cleanup, CNN fixes

This commit is contained in:
Dobromir Popov
2025-07-05 00:12:40 +03:00
parent ce8c00a9d1
commit 5ca7493708
18 changed files with 587 additions and 5181 deletions

View File

@ -1,220 +0,0 @@
#!/usr/bin/env python3
"""
Test Enhanced Dashboard Training Setup
This script validates that the enhanced dashboard has proper:
- Real-time training capabilities
- Test case generation
- MEXC integration
- Model loading and training
"""
import sys
import logging
import time
from datetime import datetime
# Configure logging for test
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def test_dashboard_training_setup():
"""Test the enhanced dashboard training capabilities"""
print("=" * 60)
print("TESTING ENHANCED DASHBOARD TRAINING SETUP")
print("=" * 60)
try:
# Test 1: Import all components
print("\n1. Testing component imports...")
from web.clean_dashboard import CleanTradingDashboard as TradingDashboard, create_clean_dashboard as create_dashboard
from core.data_provider import DataProvider
from core.orchestrator import TradingOrchestrator
from core.trading_executor import TradingExecutor
from models import get_model_registry
print(" ✓ All components imported successfully")
# Test 2: Initialize components
print("\n2. Testing component initialization...")
data_provider = DataProvider()
orchestrator = TradingOrchestrator(data_provider)
trading_executor = TradingExecutor()
model_registry = get_model_registry()
print(" ✓ All components initialized")
# Test 3: Create dashboard with training
print("\n3. Testing dashboard creation with training...")
dashboard = TradingDashboard(
data_provider=data_provider,
orchestrator=orchestrator,
trading_executor=trading_executor
)
print(" ✓ Dashboard created successfully")
# Test 4: Validate training components
print("\n4. Testing training components...")
# Check continuous training
has_training = hasattr(dashboard, 'training_active')
print(f" ✓ Continuous training: {has_training}")
# Check training thread
has_thread = hasattr(dashboard, 'training_thread')
print(f" ✓ Training thread: {has_thread}")
# Check tick cache
cache_capacity = dashboard.tick_cache.maxlen
print(f" ✓ Tick cache capacity: {cache_capacity:,} ticks")
# Check 1-second bars
bars_capacity = dashboard.one_second_bars.maxlen
print(f" ✓ 1s bars capacity: {bars_capacity} bars")
# Check WebSocket streaming
has_ws = hasattr(dashboard, 'ws_connection')
print(f" ✓ WebSocket streaming: {has_ws}")
# Test 5: Validate training methods
print("\n5. Testing training methods...")
# Check training data methods
training_methods = [
'send_training_data_to_models',
'_prepare_training_data',
'_send_data_to_cnn_models',
'_send_data_to_rl_models',
'_format_data_for_cnn',
'_format_data_for_rl',
'start_continuous_training',
'stop_continuous_training'
]
for method in training_methods:
has_method = hasattr(dashboard, method)
print(f"{method}: {has_method}")
# Test 6: Validate MEXC integration
print("\n6. Testing MEXC integration...")
mexc_available = dashboard.trading_executor is not None
print(f" ✓ MEXC executor available: {mexc_available}")
if mexc_available:
has_trading_enabled = hasattr(dashboard.trading_executor, 'trading_enabled')
has_dry_run = hasattr(dashboard.trading_executor, 'dry_run')
has_execute_signal = hasattr(dashboard.trading_executor, 'execute_signal')
print(f" ✓ Trading enabled flag: {has_trading_enabled}")
print(f" ✓ Dry run mode: {has_dry_run}")
print(f" ✓ Execute signal method: {has_execute_signal}")
# Test 7: Test model loading
print("\n7. Testing model loading...")
dashboard._load_available_models()
model_count = len(model_registry.models) if hasattr(model_registry, 'models') else 0
print(f" ✓ Models loaded: {model_count}")
# Test 8: Test training data validation
print("\n8. Testing training data validation...")
# Test with empty cache (should reject)
dashboard.tick_cache.clear()
result = dashboard.send_training_data_to_models()
print(f" ✓ Empty cache rejection: {not result}")
# Test with simulated tick data
from collections import deque
import random
# Add some mock tick data for testing
current_time = datetime.now()
for i in range(600): # Add 600 ticks (enough for training)
tick = {
'timestamp': current_time,
'price': 3500.0 + random.uniform(-10, 10),
'volume': random.uniform(0.1, 10.0),
'side': 'buy' if random.random() > 0.5 else 'sell'
}
dashboard.tick_cache.append(tick)
print(f" ✓ Added {len(dashboard.tick_cache)} test ticks")
# Test training with sufficient data
result = dashboard.send_training_data_to_models()
print(f" ✓ Training with sufficient data: {result}")
# Test 9: Test continuous training
print("\n9. Testing continuous training...")
# Start training
dashboard.start_continuous_training()
training_started = getattr(dashboard, 'training_active', False)
print(f" ✓ Training started: {training_started}")
# Wait a moment
time.sleep(2)
# Stop training
dashboard.stop_continuous_training()
training_stopped = not getattr(dashboard, 'training_active', True)
print(f" ✓ Training stopped: {training_stopped}")
# Test 10: Test dashboard features
print("\n10. Testing dashboard features...")
# Check layout setup
has_layout = hasattr(dashboard.app, 'layout')
print(f" ✓ Dashboard layout: {has_layout}")
# Check callbacks
has_callbacks = len(dashboard.app.callback_map) > 0
print(f" ✓ Dashboard callbacks: {has_callbacks}")
# Check training metrics display
training_metrics = dashboard._create_training_metrics()
has_metrics = len(training_metrics) > 0
print(f" ✓ Training metrics display: {has_metrics}")
# Summary
print("\n" + "=" * 60)
print("ENHANCED DASHBOARD TRAINING VALIDATION COMPLETE")
print("=" * 60)
features = [
"✓ Real-time WebSocket tick streaming",
"✓ Continuous model training with real data only",
"✓ CNN and RL model integration",
"✓ MEXC trading executor integration",
"✓ Training metrics visualization",
"✓ Test case generation from real market data",
"✓ Session-based P&L tracking",
"✓ Live trading signal generation"
]
print("\nValidated Features:")
for feature in features:
print(f" {feature}")
print(f"\nDashboard Ready For:")
print(" • Real market data training (no synthetic data)")
print(" • Live MEXC trading execution")
print(" • Continuous model improvement")
print(" • Test case generation from real trading scenarios")
print(f"\nTo start the dashboard: python .\\web\\dashboard.py")
print(f"Dashboard will be available at: http://127.0.0.1:8050")
return True
except Exception as e:
print(f"\n❌ ERROR: {str(e)}")
import traceback
traceback.print_exc()
return False
if __name__ == "__main__":
success = test_dashboard_training_setup()
sys.exit(0 if success else 1)

View File

@ -1,151 +0,0 @@
#!/usr/bin/env python3
"""
Enhanced RL Status Diagnostic Script
Quick test to determine why Enhanced RL shows as DISABLED
"""
import logging
import sys
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def test_enhanced_rl_imports():
"""Test Enhanced RL component imports"""
logger.info("🔍 Testing Enhanced RL component imports...")
try:
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
logger.info("✅ EnhancedTradingOrchestrator import: SUCCESS")
except ImportError as e:
logger.error(f"❌ EnhancedTradingOrchestrator import: FAILED - {e}")
return False
try:
from core.universal_data_adapter import UniversalDataAdapter
logger.info("✅ UniversalDataAdapter import: SUCCESS")
except ImportError as e:
logger.error(f"❌ UniversalDataAdapter import: FAILED - {e}")
return False
try:
from core.universal_data_adapter import UniversalDataAdapter, UniversalDataStream
logger.info("✅ UnifiedDataStream components import: SUCCESS")
except ImportError as e:
logger.error(f"❌ UnifiedDataStream components import: FAILED - {e}")
return False
return True
def test_dashboard_enhanced_rl_detection():
"""Test dashboard Enhanced RL detection logic"""
logger.info("🔍 Testing dashboard Enhanced RL detection...")
try:
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
# ENHANCED_RL_AVAILABLE moved to clean_dashboard
ENHANCED_RL_AVAILABLE = True
logger.info(f"ENHANCED_RL_AVAILABLE in dashboard: {ENHANCED_RL_AVAILABLE}")
# Test orchestrator creation
data_provider = DataProvider()
orchestrator = EnhancedTradingOrchestrator(data_provider)
logger.info(f"EnhancedTradingOrchestrator created: {type(orchestrator)}")
logger.info(f"isinstance check: {isinstance(orchestrator, EnhancedTradingOrchestrator)}")
# Test dashboard creation
from web.dashboard import TradingDashboard
dashboard = TradingDashboard(
data_provider=data_provider,
orchestrator=orchestrator
)
logger.info(f"Dashboard enhanced_rl_enabled: {dashboard.enhanced_rl_enabled}")
logger.info(f"Dashboard enhanced_rl_training_enabled: {dashboard.enhanced_rl_training_enabled}")
return dashboard.enhanced_rl_training_enabled
except Exception as e:
logger.error(f"❌ Dashboard Enhanced RL test FAILED: {e}")
import traceback
logger.error(traceback.format_exc())
return False
def test_main_clean_enhanced_rl():
"""Test main_clean.py Enhanced RL setup"""
logger.info("🔍 Testing main_clean.py Enhanced RL setup...")
try:
# Import required components
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from config import get_config
# Simulate main_clean setup
config = get_config()
data_provider = DataProvider()
# Create Enhanced Trading Orchestrator
model_registry = {} # Simple fallback
orchestrator = EnhancedTradingOrchestrator(data_provider)
logger.info(f"Enhanced orchestrator created: {type(orchestrator)}")
# Create dashboard
from web.dashboard import TradingDashboard
dashboard = TradingDashboard(
data_provider=data_provider,
orchestrator=orchestrator,
trading_executor=None
)
logger.info(f"✅ Enhanced RL Status: {'ENABLED' if dashboard.enhanced_rl_training_enabled else 'DISABLED'}")
if dashboard.enhanced_rl_training_enabled:
logger.info("🎉 Enhanced RL is working correctly!")
return True
else:
logger.error("❌ Enhanced RL is DISABLED even with correct setup")
return False
except Exception as e:
logger.error(f"❌ main_clean Enhanced RL test FAILED: {e}")
import traceback
logger.error(traceback.format_exc())
return False
def main():
"""Run all diagnostic tests"""
logger.info("🚀 Enhanced RL Status Diagnostic Starting...")
logger.info("=" * 60)
# Test 1: Component imports
imports_ok = test_enhanced_rl_imports()
# Test 2: Dashboard detection logic
dashboard_ok = test_dashboard_enhanced_rl_detection()
# Test 3: Full main_clean simulation
main_clean_ok = test_main_clean_enhanced_rl()
# Summary
logger.info("=" * 60)
logger.info("📋 DIAGNOSTIC SUMMARY")
logger.info("=" * 60)
logger.info(f"Enhanced RL Imports: {'✅ PASS' if imports_ok else '❌ FAIL'}")
logger.info(f"Dashboard Detection: {'✅ PASS' if dashboard_ok else '❌ FAIL'}")
logger.info(f"Main Clean Setup: {'✅ PASS' if main_clean_ok else '❌ FAIL'}")
if all([imports_ok, dashboard_ok, main_clean_ok]):
logger.info("🎉 ALL TESTS PASSED - Enhanced RL should be working!")
logger.info("💡 If dashboard still shows DISABLED, restart it with:")
logger.info(" python main_clean.py --mode web --port 8050")
else:
logger.error("❌ TESTS FAILED - Enhanced RL has issues")
logger.info("💡 Check the error messages above for specific issues")
if __name__ == "__main__":
main()

View File

@ -1,111 +0,0 @@
#!/usr/bin/env python3
"""
Test Enhanced Trading System
Verify that both RL and CNN learning pipelines are active
"""
import asyncio
import logging
import sys
from pathlib import Path
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
from core.config import get_config
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from training.enhanced_cnn_trainer import EnhancedCNNTrainer
from training.enhanced_rl_trainer import EnhancedRLTrainer
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
async def test_enhanced_system():
"""Test the enhanced trading system components"""
logger.info("Testing Enhanced Trading System...")
try:
# Initialize components
config = get_config()
data_provider = DataProvider(config)
orchestrator = EnhancedTradingOrchestrator(data_provider)
# Initialize trainers
cnn_trainer = EnhancedCNNTrainer(config, orchestrator)
rl_trainer = EnhancedRLTrainer(config, orchestrator)
logger.info("COMPONENT STATUS:")
logger.info(f"✓ Data Provider: {len(config.symbols)} symbols, {len(config.timeframes)} timeframes")
logger.info(f"✓ Enhanced Orchestrator: Confidence threshold {orchestrator.confidence_threshold}")
logger.info(f"✓ CNN Trainer: Model initialized")
logger.info(f"✓ RL Trainer: {len(rl_trainer.agents)} agents initialized")
# Test decision making
logger.info("\nTesting decision making...")
decisions_dict = await orchestrator.make_coordinated_decisions()
decisions = [decision for decision in decisions_dict.values() if decision is not None]
logger.info(f"✓ Generated {len(decisions)} trading decisions")
for decision in decisions:
logger.info(f" - {decision.action} {decision.symbol} @ ${decision.price:.2f} (conf: {decision.confidence:.1%})")
# Test RL learning capability
logger.info("\nTesting RL learning capability...")
for symbol, agent in rl_trainer.agents.items():
buffer_size = len(agent.replay_buffer)
epsilon = agent.epsilon
logger.info(f" - {symbol} RL Agent: Buffer={buffer_size}, Epsilon={epsilon:.3f}")
# Test CNN training capability
logger.info("\nTesting CNN training capability...")
perfect_moves = orchestrator.get_perfect_moves_for_training()
logger.info(f" - Perfect moves available: {len(perfect_moves)}")
if len(perfect_moves) > 0:
logger.info(" - CNN ready for training on perfect moves")
else:
logger.info(" - CNN waiting for perfect moves to accumulate")
# Test configuration
logger.info("\nTraining Configuration:")
logger.info(f" - CNN training interval: {config.training.get('cnn_training_interval', 'N/A')} seconds")
logger.info(f" - RL training interval: {config.training.get('rl_training_interval', 'N/A')} seconds")
logger.info(f" - Min perfect moves for CNN: {config.training.get('min_perfect_moves', 'N/A')}")
logger.info(f" - Min experiences for RL: {config.training.get('min_experiences', 'N/A')}")
logger.info(f" - Continuous learning: {config.training.get('continuous_learning', False)}")
logger.info("\n✅ Enhanced Trading System test completed successfully!")
logger.info("LEARNING SYSTEMS STATUS:")
logger.info("✓ RL agents ready for continuous learning from trading decisions")
logger.info("✓ CNN trainer ready for pattern learning from perfect moves")
logger.info("✓ Enhanced orchestrator coordinating multi-modal decisions")
return True
except Exception as e:
logger.error(f"❌ Test failed: {e}")
import traceback
traceback.print_exc()
return False
async def main():
"""Main test function"""
logger.info("🚀 Starting Enhanced Trading System Test...")
success = await test_enhanced_system()
if success:
logger.info("\n🎉 All tests passed! Enhanced trading system is ready.")
logger.info("You can now run the enhanced dashboard or main trading system.")
else:
logger.error("\n💥 Tests failed! Please check the configuration and try again.")
sys.exit(1)
if __name__ == "__main__":
asyncio.run(main())