('--start_fresh', action='store_true', help="Start training from scratch.")
|
parser.add_argument('--start_fresh', action='store_true', help="Start training from scratch.")
|
||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
def random_action():
|
||||||
|
return random.randint(0, 2)
|
||||||
|
|
||||||
# --- Main Function ---
|
# --- Main Function ---
|
||||||
async def main():
|
async def main():
|
||||||
args = parse_args()
|
args = parse_args()
|
||||||
@ -469,7 +507,8 @@ async def main():
|
|||||||
print("Using device:", device)
|
print("Using device:", device)
|
||||||
timeframes = ["1m", "5m", "15m", "1h", "1d"]
|
timeframes = ["1m", "5m", "15m", "1h", "1d"]
|
||||||
hidden_dim = 128
|
hidden_dim = 128
|
||||||
total_channels = NUM_TIMEFRAMES + NUM_INDICATORS
|
# Total channels: NUM_TIMEFRAMES + 1 (order info) + NUM_INDICATORS.
|
||||||
|
total_channels = NUM_TIMEFRAMES + 1 + NUM_INDICATORS
|
||||||
model = TradingModel(total_channels, NUM_TIMEFRAMES).to(device)
|
model = TradingModel(total_channels, NUM_TIMEFRAMES).to(device)
|
||||||
|
|
||||||
if args.mode == 'train':
|
if args.mode == 'train':
|
||||||
@ -478,7 +517,6 @@ async def main():
|
|||||||
print("No historical candle data available for backtesting.")
|
print("No historical candle data available for backtesting.")
|
||||||
return
|
return
|
||||||
base_tf = "1m"
|
base_tf = "1m"
|
||||||
# Use a sliding window of up to 100 candles (if available)
|
|
||||||
env = BacktestEnvironment(candles_dict, base_tf, timeframes, window_size=100)
|
env = BacktestEnvironment(candles_dict, base_tf, timeframes, window_size=100)
|
||||||
start_epoch = 0
|
start_epoch = 0
|
||||||
checkpoint = None
|
checkpoint = None
|
||||||
@ -513,7 +551,6 @@ async def main():
|
|||||||
preview_thread.start()
|
preview_thread.start()
|
||||||
print("Starting live trading loop. (Using model-based decision rule.)")
|
print("Starting live trading loop. (Using model-based decision rule.)")
|
||||||
while True:
|
while True:
|
||||||
# In live mode, we use the simulation decision rule.
|
|
||||||
state = env.get_state(env.current_index)
|
state = env.get_state(env.current_index)
|
||||||
current_open = env.candle_window[env.current_index]["open"]
|
current_open = env.candle_window[env.current_index]["open"]
|
||||||
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||||
@ -535,7 +572,7 @@ async def main():
|
|||||||
elif args.mode == 'inference':
|
elif args.mode == 'inference':
|
||||||
load_best_checkpoint(model)
|
load_best_checkpoint(model)
|
||||||
print("Running inference...")
|
print("Running inference...")
|
||||||
# Inference logic can use a similar decision rule as in live mode.
|
# Your inference logic goes here.
|
||||||
else:
|
else:
|
||||||
print("Invalid mode specified.")
|
print("Invalid mode specified.")
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user