implementations

This commit is contained in:
Dobromir Popov
2025-02-12 01:27:38 +02:00
parent 1a15ee934b
commit 33a5588539
6 changed files with 595 additions and 22 deletions

View File

@ -8,6 +8,15 @@ from data.live_data import LiveDataManager
from model.transformer import Transformer
from training.train import train
from data.data_utils import preprocess_data # Import preprocess_data
import ccxt.async_support as ccxt
import time
import os
import numpy as np
import matplotlib.pyplot as plt
from model.trading_model import TradingModel
from training.rl_agent import ContinuousRLAgent, ReplayBuffer
from training.train_historical import train_on_historical_data, load_best_checkpoint, save_candles_cache, CACHE_FILE, BEST_DIR
from data.data_utils import get_aligned_candle_with_index, get_features_for_tf
async def main():
symbol = 'BTC/USDT'
@ -43,5 +52,245 @@ async def main():
print("Training stopped manually.")
finally:
await data_manager.close()
# -------------------------------------
# Main Asynchronous Function for Training & Charting
# -------------------------------------
async def main_backtest():
symbol = 'BTC/USDT'
# Define timeframes: we'll use 5 different ones.
timeframes = ["1m", "5m", "15m", "1h", "1d"]
now = int(time.time() * 1000)
# Use the base timeframe period of 1500 candles. For 1m, that is 1500 minutes.
period_ms = 1500 * 60 * 1000
since = now - period_ms
end_time = now
# Initialize exchange using MEXC (or your preferred exchange).
mexc_api_key = os.environ.get('MEXC_API_KEY', 'YOUR_API_KEY')
mexc_api_secret = os.environ.get('MEXC_API_SECRET', 'YOUR_SECRET_KEY')
exchange = ccxt.mexc({
'apiKey': mexc_api_key,
'secret': mexc_api_secret,
'enableRateLimit': True,
})
candles_dict = {}
for tf in timeframes:
print(f"Fetching historical data for timeframe {tf}...")
candles = await fetch_historical_data(exchange, symbol, tf, since, end_time, batch_size=500)
candles_dict[tf] = candles
# Optionally, save the multi-timeframe cache.
save_candles_cache(CACHE_FILE, candles_dict)
# Create the backtest environment using multi-timeframe data.
env = BacktestEnvironment(candles_dict, base_tf="1m", timeframes=timeframes)
# Neural Network dimensions: each timeframe produces 7 features.
input_dim = len(timeframes) * 7 # 7 features * 5 timeframes = 35.
hidden_dim = 128
output_dim = 3 # Actions: SELL, HOLD, BUY.
model = TradingModel(input_dim, hidden_dim, output_dim)
optimizer = optim.Adam(model.parameters(), lr=1e-4)
replay_buffer = ReplayBuffer(capacity=10000)
rl_agent = ContinuousRLAgent(model, optimizer, replay_buffer, batch_size=32, gamma=0.99)
# Load best checkpoint if available.
load_best_checkpoint(model, BEST_DIR)
# Train the agent over the historical period.
num_epochs = 10 # Adjust as needed.
train_on_historical_data(env, rl_agent, num_epochs=num_epochs, epsilon=0.1)
# Run a final simulation (without exploration) to record trade history.
state = env.reset(clear_trade_history=True)
done = False
cumulative_reward = 0.0
while not done:
action = rl_agent.act(state, epsilon=0.0)
state, reward, next_state, done = env.step(action)
cumulative_reward += reward
state = next_state
print("Final simulation cumulative profit:", cumulative_reward)
# Evaluate trade performance.
trades = env.trade_history
num_trades = len(trades)
num_wins = sum(1 for trade in trades if trade["pnl"] > 0)
win_rate = (num_wins / num_trades * 100) if num_trades > 0 else 0.0
total_profit = sum(trade["pnl"] for trade in trades)
print(f"Total trades: {num_trades}, Wins: {num_wins}, Win rate: {win_rate:.2f}%, Total Profit: {total_profit:.4f}")
# Plot chart with buy/sell markers on the base timeframe ("1m").
plot_trade_history(candles_dict["1m"], trades)
await exchange.close()
# -------------------------------------
# Historical Data Fetching Function (for a given timeframe)
# -------------------------------------
async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size=500):
candles = []
since_ms = since
while True:
try:
batch = await exchange.fetch_ohlcv(symbol, timeframe=timeframe, since=since_ms, limit=batch_size)
except Exception as e:
print(f"Error fetching historical data for {timeframe}:", e)
break
if not batch:
break
for c in batch:
candle_dict = {
'timestamp': c[0],
'open': c[1],
'high': c[2],
'low': c[3],
'close': c[4],
'volume': c[5]
}
candles.append(candle_dict)
last_timestamp = batch[-1][0]
if last_timestamp >= end_time:
break
since_ms = last_timestamp + 1
print(f"Fetched {len(candles)} candles for timeframe {timeframe}.")
return candles
# -------------------------------------
# Backtest Environment with Multi-Timeframe State
# -------------------------------------
class BacktestEnvironment:
def __init__(self, candles_dict, base_tf="1m", timeframes=None):
self.candles_dict = candles_dict # dict of timeframe: candles_list
self.base_tf = base_tf
if timeframes is None:
self.timeframes = [base_tf] # fallback to single timeframe
else:
self.timeframes = timeframes
self.trade_history = [] # record of closed trades
self.current_index = 0 # index on base_tf candles
self.position = None # active position record
def reset(self, clear_trade_history=True):
self.current_index = 0
self.position = None
if clear_trade_history:
self.trade_history = []
return self.get_state(self.current_index)
def get_state(self, index):
"""Construct the state as the concatenated features of all timeframes.
For each timeframe, find the aligned candle for the base timeframes timestamp."""
state_features = []
base_candle = self.candles_dict[self.base_tf][index]
base_ts = base_candle["timestamp"]
for tf in self.timeframes:
candles_list = self.candles_dict[tf]
# Get the candle from this timeframe that is closest to (and <=) base_ts.
aligned_index, _ = get_aligned_candle_with_index(candles_list, base_ts)
features = get_features_for_tf(candles_list, aligned_index, period=10)
state_features.extend(features)
return np.array(state_features, dtype=np.float32)
def step(self, action):
"""
Simulate a trading step based on the base timeframe.
- If not in a position and action is BUY (2), record entry at next candle's open.
- If in a position and action is SELL (0), record exit at next candle's open, computing PnL.
Returns: (current_state, reward, next_state, done)
"""
base_candles = self.candles_dict[self.base_tf]
if self.current_index >= len(base_candles) - 1:
return self.get_state(self.current_index), 0.0, None, True
current_state = self.get_state(self.current_index)
next_index = self.current_index + 1
next_state = self.get_state(next_index)
current_candle = base_candles[self.current_index]
next_candle = base_candles[next_index]
reward = 0.0
# Action mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
if self.position is None:
if action == 2: # BUY signal: enter position at next candle's open.
entry_price = next_candle["open"]
self.position = {"entry_price": entry_price, "entry_index": self.current_index}
else:
if action == 0: # SELL signal: close position at next candle's open.
exit_price = next_candle["open"]
reward = exit_price - self.position["entry_price"]
trade = {
"entry_index": self.position["entry_index"],
"entry_price": self.position["entry_price"],
"exit_index": next_index,
"exit_price": exit_price,
"pnl": reward
}
self.trade_history.append(trade)
self.position = None
self.current_index = next_index
done = (self.current_index >= len(base_candles) - 1)
return current_state, reward, next_state, done
# -------------------------------------
# Chart Plotting: Trade History & PnL
# -------------------------------------
def plot_trade_history(candles, trade_history):
close_prices = [candle["close"] for candle in candles]
x = list(range(len(close_prices)))
plt.figure(figsize=(12, 6))
plt.plot(x, close_prices, label="Close Price", color="black", linewidth=1)
# Use these flags so that the label "BUY" or "SELL" is only shown once in the legend.
buy_label_added = False
sell_label_added = False
for trade in trade_history:
in_idx = trade["entry_index"]
out_idx = trade["exit_index"]
in_price = trade["entry_price"]
out_price = trade["exit_price"]
pnl = trade["pnl"]
# Plot BUY marker ("IN")
if not buy_label_added:
plt.plot(in_idx, in_price, marker="^", color="green", markersize=10, label="BUY (IN)")
buy_label_added = True
else:
plt.plot(in_idx, in_price, marker="^", color="green", markersize=10)
plt.text(in_idx, in_price, " IN", color="green", fontsize=8, verticalalignment="bottom")
# Plot SELL marker ("OUT")
if not sell_label_added:
plt.plot(out_idx, out_price, marker="v", color="red", markersize=10, label="SELL (OUT)")
sell_label_added = True
else:
plt.plot(out_idx, out_price, marker="v", color="red", markersize=10)
plt.text(out_idx, out_price, " OUT", color="red", fontsize=8, verticalalignment="top")
# Annotate the PnL near the SELL marker.
plt.text(out_idx, out_price, f" {pnl:+.2f}", color="blue", fontsize=8, verticalalignment="bottom")
# Choose line color based on profitability.
if pnl > 0:
line_color = "green"
elif pnl < 0:
line_color = "red"
else:
line_color = "gray"
# Draw a dotted line between the buy and sell points.
plt.plot([in_idx, out_idx], [in_price, out_price], linestyle="dotted", color=line_color)
plt.title("Trade History with PnL")
plt.xlabel("Base Candle Index (1m)")
plt.ylabel("Price")
plt.legend()
plt.grid(True)
plt.show()
if __name__ == '__main__':
asyncio.run(main())
asyncio.run(main_backtest())