test cases

This commit is contained in:
Dobromir Popov
2025-06-25 14:45:37 +03:00
parent 4a1170d593
commit 4afa147bd1
5 changed files with 1039 additions and 247 deletions

View File

@ -663,9 +663,9 @@ class CleanTradingDashboard:
color='rgba(0, 255, 100, 0.9)',
line=dict(width=3, color='green')
),
name='EXECUTED BUY',
name='EXECUTED BUY',
showlegend=True,
hovertemplate="<b>EXECUTED BUY TRADE</b><br>" +
hovertemplate="<b>EXECUTED BUY TRADE</b><br>" +
"Price: $%{y:.2f}<br>" +
"Time: %{x}<br>" +
"Confidence: %{customdata:.1%}<extra></extra>",
@ -687,9 +687,9 @@ class CleanTradingDashboard:
color='rgba(255, 100, 100, 0.9)',
line=dict(width=3, color='red')
),
name='EXECUTED SELL',
showlegend=True,
hovertemplate="<b>EXECUTED SELL TRADE</b><br>" +
name='EXECUTED SELL',
showlegend=True,
hovertemplate="<b>EXECUTED SELL TRADE</b><br>" +
"Price: $%{y:.2f}<br>" +
"Time: %{x}<br>" +
"Confidence: %{customdata:.1%}<extra></extra>",
@ -768,9 +768,9 @@ class CleanTradingDashboard:
color='rgba(0, 255, 100, 1.0)',
line=dict(width=2, color='green')
),
name='BUY (Executed)',
name='BUY (Executed)',
showlegend=False,
hovertemplate="<b>BUY EXECUTED</b><br>" +
hovertemplate="<b>BUY EXECUTED</b><br>" +
"Price: $%{y:.2f}<br>" +
"Time: %{x}<br>" +
"Confidence: %{customdata:.1%}<extra></extra>",
@ -822,9 +822,9 @@ class CleanTradingDashboard:
color='rgba(255, 100, 100, 1.0)',
line=dict(width=2, color='red')
),
name='SELL (Executed)',
name='SELL (Executed)',
showlegend=False,
hovertemplate="<b>SELL EXECUTED</b><br>" +
hovertemplate="<b>SELL EXECUTED</b><br>" +
"Price: $%{y:.2f}<br>" +
"Time: %{x}<br>" +
"Confidence: %{customdata:.1%}<extra></extra>",
@ -1540,8 +1540,16 @@ class CleanTradingDashboard:
logger.warning("No current price available for manual trade")
return
# CAPTURE ALL MODEL INPUTS FOR COLD START TRAINING
model_inputs = self._capture_comprehensive_model_inputs(symbol, action, current_price)
# CAPTURE ALL MODEL INPUTS FOR COLD START TRAINING using core TradeDataManager
try:
from core.trade_data_manager import TradeDataManager
trade_data_manager = TradeDataManager()
model_inputs = trade_data_manager.capture_comprehensive_model_inputs(
symbol, action, current_price, self.orchestrator, self.data_provider
)
except Exception as e:
logger.warning(f"Failed to capture model inputs via TradeDataManager: {e}")
model_inputs = {}
# Create manual trading decision
decision = {
@ -1588,8 +1596,13 @@ class CleanTradingDashboard:
# Add to closed trades for display
self.closed_trades.append(trade_record)
# Store for cold start training when trade closes
self._store_trade_for_training(trade_record)
# Store for cold start training when trade closes using core TradeDataManager
try:
case_id = trade_data_manager.store_trade_for_training(trade_record)
if case_id:
logger.info(f"Trade stored for training with case ID: {case_id}")
except Exception as e:
logger.warning(f"Failed to store trade for training: {e}")
# Update session metrics
if action == 'BUY':
@ -1600,8 +1613,17 @@ class CleanTradingDashboard:
self.session_pnl += demo_pnl
trade_record['pnl'] = demo_pnl
# TRIGGER COLD START TRAINING on profitable demo trade
self._trigger_cold_start_training(trade_record, demo_pnl)
# TRIGGER COLD START TRAINING on profitable demo trade using core TrainingIntegration
try:
from core.training_integration import TrainingIntegration
training_integration = TrainingIntegration(self.orchestrator)
training_success = training_integration.trigger_cold_start_training(trade_record, case_id)
if training_success:
logger.info("Cold start training completed successfully")
else:
logger.warning("Cold start training failed")
except Exception as e:
logger.warning(f"Failed to trigger cold start training: {e}")
else:
decision['executed'] = False
@ -1625,89 +1647,7 @@ class CleanTradingDashboard:
except Exception as e:
logger.error(f"Error executing manual {action}: {e}")
def _capture_comprehensive_model_inputs(self, symbol: str, action: str, current_price: float) -> Dict[str, Any]:
"""Capture comprehensive model inputs for cold start training"""
try:
logger.info(f"Capturing model inputs for {action} trade on {symbol} at ${current_price:.2f}")
model_inputs = {
'timestamp': datetime.now().isoformat(),
'symbol': symbol,
'action': action,
'price': current_price,
'capture_type': 'trade_execution'
}
# 1. Market State Features
try:
market_state = self._get_comprehensive_market_state(symbol, current_price)
model_inputs['market_state'] = market_state
logger.debug(f"Captured market state: {len(market_state)} features")
except Exception as e:
logger.warning(f"Error capturing market state: {e}")
model_inputs['market_state'] = {}
# 2. CNN Features and Predictions
try:
cnn_data = self._get_cnn_features_and_predictions(symbol)
model_inputs['cnn_features'] = cnn_data.get('features', {})
model_inputs['cnn_predictions'] = cnn_data.get('predictions', {})
logger.debug(f"Captured CNN data: {len(cnn_data)} items")
except Exception as e:
logger.warning(f"Error capturing CNN data: {e}")
model_inputs['cnn_features'] = {}
model_inputs['cnn_predictions'] = {}
# 3. DQN/RL State Features
try:
dqn_state = self._get_dqn_state_features(symbol, current_price)
model_inputs['dqn_state'] = dqn_state
logger.debug(f"Captured DQN state: {len(dqn_state) if dqn_state else 0} features")
except Exception as e:
logger.warning(f"Error capturing DQN state: {e}")
model_inputs['dqn_state'] = {}
# 4. COB (Order Book) Features
try:
cob_data = self._get_cob_features_for_training(symbol)
model_inputs['cob_features'] = cob_data
logger.debug(f"Captured COB features: {len(cob_data) if cob_data else 0} features")
except Exception as e:
logger.warning(f"Error capturing COB features: {e}")
model_inputs['cob_features'] = {}
# 5. Technical Indicators
try:
technical_indicators = self._get_technical_indicators(symbol)
model_inputs['technical_indicators'] = technical_indicators
logger.debug(f"Captured technical indicators: {len(technical_indicators)} indicators")
except Exception as e:
logger.warning(f"Error capturing technical indicators: {e}")
model_inputs['technical_indicators'] = {}
# 6. Recent Price History (for context)
try:
price_history = self._get_recent_price_history(symbol, periods=50)
model_inputs['price_history'] = price_history
logger.debug(f"Captured price history: {len(price_history)} periods")
except Exception as e:
logger.warning(f"Error capturing price history: {e}")
model_inputs['price_history'] = []
total_features = sum(len(v) if isinstance(v, (dict, list)) else 1 for v in model_inputs.values())
logger.info(f"✅ Captured {total_features} total features for cold start training")
return model_inputs
except Exception as e:
logger.error(f"Error capturing model inputs: {e}")
return {
'timestamp': datetime.now().isoformat(),
'symbol': symbol,
'action': action,
'price': current_price,
'error': str(e)
}
# Model input capture moved to core.trade_data_manager.TradeDataManager
def _get_comprehensive_market_state(self, symbol: str, current_price: float) -> Dict[str, float]:
"""Get comprehensive market state features"""
@ -1885,150 +1825,9 @@ class CleanTradingDashboard:
logger.debug(f"Error getting price history: {e}")
return []
def _store_trade_for_training(self, trade_record: Dict[str, Any]):
"""Store trade for future cold start training"""
try:
# Create training data storage directory
import os
training_dir = "training_data"
os.makedirs(training_dir, exist_ok=True)
# Store trade data with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"trade_{trade_record['symbol'].replace('/', '')}_{timestamp}.json"
filepath = os.path.join(training_dir, filename)
import json
with open(filepath, 'w') as f:
json.dump(trade_record, f, indent=2, default=str)
logger.info(f"✅ Stored trade data for training: {filepath}")
# Also store in memory for immediate access
if not hasattr(self, 'stored_trades'):
self.stored_trades = []
self.stored_trades.append(trade_record)
# Keep only last 100 trades in memory
if len(self.stored_trades) > 100:
self.stored_trades = self.stored_trades[-100:]
except Exception as e:
logger.error(f"Error storing trade for training: {e}")
# Trade storage moved to core.trade_data_manager.TradeDataManager
def _trigger_cold_start_training(self, trade_record: Dict[str, Any], pnl: float):
"""Trigger cold start training when we have trade outcome"""
try:
logger.info(f"🔥 TRIGGERING COLD START TRAINING")
logger.info(f"Trade: {trade_record['side']} {trade_record['symbol']} @ ${trade_record['entry_price']:.2f}")
logger.info(f"P&L: ${pnl:.4f} ({'PROFIT' if pnl > 0 else 'LOSS'})")
# Calculate reward based on P&L
reward = self._calculate_training_reward(pnl, trade_record)
# Send to DQN agent if available
if hasattr(self.orchestrator, 'sensitivity_dqn_agent') and self.orchestrator.sensitivity_dqn_agent:
self._train_dqn_on_trade_outcome(trade_record, reward)
# Send to CNN if available
if hasattr(self.orchestrator, 'williams_structure') and self.orchestrator.williams_structure:
self._train_cnn_on_trade_outcome(trade_record, reward)
# Send to COB RL if available
if hasattr(self.orchestrator, 'cob_integration') and self.orchestrator.cob_integration:
self._train_cob_rl_on_trade_outcome(trade_record, reward)
logger.info(f"✅ Cold start training triggered with reward: {reward:.4f}")
except Exception as e:
logger.error(f"Error triggering cold start training: {e}")
def _calculate_training_reward(self, pnl: float, trade_record: Dict[str, Any]) -> float:
"""Calculate training reward based on trade outcome"""
try:
# Base reward from P&L
base_reward = pnl * 100 # Scale up for training
# Confidence adjustment (higher confidence wrong predictions get bigger penalties)
confidence = trade_record.get('confidence', 0.5)
if pnl < 0: # Loss
confidence_penalty = confidence * 2 # Higher confidence losses hurt more
base_reward *= (1 + confidence_penalty)
else: # Profit
confidence_bonus = confidence * 0.5 # Higher confidence wins get small bonus
base_reward *= (1 + confidence_bonus)
# Time-based adjustment (faster profits are better)
# For demo trades, just use a small bonus
time_bonus = 0.1 if pnl > 0 else 0
final_reward = base_reward + time_bonus
logger.debug(f"Reward calculation: P&L={pnl:.4f}, Confidence={confidence:.2f}, Final={final_reward:.4f}")
return final_reward
except Exception as e:
logger.warning(f"Error calculating reward: {e}")
return pnl # Fallback to simple P&L
def _train_dqn_on_trade_outcome(self, trade_record: Dict[str, Any], reward: float):
"""Train DQN agent on trade outcome"""
try:
dqn_agent = self.orchestrator.sensitivity_dqn_agent
# Get the state that was used for the decision
model_inputs = trade_record.get('model_inputs_at_entry', {})
dqn_state = model_inputs.get('dqn_state', {}).get('state_vector', [])
if not dqn_state:
logger.debug("No DQN state available for training")
return
# Convert to numpy array
state = np.array(dqn_state, dtype=np.float32)
# Map action to DQN action space
action = 1 if trade_record['side'] == 'BUY' else 0
# Create next state (current market state after trade)
current_state = self._get_dqn_state_features(trade_record['symbol'], trade_record['entry_price'])
next_state = np.array(current_state.get('state_vector', state), dtype=np.float32)
# Add experience to DQN memory
dqn_agent.remember(state, action, reward, next_state, True) # done=True for completed trade
# Trigger training if enough experiences
if len(dqn_agent.memory) >= dqn_agent.batch_size:
loss = dqn_agent.replay()
if loss:
logger.info(f"🧠 DQN trained on trade outcome - Loss: {loss:.6f}, Reward: {reward:.4f}")
except Exception as e:
logger.debug(f"Error training DQN on trade outcome: {e}")
def _train_cnn_on_trade_outcome(self, trade_record: Dict[str, Any], reward: float):
"""Train CNN on trade outcome (simplified for now)"""
try:
# CNN training requires more complex setup - log for now
logger.info(f"📊 CNN training opportunity: {trade_record['side']} with reward {reward:.4f}")
# In future: extract CNN features from model_inputs and create training sample
except Exception as e:
logger.debug(f"Error training CNN on trade outcome: {e}")
def _train_cob_rl_on_trade_outcome(self, trade_record: Dict[str, Any], reward: float):
"""Train COB RL on trade outcome (simplified for now)"""
try:
# COB RL training requires accessing the 400M parameter model - log for now
logger.info(f"📈 COB RL training opportunity: {trade_record['side']} with reward {reward:.4f}")
# In future: access COB RL model and create training sample
except Exception as e:
logger.debug(f"Error training COB RL on trade outcome: {e}")
# Cold start training moved to core.training_integration.TrainingIntegration
def _clear_session(self):
"""Clear session data"""
@ -2487,11 +2286,153 @@ class CleanTradingDashboard:
except Exception as e:
logger.error(f"Error handling universal stream data: {e}")
# Factory function for easy creation
def _update_case_index(self, case_dir: str, case_id: str, case_summary: Dict[str, Any], case_type: str):
"""Update the case index file with new case information"""
try:
import json
import os
index_filepath = os.path.join(case_dir, "case_index.json")
# Load existing index or create new one
if os.path.exists(index_filepath):
with open(index_filepath, 'r') as f:
index_data = json.load(f)
else:
index_data = {
"cases": [],
"last_updated": datetime.now().isoformat(),
"case_type": case_type,
"total_cases": 0
}
# Add new case to index
pnl = case_summary.get('pnl', 0)
training_priority = 1 # Default priority
# Calculate training priority based on P&L and confidence
if case_type == "negative":
# Higher priority for bigger losses
if abs(pnl) > 10:
training_priority = 5 # Very high priority
elif abs(pnl) > 5:
training_priority = 4
elif abs(pnl) > 1:
training_priority = 3
else:
training_priority = 2
else: # positive
# Higher priority for high-confidence profitable trades
confidence = case_summary.get('confidence', 0)
if pnl > 5 and confidence > 0.8:
training_priority = 5
elif pnl > 1 and confidence > 0.6:
training_priority = 4
elif pnl > 0.5:
training_priority = 3
else:
training_priority = 2
case_entry = {
"case_id": case_id,
"timestamp": case_summary['timestamp'],
"symbol": case_summary['symbol'],
"side": case_summary['side'],
"entry_price": case_summary['entry_price'],
"pnl": pnl,
"confidence": case_summary.get('confidence', 0),
"trade_type": case_summary.get('trade_type', 'unknown'),
"training_priority": training_priority,
"retraining_count": 0,
"model_inputs_captured": case_summary.get('model_inputs_captured', False),
"feature_counts": case_summary.get('feature_counts', {}),
"created_at": datetime.now().isoformat()
}
# Add to cases list
index_data["cases"].append(case_entry)
index_data["last_updated"] = datetime.now().isoformat()
index_data["total_cases"] = len(index_data["cases"])
# Sort by training priority (highest first) and timestamp (newest first)
index_data["cases"].sort(key=lambda x: (-x['training_priority'], -time.mktime(datetime.fromisoformat(x['timestamp']).timetuple())))
# Keep only last 1000 cases to prevent index from getting too large
if len(index_data["cases"]) > 1000:
index_data["cases"] = index_data["cases"][:1000]
index_data["total_cases"] = 1000
# Save updated index
with open(index_filepath, 'w') as f:
json.dump(index_data, f, indent=2, default=str)
logger.debug(f"Updated {case_type} case index: {len(index_data['cases'])} total cases")
except Exception as e:
logger.error(f"Error updating case index: {e}")
def get_testcase_summary(self) -> Dict[str, Any]:
"""Get summary of stored testcases for display"""
try:
import os
import json
summary = {
'positive_cases': 0,
'negative_cases': 0,
'total_cases': 0,
'latest_cases': [],
'high_priority_cases': 0
}
base_dir = "testcases"
for case_type in ['positive', 'negative']:
case_dir = os.path.join(base_dir, case_type)
index_filepath = os.path.join(case_dir, "case_index.json")
if os.path.exists(index_filepath):
with open(index_filepath, 'r') as f:
index_data = json.load(f)
case_count = len(index_data.get('cases', []))
summary[f'{case_type}_cases'] = case_count
summary['total_cases'] += case_count
# Get high priority cases
high_priority = len([c for c in index_data.get('cases', []) if c.get('training_priority', 1) >= 4])
summary['high_priority_cases'] += high_priority
# Get latest cases
latest = index_data.get('cases', [])[:5] # Top 5 latest
for case in latest:
case['case_type'] = case_type
summary['latest_cases'].extend(latest)
# Sort latest cases by timestamp
summary['latest_cases'].sort(key=lambda x: x.get('timestamp', ''), reverse=True)
# Keep only top 10 latest cases
summary['latest_cases'] = summary['latest_cases'][:10]
return summary
except Exception as e:
logger.error(f"Error getting testcase summary: {e}")
return {
'positive_cases': 0,
'negative_cases': 0,
'total_cases': 0,
'latest_cases': [],
'high_priority_cases': 0,
'error': str(e)
}
def create_clean_dashboard(data_provider=None, orchestrator=None, trading_executor=None):
"""Create a clean trading dashboard instance"""
"""Factory function to create a CleanTradingDashboard instance"""
return CleanTradingDashboard(
data_provider=data_provider,
orchestrator=orchestrator,
trading_executor=trading_executor
)
)