wip cnn training and cob
This commit is contained in:
@ -18,7 +18,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class COBStabilityTester:
|
||||
def __init__(self, symbol='ETHUSDT', duration_seconds=15):
|
||||
def __init__(self, symbol='ETHUSDT', duration_seconds=10):
|
||||
self.symbol = symbol
|
||||
self.duration = timedelta(seconds=duration_seconds)
|
||||
self.ticks = deque()
|
||||
@ -85,8 +85,10 @@ class COBStabilityTester:
|
||||
if cob_data['asks']:
|
||||
logger.info(f"DEBUG: First ask: {cob_data['asks'][0]}")
|
||||
|
||||
# Use current time for timestamp consistency
|
||||
current_time = datetime.now()
|
||||
snapshot = {
|
||||
'timestamp': cob_data.get('timestamp', datetime.now()),
|
||||
'timestamp': current_time,
|
||||
'bids': cob_data['bids'],
|
||||
'asks': cob_data['asks'],
|
||||
'stats': cob_data.get('stats', {})
|
||||
@ -103,16 +105,28 @@ class COBStabilityTester:
|
||||
if 'stats' in cob_data and 'mid_price' in cob_data['stats']:
|
||||
mid_price = cob_data['stats']['mid_price']
|
||||
if mid_price > 0:
|
||||
# Store price data for line chart
|
||||
# Filter out extreme price movements (±10% of recent average)
|
||||
if len(self.price_data) > 5:
|
||||
recent_prices = [p['price'] for p in self.price_data[-5:]]
|
||||
avg_recent_price = sum(recent_prices) / len(recent_prices)
|
||||
price_deviation = abs(mid_price - avg_recent_price) / avg_recent_price
|
||||
|
||||
if price_deviation > 0.10: # More than 10% deviation
|
||||
logger.warning(f"Filtering out extreme price: ${mid_price:.2f} (deviation: {price_deviation:.1%} from avg ${avg_recent_price:.2f})")
|
||||
return # Skip this data point
|
||||
|
||||
# Store price data for line chart with consistent timestamp
|
||||
current_time = datetime.now()
|
||||
self.price_data.append({
|
||||
'timestamp': cob_data.get('timestamp', datetime.now()),
|
||||
'timestamp': current_time,
|
||||
'price': mid_price
|
||||
})
|
||||
|
||||
# Create a synthetic tick from COB data
|
||||
# Create a synthetic tick from COB data with consistent timestamp
|
||||
current_time = datetime.now()
|
||||
synthetic_tick = MarketTick(
|
||||
symbol=symbol,
|
||||
timestamp=cob_data.get('timestamp', datetime.now()),
|
||||
timestamp=current_time,
|
||||
price=mid_price,
|
||||
volume=cob_data.get('stats', {}).get('total_volume', 0),
|
||||
quantity=0, # Not available in COB data
|
||||
@ -240,132 +254,187 @@ class COBStabilityTester:
|
||||
logger.warning("No data was collected. Cannot generate plot.")
|
||||
|
||||
def create_price_heatmap_chart(self):
|
||||
"""Create a visualization with price chart and order book heatmap."""
|
||||
"""Create a visualization with price chart and order book scatter plot."""
|
||||
if not self.price_data or not self.cob_snapshots:
|
||||
logger.warning("Insufficient data to plot.")
|
||||
return
|
||||
|
||||
logger.info(f"Creating price and order book heatmap chart...")
|
||||
logger.info(f"Creating price and order book chart...")
|
||||
logger.info(f"Data summary: {len(self.price_data)} price points, {len(self.cob_snapshots)} COB snapshots")
|
||||
|
||||
# Prepare price data with consistent timestamp handling
|
||||
# Prepare price data
|
||||
price_df = pd.DataFrame(self.price_data)
|
||||
price_df['timestamp'] = pd.to_datetime(price_df['timestamp'])
|
||||
|
||||
logger.info(f"Price data time range: {price_df['timestamp'].min()} to {price_df['timestamp'].max()}")
|
||||
logger.info(f"Price range: ${price_df['price'].min():.2f} to ${price_df['price'].max():.2f}")
|
||||
|
||||
# Extract order book data for heatmap with consistent timestamp handling
|
||||
heatmap_data = []
|
||||
for snapshot in self.cob_snapshots:
|
||||
timestamp = pd.to_datetime(snapshot['timestamp']) # Ensure datetime
|
||||
|
||||
for side in ['bids', 'asks']:
|
||||
if side not in snapshot or not snapshot[side]:
|
||||
continue
|
||||
|
||||
# Take top 50 levels for better visualization
|
||||
orders = snapshot[side][:50]
|
||||
for order in orders:
|
||||
try:
|
||||
# Handle both dict and list formats
|
||||
if isinstance(order, dict):
|
||||
price = float(order['price'])
|
||||
size = float(order['size'])
|
||||
elif isinstance(order, (list, tuple)) and len(order) >= 2:
|
||||
price = float(order[0])
|
||||
size = float(order[1])
|
||||
else:
|
||||
continue
|
||||
|
||||
# Apply granularity bucketing
|
||||
bucketed_price = round(price / self.price_granularity) * self.price_granularity
|
||||
|
||||
heatmap_data.append({
|
||||
'time': timestamp,
|
||||
'price': bucketed_price,
|
||||
'size': size,
|
||||
'side': side
|
||||
})
|
||||
except (ValueError, TypeError, IndexError) as e:
|
||||
continue
|
||||
|
||||
if not heatmap_data:
|
||||
logger.warning("No valid heatmap data found, creating price chart only")
|
||||
self._create_simple_price_chart()
|
||||
return
|
||||
|
||||
heatmap_df = pd.DataFrame(heatmap_data)
|
||||
logger.info(f"Heatmap data: {len(heatmap_df)} order book entries")
|
||||
logger.info(f"Heatmap time range: {heatmap_df['time'].min()} to {heatmap_df['time'].max()}")
|
||||
|
||||
# Create plot with better time handling
|
||||
fig, ax = plt.subplots(figsize=(16, 10))
|
||||
|
||||
# Determine overall time range
|
||||
all_times = pd.concat([price_df['timestamp'], heatmap_df['time']])
|
||||
time_min = all_times.min()
|
||||
time_max = all_times.max()
|
||||
# Create figure with subplots
|
||||
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(16, 12), height_ratios=[3, 2])
|
||||
|
||||
# Create price range for heatmap
|
||||
price_min = min(price_df['price'].min(), heatmap_df['price'].min()) - self.price_granularity * 2
|
||||
price_max = max(price_df['price'].max(), heatmap_df['price'].max()) + self.price_granularity * 2
|
||||
# Top plot: Price chart with order book levels
|
||||
ax1.plot(price_df['timestamp'], price_df['price'], 'yellow', linewidth=2, label='Mid Price', zorder=10)
|
||||
|
||||
logger.info(f"Chart time range: {time_min} to {time_max}")
|
||||
logger.info(f"Chart price range: ${price_min:.2f} to ${price_max:.2f}")
|
||||
|
||||
# Create heatmap first (background)
|
||||
for side, cmap, alpha in zip(['bids', 'asks'], ['Greens', 'Reds'], [0.6, 0.6]):
|
||||
side_df = heatmap_df[heatmap_df['side'] == side]
|
||||
if not side_df.empty:
|
||||
# Create more granular bins
|
||||
time_bins = pd.date_range(time_min, time_max, periods=min(100, len(side_df) // 10 + 10))
|
||||
price_bins = np.arange(price_min, price_max + self.price_granularity, self.price_granularity)
|
||||
|
||||
# Plot order book levels as scatter points
|
||||
bid_times, bid_prices, bid_sizes = [], [], []
|
||||
ask_times, ask_prices, ask_sizes = [], [], []
|
||||
|
||||
# Calculate average price for filtering
|
||||
avg_price = price_df['price'].mean() if not price_df.empty else 3500 # Fallback price
|
||||
price_lower = avg_price * 0.9 # -10%
|
||||
price_upper = avg_price * 1.1 # +10%
|
||||
|
||||
logger.info(f"Filtering order book data to price range: ${price_lower:.2f} - ${price_upper:.2f} (±10% of ${avg_price:.2f})")
|
||||
|
||||
for snapshot in list(self.cob_snapshots)[-50:]: # Use last 50 snapshots for clarity
|
||||
timestamp = pd.to_datetime(snapshot['timestamp'])
|
||||
|
||||
# Process bids (top 10)
|
||||
for order in snapshot.get('bids', [])[:10]:
|
||||
try:
|
||||
# Convert to seconds for histogram
|
||||
time_seconds = (side_df['time'] - time_min).dt.total_seconds()
|
||||
time_range_seconds = (time_max - time_min).total_seconds()
|
||||
if isinstance(order, dict):
|
||||
price = float(order['price'])
|
||||
size = float(order['size'])
|
||||
elif isinstance(order, (list, tuple)) and len(order) >= 2:
|
||||
price = float(order[0])
|
||||
size = float(order[1])
|
||||
else:
|
||||
continue
|
||||
|
||||
if time_range_seconds > 0:
|
||||
hist, xedges, yedges = np.histogram2d(
|
||||
time_seconds,
|
||||
side_df['price'],
|
||||
bins=[np.linspace(0, time_range_seconds, len(time_bins)), price_bins],
|
||||
weights=side_df['size']
|
||||
)
|
||||
|
||||
# Convert back to datetime for plotting
|
||||
time_edges = pd.to_datetime(xedges, unit='s', origin=time_min)
|
||||
|
||||
if hist.max() > 0: # Only plot if we have data
|
||||
pcm = ax.pcolormesh(time_edges, yedges, hist.T,
|
||||
cmap=cmap, alpha=alpha, shading='auto')
|
||||
logger.info(f"Plotted {side} heatmap: max value = {hist.max():.2f}")
|
||||
except Exception as e:
|
||||
logger.warning(f"Error creating {side} heatmap: {e}")
|
||||
|
||||
# Plot price line on top
|
||||
ax.plot(price_df['timestamp'], price_df['price'], 'yellow', linewidth=2,
|
||||
label='Mid Price', alpha=0.9, zorder=10)
|
||||
|
||||
# Enhance plot appearance
|
||||
ax.set_title(f'Price Chart with Order Book Heatmap - {self.symbol}\n'
|
||||
f'Granularity: ${self.price_granularity} | Duration: {self.duration.total_seconds()}s\n'
|
||||
f'Green=Bids, Red=Asks (darker = more volume)', fontsize=14)
|
||||
ax.set_xlabel('Time')
|
||||
ax.set_ylabel('Price (USDT)')
|
||||
ax.legend(loc='upper left')
|
||||
ax.grid(True, alpha=0.3)
|
||||
# Filter out prices outside ±10% range
|
||||
if price < price_lower or price > price_upper:
|
||||
continue
|
||||
|
||||
bid_times.append(timestamp)
|
||||
bid_prices.append(price)
|
||||
bid_sizes.append(size)
|
||||
except (ValueError, TypeError, IndexError):
|
||||
continue
|
||||
|
||||
# Process asks (top 10)
|
||||
for order in snapshot.get('asks', [])[:10]:
|
||||
try:
|
||||
if isinstance(order, dict):
|
||||
price = float(order['price'])
|
||||
size = float(order['size'])
|
||||
elif isinstance(order, (list, tuple)) and len(order) >= 2:
|
||||
price = float(order[0])
|
||||
size = float(order[1])
|
||||
else:
|
||||
continue
|
||||
|
||||
# Filter out prices outside ±10% range
|
||||
if price < price_lower or price > price_upper:
|
||||
continue
|
||||
|
||||
ask_times.append(timestamp)
|
||||
ask_prices.append(price)
|
||||
ask_sizes.append(size)
|
||||
except (ValueError, TypeError, IndexError):
|
||||
continue
|
||||
|
||||
# Format time axis
|
||||
ax.set_xlim(time_min, time_max)
|
||||
# Plot order book data as scatter with size indicating volume
|
||||
if bid_times:
|
||||
bid_sizes_normalized = np.array(bid_sizes) * 3 # Scale for visibility
|
||||
ax1.scatter(bid_times, bid_prices, s=bid_sizes_normalized, c='green', alpha=0.3, label='Bids')
|
||||
logger.info(f"Plotted {len(bid_times)} bid levels")
|
||||
|
||||
if ask_times:
|
||||
ask_sizes_normalized = np.array(ask_sizes) * 3 # Scale for visibility
|
||||
ax1.scatter(ask_times, ask_prices, s=ask_sizes_normalized, c='red', alpha=0.3, label='Asks')
|
||||
logger.info(f"Plotted {len(ask_times)} ask levels")
|
||||
|
||||
ax1.set_title(f'Real-time Price and Order Book - {self.symbol}\nGranularity: ${self.price_granularity} | Duration: {self.duration.total_seconds()}s')
|
||||
ax1.set_ylabel('Price (USDT)')
|
||||
ax1.legend()
|
||||
ax1.grid(True, alpha=0.3)
|
||||
|
||||
# Set proper time range (X-axis) - use actual data collection period
|
||||
time_min = price_df['timestamp'].min()
|
||||
time_max = price_df['timestamp'].max()
|
||||
actual_duration = (time_max - time_min).total_seconds()
|
||||
logger.info(f"Actual data collection duration: {actual_duration:.1f} seconds")
|
||||
|
||||
ax1.set_xlim(time_min, time_max)
|
||||
|
||||
# Set tight price range (Y-axis) - use ±2% of price range for better visibility
|
||||
price_min = price_df['price'].min()
|
||||
price_max = price_df['price'].max()
|
||||
price_center = (price_min + price_max) / 2
|
||||
price_range = price_max - price_min
|
||||
|
||||
# If price range is very small, use a minimum range of $5
|
||||
if price_range < 5:
|
||||
price_range = 5
|
||||
|
||||
# Add 20% padding to the price range for better visualization
|
||||
y_padding = price_range * 0.2
|
||||
y_min = price_min - y_padding
|
||||
y_max = price_max + y_padding
|
||||
|
||||
ax1.set_ylim(y_min, y_max)
|
||||
logger.info(f"Chart Y-axis range: ${y_min:.2f} - ${y_max:.2f} (center: ${price_center:.2f}, range: ${price_range:.2f})")
|
||||
|
||||
# Bottom plot: Order book depth over time (aggregated)
|
||||
time_buckets = []
|
||||
bid_depths = []
|
||||
ask_depths = []
|
||||
|
||||
# Create time buckets (every few snapshots)
|
||||
snapshots_list = list(self.cob_snapshots)
|
||||
bucket_size = max(1, len(snapshots_list) // 20) # ~20 buckets
|
||||
for i in range(0, len(snapshots_list), bucket_size):
|
||||
bucket_snapshots = snapshots_list[i:i+bucket_size]
|
||||
if not bucket_snapshots:
|
||||
continue
|
||||
|
||||
# Use middle timestamp of bucket
|
||||
mid_snapshot = bucket_snapshots[len(bucket_snapshots)//2]
|
||||
time_buckets.append(pd.to_datetime(mid_snapshot['timestamp']))
|
||||
|
||||
# Calculate average depths
|
||||
total_bid_depth = 0
|
||||
total_ask_depth = 0
|
||||
snapshot_count = 0
|
||||
|
||||
for snapshot in bucket_snapshots:
|
||||
bid_depth = sum([float(order[1]) if isinstance(order, (list, tuple)) else float(order.get('size', 0))
|
||||
for order in snapshot.get('bids', [])[:10]])
|
||||
ask_depth = sum([float(order[1]) if isinstance(order, (list, tuple)) else float(order.get('size', 0))
|
||||
for order in snapshot.get('asks', [])[:10]])
|
||||
total_bid_depth += bid_depth
|
||||
total_ask_depth += ask_depth
|
||||
snapshot_count += 1
|
||||
|
||||
if snapshot_count > 0:
|
||||
bid_depths.append(total_bid_depth / snapshot_count)
|
||||
ask_depths.append(total_ask_depth / snapshot_count)
|
||||
else:
|
||||
bid_depths.append(0)
|
||||
ask_depths.append(0)
|
||||
|
||||
if time_buckets:
|
||||
ax2.plot(time_buckets, bid_depths, 'green', linewidth=2, label='Bid Depth', alpha=0.7)
|
||||
ax2.plot(time_buckets, ask_depths, 'red', linewidth=2, label='Ask Depth', alpha=0.7)
|
||||
ax2.fill_between(time_buckets, bid_depths, alpha=0.3, color='green')
|
||||
ax2.fill_between(time_buckets, ask_depths, alpha=0.3, color='red')
|
||||
|
||||
ax2.set_title('Order Book Depth Over Time')
|
||||
ax2.set_xlabel('Time')
|
||||
ax2.set_ylabel('Depth (Volume)')
|
||||
ax2.legend()
|
||||
ax2.grid(True, alpha=0.3)
|
||||
|
||||
# Set same time range for bottom chart
|
||||
ax2.set_xlim(time_min, time_max)
|
||||
|
||||
# Format time axes
|
||||
fig.autofmt_xdate()
|
||||
|
||||
plt.tight_layout()
|
||||
|
||||
plot_filename = f"price_heatmap_chart_{self.symbol.replace('/', '_')}_{datetime.now():%Y%m%d_%H%M%S}.png"
|
||||
plt.savefig(plot_filename, dpi=150, bbox_inches='tight')
|
||||
logger.info(f"Price and heatmap chart saved to {plot_filename}")
|
||||
logger.info(f"Price and order book chart saved to {plot_filename}")
|
||||
plt.show()
|
||||
|
||||
def _create_simple_price_chart(self):
|
||||
@ -397,12 +466,12 @@ class COBStabilityTester:
|
||||
plt.show()
|
||||
|
||||
|
||||
async def main(symbol='ETHUSDT', duration_seconds=15):
|
||||
async def main(symbol='ETHUSDT', duration_seconds=10):
|
||||
"""Main function to run the COB test with configurable parameters.
|
||||
|
||||
Args:
|
||||
symbol: Trading symbol (default: ETHUSDT)
|
||||
duration_seconds: Test duration in seconds (default: 15)
|
||||
duration_seconds: Test duration in seconds (default: 10)
|
||||
"""
|
||||
logger.info(f"Starting COB test with symbol={symbol}, duration={duration_seconds}s")
|
||||
tester = COBStabilityTester(symbol=symbol, duration_seconds=duration_seconds)
|
||||
@ -414,7 +483,7 @@ if __name__ == "__main__":
|
||||
|
||||
# Parse command line arguments
|
||||
symbol = 'ETHUSDT' # Default
|
||||
duration = 15 # Default
|
||||
duration = 10 # Default
|
||||
|
||||
if len(sys.argv) > 1:
|
||||
symbol = sys.argv[1]
|
||||
@ -422,7 +491,7 @@ if __name__ == "__main__":
|
||||
try:
|
||||
duration = int(sys.argv[2])
|
||||
except ValueError:
|
||||
logger.warning(f"Invalid duration '{sys.argv[2]}', using default 15 seconds")
|
||||
logger.warning(f"Invalid duration '{sys.argv[2]}', using default 10 seconds")
|
||||
|
||||
logger.info(f"Configuration: Symbol={symbol}, Duration={duration}s")
|
||||
logger.info(f"Granularity: {'1 USD for ETH' if 'ETH' in symbol.upper() else '10 USD for BTC' if 'BTC' in symbol.upper() else '1 USD default'}")
|
||||
|
Reference in New Issue
Block a user