implementations
This commit is contained in:
@ -121,6 +121,44 @@ def create_padding_mask(seq, pad_token=0):
|
||||
"""
|
||||
return (seq == pad_token).all(dim=-1).unsqueeze(0)
|
||||
|
||||
def get_aligned_candle_with_index(candles_list, base_ts):
|
||||
"""
|
||||
Find the candle from candles_list that is closest to (and <=) base_ts.
|
||||
Returns: (index, candle)
|
||||
"""
|
||||
aligned_index = None
|
||||
aligned_candle = None
|
||||
for i in range(len(candles_list)):
|
||||
if candles_list[i]["timestamp"] <= base_ts:
|
||||
aligned_index = i
|
||||
aligned_candle = candles_list[i]
|
||||
else:
|
||||
break
|
||||
return aligned_index, aligned_candle
|
||||
|
||||
def get_features_for_tf(candles_list, aligned_index, period=10):
|
||||
"""
|
||||
Extract features from the candle at aligned_index.
|
||||
If aligned_index is None, return a zeroed feature vector.
|
||||
"""
|
||||
if aligned_index is None:
|
||||
return [0.0] * 7 # return zeroed feature vector
|
||||
candle = candles_list[aligned_index]
|
||||
# Simple features: open, high, low, close, volume, and two EMAs.
|
||||
close_prices = [c["close"] for c in candles_list[:aligned_index+1]]
|
||||
ema_short = calculate_ema(candles_list[:aligned_index+1], period=period)[-1]
|
||||
ema_long = calculate_ema(candles_list[:aligned_index+1], period=period*2)[-1]
|
||||
features = [
|
||||
candle["open"],
|
||||
candle["high"],
|
||||
candle["low"],
|
||||
candle["close"],
|
||||
candle["volume"],
|
||||
ema_short,
|
||||
ema_long
|
||||
]
|
||||
return features
|
||||
|
||||
# Example usage (within a larger training loop):
|
||||
if __name__ == '__main__':
|
||||
# Dummy data for demonstration
|
||||
@ -155,4 +193,14 @@ if __name__ == '__main__':
|
||||
mask = create_mask(seq_len)
|
||||
print("\nMask:\n", mask)
|
||||
padding_mask = create_padding_mask(torch.tensor(candle_features))
|
||||
print(f"\nPadding mask: {padding_mask}")
|
||||
print(f"\nPadding mask: {padding_mask}")
|
||||
|
||||
# Example usage of the new functions
|
||||
index, candle = get_aligned_candle_with_index(candles_data, 1678886570000)
|
||||
if candle:
|
||||
print(f"\nAligned candle: {candle}")
|
||||
else:
|
||||
print("\nNo aligned candle found.")
|
||||
|
||||
features = get_features_for_tf(candles_data, index)
|
||||
print(f"\nFeatures for timeframe: {features}")
|
||||
|
Reference in New Issue
Block a user