fix mem leak and train loss
This commit is contained in:
@@ -1307,12 +1307,15 @@ class TradingTransformerTrainer:
|
||||
candle_losses_detail[tf] = tf_loss.item()
|
||||
|
||||
# ALSO calculate denormalized loss for better interpretability
|
||||
# Use RMSE (Root Mean Square Error) instead of MSE for realistic values
|
||||
if tf in norm_params:
|
||||
with torch.no_grad():
|
||||
pred_denorm = self.denormalize_candle(pred_candle, norm_params[tf])
|
||||
target_denorm = self.denormalize_candle(target_candle, norm_params[tf])
|
||||
denorm_loss = self.price_criterion(pred_denorm, target_denorm)
|
||||
candle_losses_denorm[tf] = denorm_loss.item()
|
||||
# Use RMSE instead of MSE to get interpretable dollar values
|
||||
mse = torch.mean((pred_denorm - target_denorm) ** 2)
|
||||
rmse = torch.sqrt(mse + 1e-8) # Add epsilon for numerical stability
|
||||
candle_losses_denorm[tf] = rmse.item()
|
||||
|
||||
# Average loss across available timeframes
|
||||
if timeframe_losses:
|
||||
|
||||
Reference in New Issue
Block a user