revision, pending fixes
This commit is contained in:
@@ -4852,7 +4852,7 @@ class CleanTradingDashboard:
|
||||
avg_reward = total_rewards / training_sessions if training_sessions > 0 else 0
|
||||
avg_loss = total_losses / training_sessions if training_sessions > 0 else 0
|
||||
|
||||
logger.info("📊 COMPREHENSIVE TRAINING REPORT:")
|
||||
logger.info("COMPREHENSIVE TRAINING REPORT:")
|
||||
logger.info(f" Total Signals: {total_signals}")
|
||||
logger.info(f" Success Rate: {success_rate:.1f}%")
|
||||
logger.info(f" Training Sessions: {training_sessions}")
|
||||
@@ -4869,20 +4869,20 @@ class CleanTradingDashboard:
|
||||
|
||||
# Performance analysis
|
||||
if avg_loss < 0.01:
|
||||
logger.info(" 🎉 EXCELLENT: Very low loss indicates strong learning")
|
||||
logger.info(" EXCELLENT: Very low loss indicates strong learning")
|
||||
elif avg_loss < 0.1:
|
||||
logger.info(" ✅ GOOD: Moderate loss with consistent improvement")
|
||||
logger.info(" GOOD: Moderate loss with consistent improvement")
|
||||
elif avg_loss < 1.0:
|
||||
logger.info(" ⚠️ FAIR: Loss reduction needed for better performance")
|
||||
logger.info(" FAIR: Loss reduction needed for better performance")
|
||||
else:
|
||||
logger.info(" ❌ POOR: High loss indicates training issues")
|
||||
logger.info(" POOR: High loss indicates training issues")
|
||||
|
||||
if abs(avg_reward) > 10:
|
||||
logger.info(" 💰 STRONG REWARDS: Models responding well to feedback")
|
||||
logger.info(" STRONG REWARDS: Models responding well to feedback")
|
||||
elif abs(avg_reward) > 1:
|
||||
logger.info(" 📈 MODERATE REWARDS: Learning progressing steadily")
|
||||
logger.info(" MODERATE REWARDS: Learning progressing steadily")
|
||||
else:
|
||||
logger.info(" 🔄 LOW REWARDS: May need reward scaling adjustment")
|
||||
logger.info(" LOW REWARDS: May need reward scaling adjustment")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Error generating training performance report: {e}")
|
||||
@@ -7834,6 +7834,8 @@ class CleanTradingDashboard:
|
||||
price_change = (next_price - current_price) / current_price if current_price > 0 else 0
|
||||
cumulative_imbalance = current_data.get('cumulative_imbalance', {})
|
||||
|
||||
# TODO(Guideline: no synthetic data) Replace the random baseline with real orchestrator features.
|
||||
# TODO(Guideline: no synthetic data) Replace the random baseline with real orchestrator features.
|
||||
features = np.random.randn(100)
|
||||
features[0] = current_price / 10000
|
||||
features[1] = price_change
|
||||
@@ -7964,7 +7966,7 @@ class CleanTradingDashboard:
|
||||
price_change = (next_price - current_price) / current_price if current_price > 0 else 0
|
||||
cumulative_imbalance = current_data.get('cumulative_imbalance', {})
|
||||
|
||||
# Create decision fusion features
|
||||
# TODO(Guideline: no synthetic data) Replace random feature vectors with real market-derived inputs.
|
||||
features = np.random.randn(32) # Decision fusion expects 32 features
|
||||
features[0] = current_price / 10000
|
||||
features[1] = price_change
|
||||
|
Reference in New Issue
Block a user