diff --git a/ANNOTATE/core/real_training_adapter.py b/ANNOTATE/core/real_training_adapter.py
index 34f9285..0de8443 100644
--- a/ANNOTATE/core/real_training_adapter.py
+++ b/ANNOTATE/core/real_training_adapter.py
@@ -2430,13 +2430,14 @@ class RealTrainingAdapter:
if not hasattr(self, 'inference_sessions'):
self.inference_sessions = {}
- # Create inference session
+ # Create inference session with position tracking
self.inference_sessions[inference_id] = {
'model_name': model_name,
'symbol': symbol,
'status': 'running',
'start_time': time.time(),
- 'signals': [],
+ 'signals': [], # All signals (including rejected ones)
+ 'executed_trades': [], # Only executed trades (open/close positions)
'stop_flag': False,
'live_training_enabled': enable_live_training,
'train_every_candle': train_every_candle,
@@ -2447,7 +2448,13 @@ class RealTrainingAdapter:
'loss': 0.0,
'steps': 0
},
- 'last_candle_time': None
+ 'last_candle_time': None,
+ # Position tracking
+ 'position': None, # {'type': 'long/short', 'entry_price': float, 'entry_time': str, 'entry_id': str}
+ 'total_pnl': 0.0,
+ 'win_count': 0,
+ 'loss_count': 0,
+ 'total_trades': 0
}
training_mode = "per-candle" if train_every_candle else ("pivot-based" if enable_live_training else "inference-only")
@@ -3211,13 +3218,39 @@ class RealTrainingAdapter:
'predicted_candle': prediction.get('predicted_candle')
}
+ # Store signal (all signals, including rejected ones)
session['signals'].append(signal)
# Keep only last 100 signals
if len(session['signals']) > 100:
session['signals'] = session['signals'][-100:]
- logger.info(f"Live Signal: {signal['action']} @ {signal['price']:.2f} (conf: {signal['confidence']:.2f})")
+ # Execute trade logic (only if confidence is high enough and position logic allows)
+ executed_trade = self._execute_realtime_trade(session, signal, current_price)
+
+ if executed_trade:
+ logger.info(f"Live Trade EXECUTED: {executed_trade['action']} @ {executed_trade['price']:.2f} (conf: {signal['confidence']:.2f})")
+
+ # Send executed trade to frontend via WebSocket
+ if hasattr(self, 'socketio') and self.socketio:
+ self.socketio.emit('executed_trade', {
+ 'trade': executed_trade,
+ 'position_state': {
+ 'has_position': session['position'] is not None,
+ 'position_type': session['position']['type'] if session['position'] else None,
+ 'entry_price': session['position']['entry_price'] if session['position'] else None,
+ 'unrealized_pnl': self._calculate_unrealized_pnl(session, current_price) if session['position'] else 0.0
+ },
+ 'session_metrics': {
+ 'total_pnl': session['total_pnl'],
+ 'total_trades': session['total_trades'],
+ 'win_count': session['win_count'],
+ 'loss_count': session['loss_count'],
+ 'win_rate': (session['win_count'] / session['total_trades'] * 100) if session['total_trades'] > 0 else 0
+ }
+ })
+ else:
+ logger.info(f"Live Signal (NOT executed): {signal['action']} @ {signal['price']:.2f} (conf: {signal['confidence']:.2f}) - {self._get_rejection_reason(session, signal)}")
# Store prediction for visualization
if self.orchestrator and hasattr(self.orchestrator, 'store_transformer_prediction'):
@@ -3250,3 +3283,173 @@ class RealTrainingAdapter:
logger.error(f"Fatal error in inference loop: {e}")
session['status'] = 'error'
session['error'] = str(e)
+
+ def _execute_realtime_trade(self, session: Dict, signal: Dict, current_price: float) -> Optional[Dict]:
+ """
+ Execute trade based on signal, respecting position management rules
+
+ Rules:
+ 1. Only execute if confidence >= 0.6
+ 2. Only open new position if no position is currently open
+ 3. Close position on opposite signal
+ 4. Track all executed trades for visualization
+
+ Returns:
+ Dict with executed trade info, or None if signal was rejected
+ """
+ action = signal['action']
+ confidence = signal['confidence']
+ timestamp = signal['timestamp']
+
+ # Rule 1: Confidence threshold
+ if confidence < 0.6:
+ return None # Rejected: low confidence
+
+ # Rule 2 & 3: Position management
+ position = session.get('position')
+
+ if action == 'BUY':
+ if position is None:
+ # Open long position
+ trade_id = str(uuid.uuid4())[:8]
+ session['position'] = {
+ 'type': 'long',
+ 'entry_price': current_price,
+ 'entry_time': timestamp,
+ 'entry_id': trade_id,
+ 'signal_confidence': confidence
+ }
+
+ executed_trade = {
+ 'trade_id': trade_id,
+ 'action': 'OPEN_LONG',
+ 'price': current_price,
+ 'timestamp': timestamp,
+ 'confidence': confidence
+ }
+
+ session['executed_trades'].append(executed_trade)
+ return executed_trade
+
+ elif position['type'] == 'short':
+ # Close short position
+ entry_price = position['entry_price']
+ pnl = entry_price - current_price # Short profit
+ pnl_pct = (pnl / entry_price) * 100
+
+ executed_trade = {
+ 'trade_id': position['entry_id'],
+ 'action': 'CLOSE_SHORT',
+ 'price': current_price,
+ 'timestamp': timestamp,
+ 'confidence': confidence,
+ 'entry_price': entry_price,
+ 'entry_time': position['entry_time'],
+ 'pnl': pnl,
+ 'pnl_pct': pnl_pct
+ }
+
+ # Update session metrics
+ session['total_pnl'] += pnl
+ session['total_trades'] += 1
+ if pnl > 0:
+ session['win_count'] += 1
+ else:
+ session['loss_count'] += 1
+
+ session['position'] = None
+ session['executed_trades'].append(executed_trade)
+
+ logger.info(f"Position CLOSED: SHORT @ {current_price:.2f}, PnL=${pnl:.2f} ({pnl_pct:+.2f}%)")
+ return executed_trade
+
+ elif action == 'SELL':
+ if position is None:
+ # Open short position
+ trade_id = str(uuid.uuid4())[:8]
+ session['position'] = {
+ 'type': 'short',
+ 'entry_price': current_price,
+ 'entry_time': timestamp,
+ 'entry_id': trade_id,
+ 'signal_confidence': confidence
+ }
+
+ executed_trade = {
+ 'trade_id': trade_id,
+ 'action': 'OPEN_SHORT',
+ 'price': current_price,
+ 'timestamp': timestamp,
+ 'confidence': confidence
+ }
+
+ session['executed_trades'].append(executed_trade)
+ return executed_trade
+
+ elif position['type'] == 'long':
+ # Close long position
+ entry_price = position['entry_price']
+ pnl = current_price - entry_price # Long profit
+ pnl_pct = (pnl / entry_price) * 100
+
+ executed_trade = {
+ 'trade_id': position['entry_id'],
+ 'action': 'CLOSE_LONG',
+ 'price': current_price,
+ 'timestamp': timestamp,
+ 'confidence': confidence,
+ 'entry_price': entry_price,
+ 'entry_time': position['entry_time'],
+ 'pnl': pnl,
+ 'pnl_pct': pnl_pct
+ }
+
+ # Update session metrics
+ session['total_pnl'] += pnl
+ session['total_trades'] += 1
+ if pnl > 0:
+ session['win_count'] += 1
+ else:
+ session['loss_count'] += 1
+
+ session['position'] = None
+ session['executed_trades'].append(executed_trade)
+
+ logger.info(f"Position CLOSED: LONG @ {current_price:.2f}, PnL=${pnl:.2f} ({pnl_pct:+.2f}%)")
+ return executed_trade
+
+ # HOLD or position already open in same direction
+ return None
+
+ def _get_rejection_reason(self, session: Dict, signal: Dict) -> str:
+ """Get reason why a signal was not executed"""
+ action = signal['action']
+ confidence = signal['confidence']
+ position = session.get('position')
+
+ if confidence < 0.6:
+ return f"Low confidence ({confidence:.2f} < 0.6)"
+
+ if action == 'HOLD':
+ return "HOLD signal (no trade)"
+
+ if position:
+ if action == 'BUY' and position['type'] == 'long':
+ return "Already in LONG position"
+ elif action == 'SELL' and position['type'] == 'short':
+ return "Already in SHORT position"
+
+ return "Unknown reason"
+
+ def _calculate_unrealized_pnl(self, session: Dict, current_price: float) -> float:
+ """Calculate unrealized PnL for open position"""
+ position = session.get('position')
+ if not position or not current_price:
+ return 0.0
+
+ entry_price = position['entry_price']
+
+ if position['type'] == 'long':
+ return ((current_price - entry_price) / entry_price) * 100 # Percentage
+ else: # short
+ return ((entry_price - current_price) / entry_price) * 100 # Percentage
diff --git a/ANNOTATE/web/app.py b/ANNOTATE/web/app.py
index 79e13f4..1571736 100644
--- a/ANNOTATE/web/app.py
+++ b/ANNOTATE/web/app.py
@@ -538,6 +538,9 @@ class AnnotationDashboard:
engineio_logger=False
)
self.has_socketio = True
+ # Pass socketio to training adapter for live trade updates
+ if self.training_adapter:
+ self.training_adapter.socketio = self.socketio
logger.info("SocketIO initialized for real-time updates")
except ImportError:
self.socketio = None
@@ -586,6 +589,8 @@ class AnnotationDashboard:
self.annotation_manager = AnnotationManager()
# Use REAL training adapter - NO SIMULATION!
self.training_adapter = RealTrainingAdapter(None, self.data_provider)
+ # Pass socketio to training adapter for live trade updates
+ self.training_adapter.socketio = None # Will be set after socketio initialization
# Backtest runner for replaying visible chart with predictions
self.backtest_runner = BacktestRunner()
diff --git a/ANNOTATE/web/static/js/chart_manager.js b/ANNOTATE/web/static/js/chart_manager.js
index 9366b68..a3b5fcf 100644
--- a/ANNOTATE/web/static/js/chart_manager.js
+++ b/ANNOTATE/web/static/js/chart_manager.js
@@ -17,6 +17,7 @@ class ChartManager {
this.lastPredictionHash = null; // Track if predictions actually changed
this.ghostCandleHistory = {}; // Store ghost candles per timeframe (max 50 each)
this.maxGhostCandles = 150; // Maximum number of ghost candles to keep
+ this.modelAccuracyMetrics = {}; // Track overall model accuracy per timeframe
// Helper to ensure all timestamps are in UTC
this.normalizeTimestamp = (timestamp) => {
@@ -81,7 +82,8 @@ class ChartManager {
*/
async updateChart(timeframe) {
try {
- const response = await fetch(`/api/chart-data?timeframe=${timeframe}&limit=1000`);
+ // Use consistent candle count across all timeframes (2500 for sufficient training context)
+ const response = await fetch(`/api/chart-data?timeframe=${timeframe}&limit=2500`);
if (!response.ok) {
throw new Error(`HTTP ${response.status}`);
}
@@ -109,7 +111,7 @@ class ChartManager {
Plotly.restyle(plotId, candlestickUpdate, [0]);
Plotly.restyle(plotId, volumeUpdate, [1]);
- console.log(`Updated ${timeframe} chart at ${new Date().toLocaleTimeString()}`);
+ console.log(`Updated ${timeframe} chart with ${chartData.timestamps.length} candles at ${new Date().toLocaleTimeString()}`);
}
} catch (error) {
console.error(`Error updating ${timeframe} chart:`, error);
@@ -546,9 +548,9 @@ class ChartManager {
plot_bgcolor: '#1f2937',
paper_bgcolor: '#1f2937',
font: { color: '#f8f9fa', size: 11 },
- margin: { l: 60, r: 20, t: 10, b: 40 },
+ margin: { l: 80, r: 20, t: 10, b: 40 }, // Increased left margin for better Y-axis drag area
hovermode: 'x unified',
- dragmode: 'pan',
+ dragmode: 'pan', // Pan mode for main chart area (horizontal panning)
// Performance optimizations
autosize: true,
staticPlot: false
@@ -562,7 +564,7 @@ class ChartManager {
scrollZoom: true,
// Performance optimizations
doubleClick: 'reset', // Enable double-click reset
- showAxisDragHandles: true, // Enable axis dragging
+ showAxisDragHandles: true, // Enable axis dragging - allows Y-axis vertical zoom when dragging on Y-axis area
showAxisRangeEntryBoxes: false
};
@@ -711,6 +713,10 @@ class ChartManager {
Plotly.newPlot(plotId, chartData, layout, config).then(() => {
// Optimize rendering after initial plot
plotElement._fullLayout._replotting = false;
+
+ // Add custom handler for Y-axis vertical zoom
+ // When user drags on Y-axis area (left side), enable vertical zoom
+ this._setupYAxisZoom(plotElement, plotId, timeframe);
});
// Store chart reference
@@ -777,6 +783,134 @@ class ChartManager {
console.log(`Chart created for ${timeframe} with ${data.timestamps.length} candles`);
}
+
+ /**
+ * Setup Y-axis vertical zoom handler
+ * Allows vertical zoom when dragging on the Y-axis area (left side of chart)
+ */
+ _setupYAxisZoom(plotElement, plotId, timeframe) {
+ let isDraggingYAxis = false;
+ let dragStartY = null;
+ let dragStartRange = null;
+ const Y_AXIS_MARGIN = 80; // Left margin width in pixels
+
+ // Mouse down handler - check if on Y-axis area
+ const handleMouseDown = (event) => {
+ const rect = plotElement.getBoundingClientRect();
+ const x = event.clientX - rect.left;
+
+ // Check if click is in Y-axis area (left margin)
+ if (x < Y_AXIS_MARGIN) {
+ isDraggingYAxis = true;
+ dragStartY = event.clientY;
+
+ // Get current Y-axis range
+ const layout = plotElement._fullLayout;
+ if (layout && layout.yaxis && layout.yaxis.range) {
+ dragStartRange = {
+ min: layout.yaxis.range[0],
+ max: layout.yaxis.range[1],
+ range: layout.yaxis.range[1] - layout.yaxis.range[0]
+ };
+ }
+
+ // Change cursor to indicate vertical zoom
+ plotElement.style.cursor = 'ns-resize';
+ event.preventDefault();
+ event.stopPropagation();
+ }
+ };
+
+ // Mouse move handler - handle vertical zoom and cursor update
+ const handleMouseMove = (event) => {
+ const rect = plotElement.getBoundingClientRect();
+ const x = event.clientX - rect.left;
+
+ // Update cursor when hovering over Y-axis area (only if not dragging)
+ if (!isDraggingYAxis) {
+ if (x < Y_AXIS_MARGIN) {
+ plotElement.style.cursor = 'ns-resize';
+ } else {
+ plotElement.style.cursor = 'default';
+ }
+ }
+
+ // Handle vertical zoom drag
+ if (isDraggingYAxis && dragStartY !== null && dragStartRange !== null) {
+ const deltaY = dragStartY - event.clientY; // Negative = zoom in (drag up), Positive = zoom out (drag down)
+ const zoomFactor = 1 + (deltaY / 200); // Adjust sensitivity (200px = 2x zoom)
+
+ // Clamp zoom factor to reasonable limits
+ const clampedZoom = Math.max(0.1, Math.min(10, zoomFactor));
+
+ // Calculate new range centered on current view
+ const center = (dragStartRange.min + dragStartRange.max) / 2;
+ const newRange = dragStartRange.range * clampedZoom;
+ const newMin = center - newRange / 2;
+ const newMax = center + newRange / 2;
+
+ // Update Y-axis range
+ Plotly.relayout(plotId, {
+ 'yaxis.range': [newMin, newMax]
+ });
+
+ event.preventDefault();
+ event.stopPropagation();
+ }
+ };
+
+ // Mouse up handler - end drag (use document level to catch even if mouse leaves element)
+ const handleMouseUp = () => {
+ if (isDraggingYAxis) {
+ isDraggingYAxis = false;
+ dragStartY = null;
+ dragStartRange = null;
+ plotElement.style.cursor = 'default';
+ }
+ };
+
+ // Mouse leave handler - reset cursor but keep dragging state
+ const handleMouseLeave = () => {
+ if (!isDraggingYAxis) {
+ plotElement.style.cursor = 'default';
+ }
+ };
+
+ // Attach event listeners
+ // Use element-level for mousedown and mouseleave (hover detection)
+ plotElement.addEventListener('mousedown', handleMouseDown);
+ plotElement.addEventListener('mouseleave', handleMouseLeave);
+ plotElement.addEventListener('mousemove', handleMouseMove);
+
+ // Use document-level for mousemove and mouseup during drag (works even if mouse leaves element)
+ const handleDocumentMouseMove = (event) => {
+ if (isDraggingYAxis) {
+ handleMouseMove(event);
+ }
+ };
+
+ const handleDocumentMouseUp = () => {
+ if (isDraggingYAxis) {
+ handleMouseUp();
+ }
+ };
+
+ document.addEventListener('mousemove', handleDocumentMouseMove);
+ document.addEventListener('mouseup', handleDocumentMouseUp);
+
+ // Store handlers for cleanup if needed
+ if (!plotElement._yAxisZoomHandlers) {
+ plotElement._yAxisZoomHandlers = {
+ mousedown: handleMouseDown,
+ mousemove: handleMouseMove,
+ mouseleave: handleMouseLeave,
+ documentMousemove: handleDocumentMouseMove,
+ documentMouseup: handleDocumentMouseUp
+ };
+ }
+
+ console.log(`[${timeframe}] Y-axis vertical zoom enabled - drag on left side (Y-axis area) to zoom vertically`);
+ }
/**
* Handle chart click for annotation
@@ -2081,6 +2215,12 @@ class ChartManager {
};
validatedCount++;
+
+ // Calculate prediction range vs actual range to diagnose "wide" predictions
+ const predRange = predCandle[1] - predCandle[2]; // High - Low
+ const actualRange = actualCandle[1] - actualCandle[2];
+ const rangeRatio = predRange / actualRange; // >1 means prediction is wider
+
console.log(`[${timeframe}] Prediction validated (#${validatedCount}):`, {
timestamp: prediction.timestamp,
matchedTo: timestamps[matchIdx],
@@ -2090,34 +2230,144 @@ class ChartManager {
volumeError: pctErrors.volume.toFixed(2) + '%',
direction: directionCorrect ? '✓' : '✗',
timeDiff: Math.abs(predTime - new Date(timestamps[matchIdx]).getTime()) + 'ms',
+ rangeAnalysis: {
+ predictedRange: predRange.toFixed(2),
+ actualRange: actualRange.toFixed(2),
+ rangeRatio: rangeRatio.toFixed(2) + 'x', // Shows if prediction is wider
+ isWider: rangeRatio > 1.2 ? 'YES (too wide)' : rangeRatio < 0.8 ? 'NO (too narrow)' : 'OK'
+ },
predicted: {
O: predCandle[0].toFixed(2),
H: predCandle[1].toFixed(2),
L: predCandle[2].toFixed(2),
C: predCandle[3].toFixed(2),
- V: predCandle[4].toFixed(2)
+ V: predCandle[4].toFixed(2),
+ Range: predRange.toFixed(2)
},
actual: {
O: actualCandle[0].toFixed(2),
H: actualCandle[1].toFixed(2),
L: actualCandle[2].toFixed(2),
C: actualCandle[3].toFixed(2),
- V: actualCandle[4].toFixed(2)
+ V: actualCandle[4].toFixed(2),
+ Range: actualRange.toFixed(2)
}
});
// Send metrics to backend for training feedback
this._sendPredictionMetrics(timeframe, prediction);
+
+ // Update overall model accuracy metrics
+ this._updateModelAccuracyMetrics(timeframe, accuracy, directionCorrect);
}
});
// Summary log
if (validatedCount > 0) {
const totalPending = predictions.filter(p => !p.accuracy).length;
+ const avgAccuracy = this.modelAccuracyMetrics[timeframe]?.avgAccuracy || 0;
+ const directionAccuracy = this.modelAccuracyMetrics[timeframe]?.directionAccuracy || 0;
console.log(`[${timeframe}] Validated ${validatedCount} predictions, ${totalPending} still pending`);
+ console.log(`[${timeframe}] Model Accuracy: ${avgAccuracy.toFixed(1)}% avg, ${directionAccuracy.toFixed(1)}% direction`);
+
+ // CRITICAL: Re-render predictions to show updated accuracy in tooltips
+ // Trigger a refresh of prediction display
+ this._refreshPredictionDisplay(timeframe);
}
}
+ /**
+ * Update overall model accuracy metrics
+ */
+ _updateModelAccuracyMetrics(timeframe, accuracy, directionCorrect) {
+ if (!this.modelAccuracyMetrics[timeframe]) {
+ this.modelAccuracyMetrics[timeframe] = {
+ accuracies: [],
+ directionCorrect: [],
+ totalValidated: 0
+ };
+ }
+
+ const metrics = this.modelAccuracyMetrics[timeframe];
+ metrics.accuracies.push(accuracy);
+ metrics.directionCorrect.push(directionCorrect);
+ metrics.totalValidated++;
+
+ // Calculate averages
+ metrics.avgAccuracy = metrics.accuracies.reduce((a, b) => a + b, 0) / metrics.accuracies.length;
+ metrics.directionAccuracy = (metrics.directionCorrect.filter(c => c).length / metrics.directionCorrect.length) * 100;
+
+ // Keep only last 100 validations for rolling average
+ if (metrics.accuracies.length > 100) {
+ metrics.accuracies = metrics.accuracies.slice(-100);
+ metrics.directionCorrect = metrics.directionCorrect.slice(-100);
+ }
+ }
+
+ /**
+ * Refresh prediction display to show updated accuracy
+ */
+ _refreshPredictionDisplay(timeframe) {
+ const chart = this.charts[timeframe];
+ if (!chart) return;
+
+ const plotId = chart.plotId;
+ const plotElement = document.getElementById(plotId);
+ if (!plotElement) return;
+
+ // Get current predictions from history
+ if (!this.ghostCandleHistory[timeframe] || this.ghostCandleHistory[timeframe].length === 0) {
+ return;
+ }
+
+ // Rebuild prediction traces with updated accuracy
+ const predictionTraces = [];
+ for (const ghost of this.ghostCandleHistory[timeframe]) {
+ this._addGhostCandlePrediction(ghost.candle, timeframe, predictionTraces, ghost.targetTime, ghost.accuracy);
+ }
+
+ // Remove old prediction traces
+ const currentTraces = plotElement.data.length;
+ const indicesToRemove = [];
+ for (let i = currentTraces - 1; i >= 0; i--) {
+ const name = plotElement.data[i].name;
+ if (name === 'Ghost Prediction' || name === 'Shadow Prediction') {
+ indicesToRemove.push(i);
+ }
+ }
+ if (indicesToRemove.length > 0) {
+ Plotly.deleteTraces(plotId, indicesToRemove);
+ }
+
+ // Add updated traces
+ if (predictionTraces.length > 0) {
+ Plotly.addTraces(plotId, predictionTraces);
+ console.log(`[${timeframe}] Refreshed ${predictionTraces.length} prediction candles with updated accuracy`);
+ }
+ }
+
+ /**
+ * Get overall model accuracy metrics for a timeframe
+ */
+ getModelAccuracyMetrics(timeframe) {
+ if (!this.modelAccuracyMetrics[timeframe]) {
+ return {
+ avgAccuracy: 0,
+ directionAccuracy: 0,
+ totalValidated: 0,
+ recentAccuracies: []
+ };
+ }
+
+ const metrics = this.modelAccuracyMetrics[timeframe];
+ return {
+ avgAccuracy: metrics.avgAccuracy || 0,
+ directionAccuracy: metrics.directionAccuracy || 0,
+ totalValidated: metrics.totalValidated || 0,
+ recentAccuracies: metrics.accuracies.slice(-10) || [] // Last 10 accuracies
+ };
+ }
+
/**
* Send prediction accuracy metrics to backend for training feedback
*/
@@ -2814,6 +3064,169 @@ class ChartManager {
}
}
+ /**
+ * Add executed trade marker to chart
+ * Shows entry/exit points, PnL, and position lines
+ */
+ addExecutedTradeMarker(trade, positionState) {
+ try {
+ if (!trade || !trade.timestamp) return;
+
+ // Find which timeframe to display on (prefer 1m, fallback to 1s)
+ const timeframe = this.timeframes.includes('1m') ? '1m' : (this.timeframes.includes('1s') ? '1s' : null);
+ if (!timeframe) return;
+
+ const chart = this.charts[timeframe];
+ if (!chart) return;
+
+ const plotId = chart.plotId;
+ const plotElement = document.getElementById(plotId);
+ if (!plotElement) return;
+
+ // Parse timestamp
+ const timestamp = new Date(trade.timestamp);
+ const year = timestamp.getUTCFullYear();
+ const month = String(timestamp.getUTCMonth() + 1).padStart(2, '0');
+ const day = String(timestamp.getUTCDate()).padStart(2, '0');
+ const hours = String(timestamp.getUTCHours()).padStart(2, '0');
+ const minutes = String(timestamp.getUTCMinutes()).padStart(2, '0');
+ const seconds = String(timestamp.getUTCSeconds()).padStart(2, '0');
+ const formattedTimestamp = `${year}-${month}-${day} ${hours}:${minutes}:${seconds}`;
+
+ // Determine action type and styling
+ let shape, annotation;
+
+ if (trade.action === 'OPEN_LONG') {
+ // Green upward arrow for long entry
+ shape = {
+ type: 'line',
+ x0: formattedTimestamp,
+ x1: formattedTimestamp,
+ y0: trade.price * 0.997,
+ y1: trade.price * 0.993,
+ line: { color: '#10b981', width: 3 },
+ name: `trade_${trade.trade_id}`
+ };
+ annotation = {
+ x: formattedTimestamp,
+ y: trade.price * 0.992,
+ text: `LONG
$${trade.price.toFixed(2)}`,
+ showarrow: true,
+ arrowhead: 2,
+ arrowcolor: '#10b981',
+ ax: 0,
+ ay: 30,
+ font: { size: 10, color: '#10b981', weight: 'bold' },
+ bgcolor: 'rgba(16, 185, 129, 0.2)'
+ };
+ } else if (trade.action === 'OPEN_SHORT') {
+ // Red downward arrow for short entry
+ shape = {
+ type: 'line',
+ x0: formattedTimestamp,
+ x1: formattedTimestamp,
+ y0: trade.price * 1.003,
+ y1: trade.price * 1.007,
+ line: { color: '#ef4444', width: 3 },
+ name: `trade_${trade.trade_id}`
+ };
+ annotation = {
+ x: formattedTimestamp,
+ y: trade.price * 1.008,
+ text: `SHORT
$${trade.price.toFixed(2)}`,
+ showarrow: true,
+ arrowhead: 2,
+ arrowcolor: '#ef4444',
+ ax: 0,
+ ay: -30,
+ font: { size: 10, color: '#ef4444', weight: 'bold' },
+ bgcolor: 'rgba(239, 68, 68, 0.2)'
+ };
+ } else if (trade.action === 'CLOSE_LONG' || trade.action === 'CLOSE_SHORT') {
+ // Exit marker with PnL
+ const isProfit = trade.pnl > 0;
+ const color = isProfit ? '#10b981' : '#ef4444';
+ const positionType = trade.action === 'CLOSE_LONG' ? 'LONG' : 'SHORT';
+
+ shape = {
+ type: 'line',
+ x0: formattedTimestamp,
+ x1: formattedTimestamp,
+ y0: trade.price,
+ y1: trade.price,
+ line: { color: color, width: 4, dash: 'dot' },
+ name: `trade_${trade.trade_id}_exit`
+ };
+ annotation = {
+ x: formattedTimestamp,
+ y: trade.price,
+ text: `EXIT ${positionType}
$${trade.price.toFixed(2)}
PnL: ${isProfit ? '+' : ''}$${trade.pnl.toFixed(2)} (${trade.pnl_pct >= 0 ? '+' : ''}${trade.pnl_pct.toFixed(2)}%)`,
+ showarrow: true,
+ arrowhead: 1,
+ arrowcolor: color,
+ ax: 0,
+ ay: isProfit ? -40 : 40,
+ font: { size: 10, color: color, weight: 'bold' },
+ bgcolor: isProfit ? 'rgba(16, 185, 129, 0.3)' : 'rgba(239, 68, 68, 0.3)'
+ };
+
+ // Add position line connecting entry to exit if entry time available
+ if (trade.entry_time) {
+ const entryTimestamp = new Date(trade.entry_time);
+ const entryYear = entryTimestamp.getUTCFullYear();
+ const entryMonth = String(entryTimestamp.getUTCMonth() + 1).padStart(2, '0');
+ const entryDay = String(entryTimestamp.getUTCDate()).padStart(2, '0');
+ const entryHours = String(entryTimestamp.getUTCHours()).padStart(2, '0');
+ const entryMinutes = String(entryTimestamp.getUTCMinutes()).padStart(2, '0');
+ const entrySeconds = String(entryTimestamp.getUTCSeconds()).padStart(2, '0');
+ const formattedEntryTime = `${entryYear}-${entryMonth}-${entryDay} ${entryHours}:${entryMinutes}:${entrySeconds}`;
+
+ const positionLine = {
+ type: 'rect',
+ x0: formattedEntryTime,
+ x1: formattedTimestamp,
+ y0: trade.entry_price,
+ y1: trade.price,
+ fillcolor: isProfit ? 'rgba(16, 185, 129, 0.1)' : 'rgba(239, 68, 68, 0.1)',
+ line: { color: color, width: 2, dash: isProfit ? 'solid' : 'dash' },
+ name: `position_${trade.trade_id}`
+ };
+
+ // Add both position rectangle and exit marker
+ const currentShapes = plotElement.layout.shapes || [];
+ Plotly.relayout(plotId, {
+ shapes: [...currentShapes, positionLine, shape]
+ });
+ } else {
+ // Just add exit marker
+ const currentShapes = plotElement.layout.shapes || [];
+ Plotly.relayout(plotId, {
+ shapes: [...currentShapes, shape]
+ });
+ }
+ } else {
+ // Entry marker only (no position line yet)
+ const currentShapes = plotElement.layout.shapes || [];
+ Plotly.relayout(plotId, {
+ shapes: [...currentShapes, shape]
+ });
+ }
+
+ // Add annotation
+ if (annotation) {
+ const currentAnnotations = plotElement.layout.annotations || [];
+ Plotly.relayout(plotId, {
+ annotations: [...currentAnnotations, annotation]
+ });
+ }
+
+ console.log(`Added executed trade marker: ${trade.action} @ ${trade.price.toFixed(2)}`);
+
+ } catch (error) {
+ console.error('Error adding executed trade marker:', error);
+ }
+ }
+
/**
* Remove live metrics overlay
*/
diff --git a/ANNOTATE/web/static/js/live_updates_ws.js b/ANNOTATE/web/static/js/live_updates_ws.js
index f2a4468..d6bebc5 100644
--- a/ANNOTATE/web/static/js/live_updates_ws.js
+++ b/ANNOTATE/web/static/js/live_updates_ws.js
@@ -99,6 +99,18 @@ class LiveUpdatesWebSocket {
console.error('Prediction error:', data);
});
+ this.socket.on('executed_trade', (data) => {
+ console.log('Executed trade received:', data);
+ if (this.onExecutedTrade) {
+ this.onExecutedTrade(data);
+ }
+ });
+
+ this.socket.on('training_update', (data) => {
+ console.log('Training update received:', data);
+ // Training feedback from incremental learning
+ });
+
// Error events
this.socket.on('connect_error', (error) => {
console.error('WebSocket connection error:', error);
@@ -230,6 +242,26 @@ document.addEventListener('DOMContentLoaded', function() {
}
};
+ window.liveUpdatesWS.onExecutedTrade = function(data) {
+ // Visualize executed trade on chart
+ if (window.appState && window.appState.chartManager) {
+ window.appState.chartManager.addExecutedTradeMarker(data.trade, data.position_state);
+ }
+
+ // Update position state display
+ if (typeof updatePositionStateDisplay === 'function') {
+ updatePositionStateDisplay(data.position_state, data.session_metrics);
+ }
+
+ // Log trade details
+ console.log('Executed Trade:', {
+ action: data.trade.action,
+ price: data.trade.price,
+ pnl: data.trade.pnl ? `$${data.trade.pnl.toFixed(2)} (${data.trade.pnl_pct.toFixed(2)}%)` : 'N/A',
+ position: data.position_state.has_position ? `${data.position_state.position_type.toUpperCase()} @ $${data.position_state.entry_price}` : 'CLOSED'
+ });
+ };
+
// Auto-connect
console.log('Auto-connecting to WebSocket...');
window.liveUpdatesWS.connect();