cleanup_1
This commit is contained in:
221
main_clean.py
Normal file
221
main_clean.py
Normal file
@ -0,0 +1,221 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Clean Trading System - Main Entry Point
|
||||
|
||||
This is the new clean entry point that demonstrates the consolidated architecture:
|
||||
- Single configuration system
|
||||
- Clean data provider
|
||||
- Modular CNN and RL components
|
||||
- Centralized orchestrator
|
||||
- Simple web dashboard
|
||||
|
||||
Usage:
|
||||
python main_clean.py --mode [train|trade|web] --symbol ETH/USDT
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import argparse
|
||||
import logging
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add project root to path
|
||||
project_root = Path(__file__).parent
|
||||
sys.path.insert(0, str(project_root))
|
||||
|
||||
from core.config import get_config, setup_logging
|
||||
from core.data_provider import DataProvider
|
||||
from core.orchestrator import TradingOrchestrator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def run_data_test():
|
||||
"""Test the data provider functionality"""
|
||||
try:
|
||||
config = get_config()
|
||||
logger.info("Testing Data Provider...")
|
||||
|
||||
# Test data provider
|
||||
data_provider = DataProvider(
|
||||
symbols=['ETH/USDT'],
|
||||
timeframes=['1h', '4h']
|
||||
)
|
||||
|
||||
# Test historical data
|
||||
logger.info("Testing historical data fetching...")
|
||||
df = data_provider.get_historical_data('ETH/USDT', '1h', limit=100)
|
||||
if df is not None:
|
||||
logger.info(f"[SUCCESS] Historical data: {len(df)} candles loaded")
|
||||
logger.info(f" Columns: {list(df.columns)}")
|
||||
logger.info(f" Date range: {df['timestamp'].min()} to {df['timestamp'].max()}")
|
||||
else:
|
||||
logger.error("[FAILED] Failed to load historical data")
|
||||
|
||||
# Test feature matrix
|
||||
logger.info("Testing feature matrix...")
|
||||
feature_matrix = data_provider.get_feature_matrix('ETH/USDT', ['1h'], window_size=20)
|
||||
if feature_matrix is not None:
|
||||
logger.info(f"[SUCCESS] Feature matrix shape: {feature_matrix.shape}")
|
||||
else:
|
||||
logger.error("[FAILED] Failed to create feature matrix")
|
||||
|
||||
# Test health check
|
||||
health = data_provider.health_check()
|
||||
logger.info(f"[SUCCESS] Data provider health: {health}")
|
||||
|
||||
logger.info("Data provider test completed successfully!")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in data test: {e}")
|
||||
import traceback
|
||||
logger.error(traceback.format_exc())
|
||||
raise
|
||||
|
||||
def run_orchestrator_test():
|
||||
"""Test the modular orchestrator system"""
|
||||
try:
|
||||
from models import get_model_registry, ModelInterface
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
logger.info("Testing Modular Orchestrator System...")
|
||||
|
||||
# Test model registry
|
||||
registry = get_model_registry()
|
||||
logger.info(f"[SUCCESS] Model registry initialized with {registry.total_memory_limit_mb}MB limit")
|
||||
|
||||
# Create a mock model for testing
|
||||
class MockCNNModel(ModelInterface):
|
||||
def __init__(self):
|
||||
config = {'max_memory_mb': 500} # 500MB limit
|
||||
super().__init__('MockCNN', config)
|
||||
self.model_params = torch.randn(1000, 100) # Small mock model
|
||||
|
||||
def predict(self, features):
|
||||
# Mock prediction: random but consistent
|
||||
np.random.seed(42)
|
||||
action_probs = np.random.dirichlet([1, 1, 1]) # Random probabilities that sum to 1
|
||||
confidence = np.random.uniform(0.5, 0.9)
|
||||
return action_probs, confidence
|
||||
|
||||
def get_memory_usage(self):
|
||||
# Estimate memory usage
|
||||
if hasattr(self, 'model_params'):
|
||||
return int(self.model_params.numel() * 4 / (1024*1024)) # 4 bytes per float, convert to MB
|
||||
return 0
|
||||
|
||||
class MockRLAgent(ModelInterface):
|
||||
def __init__(self):
|
||||
config = {'max_memory_mb': 300} # 300MB limit
|
||||
super().__init__('MockRL', config)
|
||||
self.q_network = torch.randn(500, 50) # Smaller mock RL model
|
||||
|
||||
def predict(self, features):
|
||||
# Mock RL prediction
|
||||
np.random.seed(123)
|
||||
action_probs = np.random.dirichlet([2, 1, 2]) # Favor BUY/SELL over HOLD
|
||||
confidence = np.random.uniform(0.6, 0.8)
|
||||
return action_probs, confidence
|
||||
|
||||
def act_with_confidence(self, state):
|
||||
action_probs, confidence = self.predict(state)
|
||||
action = np.argmax(action_probs)
|
||||
return action, confidence
|
||||
|
||||
def get_memory_usage(self):
|
||||
if hasattr(self, 'q_network'):
|
||||
return int(self.q_network.numel() * 4 / (1024*1024))
|
||||
return 0
|
||||
|
||||
def act(self, state):
|
||||
return self.act_with_confidence(state)[0]
|
||||
|
||||
def remember(self, state, action, reward, next_state, done):
|
||||
pass # Mock implementation
|
||||
|
||||
def replay(self):
|
||||
return 0.0 # Mock implementation
|
||||
|
||||
# Test model registration
|
||||
logger.info("Testing model registration...")
|
||||
mock_cnn = MockCNNModel()
|
||||
mock_rl = MockRLAgent()
|
||||
|
||||
success1 = registry.register_model(mock_cnn)
|
||||
success2 = registry.register_model(mock_rl)
|
||||
|
||||
if success1 and success2:
|
||||
logger.info("[SUCCESS] Both models registered successfully")
|
||||
else:
|
||||
logger.error(f"[FAILED] Model registration failed: CNN={success1}, RL={success2}")
|
||||
|
||||
# Test memory stats
|
||||
memory_stats = registry.get_memory_stats()
|
||||
logger.info(f"[SUCCESS] Memory stats: {memory_stats}")
|
||||
|
||||
# Test orchestrator
|
||||
logger.info("Testing orchestrator integration...")
|
||||
data_provider = DataProvider(symbols=['ETH/USDT'], timeframes=['1h'])
|
||||
orchestrator = TradingOrchestrator(data_provider)
|
||||
|
||||
# Register models with orchestrator
|
||||
success1 = orchestrator.register_model(mock_cnn, weight=0.7)
|
||||
success2 = orchestrator.register_model(mock_rl, weight=0.3)
|
||||
|
||||
if success1 and success2:
|
||||
logger.info("[SUCCESS] Models registered with orchestrator")
|
||||
else:
|
||||
logger.error(f"[FAILED] Orchestrator registration failed")
|
||||
|
||||
# Test orchestrator metrics
|
||||
metrics = orchestrator.get_performance_metrics()
|
||||
logger.info(f"[SUCCESS] Orchestrator metrics: {metrics}")
|
||||
|
||||
logger.info("Modular orchestrator test completed successfully!")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in orchestrator test: {e}")
|
||||
import traceback
|
||||
logger.error(traceback.format_exc())
|
||||
raise
|
||||
|
||||
async def main():
|
||||
"""Main entry point"""
|
||||
parser = argparse.ArgumentParser(description='Clean Trading System')
|
||||
parser.add_argument('--mode', choices=['trade', 'train', 'web', 'test', 'orchestrator'],
|
||||
default='test', help='Mode to run the system in')
|
||||
parser.add_argument('--symbol', type=str, help='Override default symbol')
|
||||
parser.add_argument('--config', type=str, default='config.yaml',
|
||||
help='Configuration file path')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Setup logging
|
||||
setup_logging()
|
||||
|
||||
try:
|
||||
logger.info("=" * 60)
|
||||
logger.info("CLEAN TRADING SYSTEM STARTING")
|
||||
logger.info("=" * 60)
|
||||
|
||||
# Run appropriate mode
|
||||
if args.mode == 'test':
|
||||
run_data_test()
|
||||
elif args.mode == 'orchestrator':
|
||||
run_orchestrator_test()
|
||||
else:
|
||||
logger.info(f"Mode '{args.mode}' not yet implemented in clean architecture")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
logger.info("System shutdown requested by user")
|
||||
except Exception as e:
|
||||
logger.error(f"Fatal error: {e}")
|
||||
import traceback
|
||||
logger.error(traceback.format_exc())
|
||||
return 1
|
||||
|
||||
logger.info("Clean Trading System finished")
|
||||
return 0
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(asyncio.run(main()))
|
Reference in New Issue
Block a user