RL training

This commit is contained in:
Dobromir Popov
2025-03-31 03:31:54 +03:00
parent 1610d5bd49
commit 4eac14022c
9 changed files with 1492 additions and 247 deletions

View File

@@ -13,6 +13,7 @@ import json
import pickle
from sklearn.preprocessing import MinMaxScaler
import sys
import ta
# Add project root to sys.path
project_root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
@@ -534,3 +535,77 @@ class DataInterface:
timestamp = df['timestamp'].iloc[-1]
return X, timestamp
def get_training_data(self, timeframe='1m', n_candles=5000):
"""
Get a consolidated dataframe for RL training with OHLCV and technical indicators
Args:
timeframe (str): Timeframe to use
n_candles (int): Number of candles to fetch
Returns:
DataFrame: Combined dataframe with price data and technical indicators
"""
# Get historical data
df = self.get_historical_data(timeframe=timeframe, n_candles=n_candles, use_cache=True)
if df is None or len(df) < 100: # Minimum required for indicators
logger.error(f"Not enough data for RL training (need at least 100 candles)")
return None
# Calculate technical indicators
try:
# Add RSI (14)
df['rsi'] = ta.rsi(df['close'], length=14)
# Add MACD
macd = ta.macd(df['close'])
df['macd'] = macd['MACD_12_26_9']
df['macd_signal'] = macd['MACDs_12_26_9']
df['macd_hist'] = macd['MACDh_12_26_9']
# Add Bollinger Bands
bbands = ta.bbands(df['close'], length=20)
df['bb_upper'] = bbands['BBU_20_2.0']
df['bb_middle'] = bbands['BBM_20_2.0']
df['bb_lower'] = bbands['BBL_20_2.0']
# Add ATR (Average True Range)
df['atr'] = ta.atr(df['high'], df['low'], df['close'], length=14)
# Add moving averages
df['sma_20'] = ta.sma(df['close'], length=20)
df['sma_50'] = ta.sma(df['close'], length=50)
df['ema_20'] = ta.ema(df['close'], length=20)
# Add OBV (On-Balance Volume)
df['obv'] = ta.obv(df['close'], df['volume'])
# Add momentum indicators
df['mom'] = ta.mom(df['close'], length=10)
# Normalize price to previous close
df['close_norm'] = df['close'] / df['close'].shift(1) - 1
df['high_norm'] = df['high'] / df['close'].shift(1) - 1
df['low_norm'] = df['low'] / df['close'].shift(1) - 1
# Volatility features
df['volatility'] = df['high'] / df['low'] - 1
# Volume features
df['volume_norm'] = df['volume'] / df['volume'].rolling(20).mean()
# Calculate returns
df['returns_1'] = df['close'].pct_change(1)
df['returns_5'] = df['close'].pct_change(5)
df['returns_10'] = df['close'].pct_change(10)
except Exception as e:
logger.error(f"Error calculating technical indicators: {str(e)}")
return None
# Drop NaN values
df = df.dropna()
return df