COB WS fix

This commit is contained in:
Dobromir Popov
2025-07-20 20:38:42 +03:00
parent 9c56ea238e
commit 330f0de053
6 changed files with 1260 additions and 30 deletions

View File

@ -26,6 +26,7 @@ from collections import defaultdict
from .multi_exchange_cob_provider import MultiExchangeCOBProvider, COBSnapshot, ConsolidatedOrderBookLevel
from .data_provider import DataProvider, MarketTick
from .enhanced_cob_websocket import EnhancedCOBWebSocket
logger = logging.getLogger(__name__)
@ -48,6 +49,9 @@ class COBIntegration:
# Initialize COB provider to None, will be set in start()
self.cob_provider = None
# Enhanced WebSocket integration
self.enhanced_websocket: Optional[EnhancedCOBWebSocket] = None
# CNN/DQN integration
self.cnn_callbacks: List[Callable] = []
self.dqn_callbacks: List[Callable] = []
@ -62,43 +66,187 @@ class COBIntegration:
self.cob_feature_cache: Dict[str, np.ndarray] = {}
self.last_cob_features_update: Dict[str, datetime] = {}
# WebSocket status for dashboard
self.websocket_status: Dict[str, str] = {symbol: 'disconnected' for symbol in self.symbols}
# Initialize signal tracking
for symbol in self.symbols:
self.cob_signals[symbol] = []
self.liquidity_alerts[symbol] = []
self.arbitrage_opportunities[symbol] = []
logger.info("COB Integration initialized (provider will be started in async)")
logger.info("COB Integration initialized with Enhanced WebSocket support")
logger.info(f"Symbols: {self.symbols}")
async def start(self):
"""Start COB integration"""
logger.info("Starting COB Integration")
"""Start COB integration with Enhanced WebSocket"""
logger.info("🚀 Starting COB Integration with Enhanced WebSocket")
# Initialize COB provider here, within the async context
self.cob_provider = MultiExchangeCOBProvider(
symbols=self.symbols,
bucket_size_bps=1.0 # 1 basis point granularity
)
# Register callbacks
self.cob_provider.subscribe_to_cob_updates(self._on_cob_update)
self.cob_provider.subscribe_to_bucket_updates(self._on_bucket_update)
# Start COB provider streaming
# Initialize Enhanced WebSocket first
try:
logger.info("Starting COB provider streaming...")
await self.cob_provider.start_streaming()
self.enhanced_websocket = EnhancedCOBWebSocket(
symbols=self.symbols,
dashboard_callback=self._on_websocket_status_update
)
# Add COB data callback
self.enhanced_websocket.add_cob_callback(self._on_enhanced_cob_update)
# Start enhanced WebSocket
await self.enhanced_websocket.start()
logger.info("✅ Enhanced WebSocket started successfully")
except Exception as e:
logger.error(f"Error starting COB provider streaming: {e}")
# Start a background task instead
logger.error(f"Error starting Enhanced WebSocket: {e}")
# Initialize COB provider as fallback
try:
self.cob_provider = MultiExchangeCOBProvider(
symbols=self.symbols,
bucket_size_bps=1.0 # 1 basis point granularity
)
# Register callbacks
self.cob_provider.subscribe_to_cob_updates(self._on_cob_update)
self.cob_provider.subscribe_to_bucket_updates(self._on_bucket_update)
# Start COB provider streaming as backup
logger.info("Starting COB provider as backup...")
asyncio.create_task(self._start_cob_provider_background())
except Exception as e:
logger.error(f"❌ Error initializing COB provider: {e}")
# Start analysis threads
asyncio.create_task(self._continuous_cob_analysis())
asyncio.create_task(self._continuous_signal_generation())
logger.info("COB Integration started successfully")
logger.info("COB Integration started successfully with Enhanced WebSocket")
async def _on_enhanced_cob_update(self, symbol: str, cob_data: Dict):
"""Handle COB updates from Enhanced WebSocket"""
try:
logger.debug(f"📊 Enhanced WebSocket COB update for {symbol}")
# Convert enhanced WebSocket data to COB format for existing callbacks
# Notify CNN callbacks
for callback in self.cnn_callbacks:
try:
callback(symbol, {
'features': cob_data,
'timestamp': cob_data.get('timestamp', datetime.now()),
'type': 'enhanced_cob_features'
})
except Exception as e:
logger.warning(f"Error in CNN callback: {e}")
# Notify DQN callbacks
for callback in self.dqn_callbacks:
try:
callback(symbol, {
'state': cob_data,
'timestamp': cob_data.get('timestamp', datetime.now()),
'type': 'enhanced_cob_state'
})
except Exception as e:
logger.warning(f"Error in DQN callback: {e}")
# Notify dashboard callbacks
dashboard_data = self._format_enhanced_cob_for_dashboard(symbol, cob_data)
for callback in self.dashboard_callbacks:
try:
if asyncio.iscoroutinefunction(callback):
asyncio.create_task(callback(symbol, dashboard_data))
else:
callback(symbol, dashboard_data)
except Exception as e:
logger.warning(f"Error in dashboard callback: {e}")
except Exception as e:
logger.error(f"Error processing Enhanced WebSocket COB update for {symbol}: {e}")
async def _on_websocket_status_update(self, status_data: Dict):
"""Handle WebSocket status updates for dashboard"""
try:
symbol = status_data.get('symbol')
status = status_data.get('status')
message = status_data.get('message', '')
if symbol:
self.websocket_status[symbol] = status
logger.info(f"🔌 WebSocket status for {symbol}: {status} - {message}")
# Notify dashboard callbacks about status change
status_update = {
'type': 'websocket_status',
'data': {
'symbol': symbol,
'status': status,
'message': message,
'timestamp': status_data.get('timestamp', datetime.now().isoformat())
}
}
for callback in self.dashboard_callbacks:
try:
if asyncio.iscoroutinefunction(callback):
asyncio.create_task(callback(symbol, status_update))
else:
callback(symbol, status_update)
except Exception as e:
logger.warning(f"Error in dashboard status callback: {e}")
except Exception as e:
logger.error(f"Error processing WebSocket status update: {e}")
def _format_enhanced_cob_for_dashboard(self, symbol: str, cob_data: Dict) -> Dict:
"""Format Enhanced WebSocket COB data for dashboard"""
try:
# Extract data from enhanced WebSocket format
bids = cob_data.get('bids', [])
asks = cob_data.get('asks', [])
stats = cob_data.get('stats', {})
# Format for dashboard
dashboard_data = {
'type': 'cob_update',
'data': {
'bids': [{'price': bid['price'], 'volume': bid['size'] * bid['price'], 'side': 'bid'} for bid in bids[:100]],
'asks': [{'price': ask['price'], 'volume': ask['size'] * ask['price'], 'side': 'ask'} for ask in asks[:100]],
'svp': [], # SVP data not available from WebSocket
'stats': {
'symbol': symbol,
'timestamp': cob_data.get('timestamp', datetime.now()).isoformat() if isinstance(cob_data.get('timestamp'), datetime) else cob_data.get('timestamp', datetime.now().isoformat()),
'mid_price': stats.get('mid_price', 0),
'spread_bps': (stats.get('spread', 0) / stats.get('mid_price', 1)) * 10000 if stats.get('mid_price', 0) > 0 else 0,
'bid_liquidity': stats.get('bid_volume', 0) * stats.get('best_bid', 0),
'ask_liquidity': stats.get('ask_volume', 0) * stats.get('best_ask', 0),
'total_bid_liquidity': stats.get('bid_volume', 0) * stats.get('best_bid', 0),
'total_ask_liquidity': stats.get('ask_volume', 0) * stats.get('best_ask', 0),
'imbalance': (stats.get('bid_volume', 0) - stats.get('ask_volume', 0)) / (stats.get('bid_volume', 0) + stats.get('ask_volume', 0)) if (stats.get('bid_volume', 0) + stats.get('ask_volume', 0)) > 0 else 0,
'liquidity_imbalance': (stats.get('bid_volume', 0) - stats.get('ask_volume', 0)) / (stats.get('bid_volume', 0) + stats.get('ask_volume', 0)) if (stats.get('bid_volume', 0) + stats.get('ask_volume', 0)) > 0 else 0,
'bid_levels': len(bids),
'ask_levels': len(asks),
'exchanges_active': [cob_data.get('exchange', 'binance')],
'bucket_size': 1.0,
'websocket_status': self.websocket_status.get(symbol, 'unknown'),
'source': cob_data.get('source', 'enhanced_websocket')
}
}
}
return dashboard_data
except Exception as e:
logger.error(f"Error formatting enhanced COB data for dashboard: {e}")
return {
'type': 'error',
'data': {'error': str(e)}
}
def get_websocket_status(self) -> Dict[str, str]:
"""Get current WebSocket status for all symbols"""
return self.websocket_status.copy()
async def _start_cob_provider_background(self):
"""Start COB provider in background task"""

View File

@ -0,0 +1,488 @@
#!/usr/bin/env python3
"""
Enhanced COB WebSocket Implementation
Robust WebSocket implementation for Consolidated Order Book data with:
- Maximum allowed depth subscription
- Clear error handling and warnings
- Automatic reconnection with exponential backoff
- Fallback to REST API when WebSocket fails
- Dashboard integration with status updates
This replaces the existing COB WebSocket implementation with a more reliable version.
"""
import asyncio
import json
import logging
import time
import traceback
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Any, Callable
from collections import deque, defaultdict
from dataclasses import dataclass
import aiohttp
import weakref
try:
import websockets
from websockets.client import connect as websockets_connect
from websockets.exceptions import ConnectionClosed, WebSocketException
WEBSOCKETS_AVAILABLE = True
except ImportError:
websockets = None
websockets_connect = None
ConnectionClosed = Exception
WebSocketException = Exception
WEBSOCKETS_AVAILABLE = False
logger = logging.getLogger(__name__)
@dataclass
class COBWebSocketStatus:
"""Status tracking for COB WebSocket connections"""
connected: bool = False
last_message_time: Optional[datetime] = None
connection_attempts: int = 0
last_error: Optional[str] = None
reconnect_delay: float = 1.0
max_reconnect_delay: float = 60.0
messages_received: int = 0
def reset_reconnect_delay(self):
"""Reset reconnect delay on successful connection"""
self.reconnect_delay = 1.0
def increase_reconnect_delay(self):
"""Increase reconnect delay with exponential backoff"""
self.reconnect_delay = min(self.max_reconnect_delay, self.reconnect_delay * 2)
class EnhancedCOBWebSocket:
"""Enhanced COB WebSocket with robust error handling and fallback"""
def __init__(self, symbols: List[str] = None, dashboard_callback: Callable = None):
"""
Initialize Enhanced COB WebSocket
Args:
symbols: List of symbols to monitor (default: ['BTC/USDT', 'ETH/USDT'])
dashboard_callback: Callback function for dashboard status updates
"""
self.symbols = symbols or ['BTC/USDT', 'ETH/USDT']
self.dashboard_callback = dashboard_callback
# Connection status tracking
self.status: Dict[str, COBWebSocketStatus] = {
symbol: COBWebSocketStatus() for symbol in self.symbols
}
# Data callbacks
self.cob_callbacks: List[Callable] = []
self.error_callbacks: List[Callable] = []
# Latest data cache
self.latest_cob_data: Dict[str, Dict] = {}
# WebSocket connections
self.websocket_tasks: Dict[str, asyncio.Task] = {}
# REST API fallback
self.rest_session: Optional[aiohttp.ClientSession] = None
self.rest_fallback_active: Dict[str, bool] = {symbol: False for symbol in self.symbols}
self.rest_tasks: Dict[str, asyncio.Task] = {}
# Configuration
self.max_depth = 1000 # Maximum depth for order book
self.update_speed = '100ms' # Binance update speed
logger.info(f"Enhanced COB WebSocket initialized for symbols: {self.symbols}")
if not WEBSOCKETS_AVAILABLE:
logger.error("⚠️ WebSockets module not available - COB data will be limited to REST API")
def add_cob_callback(self, callback: Callable):
"""Add callback for COB data updates"""
self.cob_callbacks.append(callback)
def add_error_callback(self, callback: Callable):
"""Add callback for error notifications"""
self.error_callbacks.append(callback)
async def start(self):
"""Start COB WebSocket connections"""
logger.info("🚀 Starting Enhanced COB WebSocket system")
# Initialize REST session for fallback
await self._init_rest_session()
# Start WebSocket connections for each symbol
for symbol in self.symbols:
await self._start_symbol_websocket(symbol)
# Start monitoring task
asyncio.create_task(self._monitor_connections())
logger.info("✅ Enhanced COB WebSocket system started")
async def stop(self):
"""Stop all WebSocket connections"""
logger.info("🛑 Stopping Enhanced COB WebSocket system")
# Cancel all WebSocket tasks
for symbol, task in self.websocket_tasks.items():
if task and not task.done():
task.cancel()
try:
await task
except asyncio.CancelledError:
pass
# Cancel all REST tasks
for symbol, task in self.rest_tasks.items():
if task and not task.done():
task.cancel()
try:
await task
except asyncio.CancelledError:
pass
# Close REST session
if self.rest_session:
await self.rest_session.close()
logger.info("✅ Enhanced COB WebSocket system stopped")
async def _init_rest_session(self):
"""Initialize REST API session for fallback"""
try:
timeout = aiohttp.ClientTimeout(total=10)
self.rest_session = aiohttp.ClientSession(timeout=timeout)
logger.info("✅ REST API session initialized for fallback")
except Exception as e:
logger.error(f"❌ Failed to initialize REST session: {e}")
async def _start_symbol_websocket(self, symbol: str):
"""Start WebSocket connection for a specific symbol"""
if not WEBSOCKETS_AVAILABLE:
logger.warning(f"⚠️ WebSockets not available for {symbol}, starting REST fallback")
await self._start_rest_fallback(symbol)
return
# Cancel existing task if running
if symbol in self.websocket_tasks and not self.websocket_tasks[symbol].done():
self.websocket_tasks[symbol].cancel()
# Start new WebSocket task
self.websocket_tasks[symbol] = asyncio.create_task(
self._websocket_connection_loop(symbol)
)
logger.info(f"🔌 Started WebSocket task for {symbol}")
async def _websocket_connection_loop(self, symbol: str):
"""Main WebSocket connection loop with reconnection logic"""
status = self.status[symbol]
while True:
try:
logger.info(f"🔌 Attempting WebSocket connection for {symbol} (attempt {status.connection_attempts + 1})")
status.connection_attempts += 1
# Create WebSocket URL with maximum depth
ws_symbol = symbol.replace('/', '').lower() # BTCUSDT, ETHUSDT
ws_url = f"wss://stream.binance.com:9443/ws/{ws_symbol}@depth@{self.update_speed}"
logger.info(f"🔗 Connecting to: {ws_url}")
async with websockets_connect(ws_url) as websocket:
# Connection successful
status.connected = True
status.last_error = None
status.reset_reconnect_delay()
logger.info(f"✅ WebSocket connected for {symbol}")
await self._notify_dashboard_status(symbol, "connected", "WebSocket connected")
# Deactivate REST fallback
if self.rest_fallback_active[symbol]:
await self._stop_rest_fallback(symbol)
# Message receiving loop
async for message in websocket:
try:
data = json.loads(message)
await self._process_websocket_message(symbol, data)
status.last_message_time = datetime.now()
status.messages_received += 1
except json.JSONDecodeError as e:
logger.warning(f"⚠️ Invalid JSON from {symbol} WebSocket: {e}")
except Exception as e:
logger.error(f"❌ Error processing WebSocket message for {symbol}: {e}")
except ConnectionClosed as e:
status.connected = False
status.last_error = f"Connection closed: {e}"
logger.warning(f"🔌 WebSocket connection closed for {symbol}: {e}")
except WebSocketException as e:
status.connected = False
status.last_error = f"WebSocket error: {e}"
logger.error(f"❌ WebSocket error for {symbol}: {e}")
except Exception as e:
status.connected = False
status.last_error = f"Unexpected error: {e}"
logger.error(f"❌ Unexpected WebSocket error for {symbol}: {e}")
logger.error(traceback.format_exc())
# Connection failed or closed - start REST fallback
await self._notify_dashboard_status(symbol, "disconnected", status.last_error)
await self._start_rest_fallback(symbol)
# Wait before reconnecting
status.increase_reconnect_delay()
logger.info(f"⏳ Waiting {status.reconnect_delay:.1f}s before reconnecting {symbol}")
await asyncio.sleep(status.reconnect_delay)
async def _process_websocket_message(self, symbol: str, data: Dict):
"""Process WebSocket message and convert to COB format"""
try:
# Binance depth stream format
if 'b' in data and 'a' in data: # bids and asks
cob_data = {
'symbol': symbol,
'timestamp': datetime.now(),
'bids': [{'price': float(bid[0]), 'size': float(bid[1])} for bid in data['b']],
'asks': [{'price': float(ask[0]), 'size': float(ask[1])} for ask in data['a']],
'source': 'websocket',
'exchange': 'binance'
}
# Calculate stats
if cob_data['bids'] and cob_data['asks']:
best_bid = max(cob_data['bids'], key=lambda x: x['price'])
best_ask = min(cob_data['asks'], key=lambda x: x['price'])
cob_data['stats'] = {
'best_bid': best_bid['price'],
'best_ask': best_ask['price'],
'spread': best_ask['price'] - best_bid['price'],
'mid_price': (best_bid['price'] + best_ask['price']) / 2,
'bid_volume': sum(bid['size'] for bid in cob_data['bids']),
'ask_volume': sum(ask['size'] for ask in cob_data['asks'])
}
# Update cache
self.latest_cob_data[symbol] = cob_data
# Notify callbacks
for callback in self.cob_callbacks:
try:
await callback(symbol, cob_data)
except Exception as e:
logger.error(f"❌ Error in COB callback: {e}")
logger.debug(f"📊 Processed WebSocket COB data for {symbol}: {len(cob_data['bids'])} bids, {len(cob_data['asks'])} asks")
except Exception as e:
logger.error(f"❌ Error processing WebSocket message for {symbol}: {e}")
async def _start_rest_fallback(self, symbol: str):
"""Start REST API fallback for a symbol"""
if self.rest_fallback_active[symbol]:
return # Already active
self.rest_fallback_active[symbol] = True
# Cancel existing REST task
if symbol in self.rest_tasks and not self.rest_tasks[symbol].done():
self.rest_tasks[symbol].cancel()
# Start new REST task
self.rest_tasks[symbol] = asyncio.create_task(
self._rest_fallback_loop(symbol)
)
logger.warning(f"⚠️ Started REST API fallback for {symbol}")
await self._notify_dashboard_status(symbol, "fallback", "Using REST API fallback")
async def _stop_rest_fallback(self, symbol: str):
"""Stop REST API fallback for a symbol"""
if not self.rest_fallback_active[symbol]:
return
self.rest_fallback_active[symbol] = False
if symbol in self.rest_tasks and not self.rest_tasks[symbol].done():
self.rest_tasks[symbol].cancel()
logger.info(f"✅ Stopped REST API fallback for {symbol}")
async def _rest_fallback_loop(self, symbol: str):
"""REST API fallback loop"""
while self.rest_fallback_active[symbol]:
try:
await self._fetch_rest_orderbook(symbol)
await asyncio.sleep(1) # Update every second
except asyncio.CancelledError:
break
except Exception as e:
logger.error(f"❌ REST fallback error for {symbol}: {e}")
await asyncio.sleep(5) # Wait longer on error
async def _fetch_rest_orderbook(self, symbol: str):
"""Fetch order book data via REST API"""
try:
if not self.rest_session:
return
# Binance REST API
rest_symbol = symbol.replace('/', '') # BTCUSDT, ETHUSDT
url = f"https://api.binance.com/api/v3/depth?symbol={rest_symbol}&limit=1000"
async with self.rest_session.get(url) as response:
if response.status == 200:
data = await response.json()
cob_data = {
'symbol': symbol,
'timestamp': datetime.now(),
'bids': [{'price': float(bid[0]), 'size': float(bid[1])} for bid in data['bids']],
'asks': [{'price': float(ask[0]), 'size': float(ask[1])} for ask in data['asks']],
'source': 'rest_fallback',
'exchange': 'binance'
}
# Calculate stats
if cob_data['bids'] and cob_data['asks']:
best_bid = max(cob_data['bids'], key=lambda x: x['price'])
best_ask = min(cob_data['asks'], key=lambda x: x['price'])
cob_data['stats'] = {
'best_bid': best_bid['price'],
'best_ask': best_ask['price'],
'spread': best_ask['price'] - best_bid['price'],
'mid_price': (best_bid['price'] + best_ask['price']) / 2,
'bid_volume': sum(bid['size'] for bid in cob_data['bids']),
'ask_volume': sum(ask['size'] for ask in cob_data['asks'])
}
# Update cache
self.latest_cob_data[symbol] = cob_data
# Notify callbacks
for callback in self.cob_callbacks:
try:
await callback(symbol, cob_data)
except Exception as e:
logger.error(f"❌ Error in COB callback: {e}")
logger.debug(f"📊 Fetched REST COB data for {symbol}: {len(cob_data['bids'])} bids, {len(cob_data['asks'])} asks")
else:
logger.warning(f"⚠️ REST API error for {symbol}: HTTP {response.status}")
except Exception as e:
logger.error(f"❌ Error fetching REST order book for {symbol}: {e}")
async def _monitor_connections(self):
"""Monitor WebSocket connections and provide status updates"""
while True:
try:
await asyncio.sleep(10) # Check every 10 seconds
for symbol in self.symbols:
status = self.status[symbol]
# Check for stale connections
if status.connected and status.last_message_time:
time_since_last = datetime.now() - status.last_message_time
if time_since_last > timedelta(seconds=30):
logger.warning(f"⚠️ No messages from {symbol} WebSocket for {time_since_last.total_seconds():.0f}s")
await self._notify_dashboard_status(symbol, "stale", "No recent messages")
# Log status
if status.connected:
logger.debug(f"{symbol}: Connected, {status.messages_received} messages received")
elif self.rest_fallback_active[symbol]:
logger.debug(f"⚠️ {symbol}: Using REST fallback")
else:
logger.debug(f"{symbol}: Disconnected, last error: {status.last_error}")
except Exception as e:
logger.error(f"❌ Error in connection monitor: {e}")
async def _notify_dashboard_status(self, symbol: str, status: str, message: str):
"""Notify dashboard of status changes"""
try:
if self.dashboard_callback:
await self.dashboard_callback({
'type': 'cob_status',
'symbol': symbol,
'status': status,
'message': message,
'timestamp': datetime.now().isoformat()
})
except Exception as e:
logger.error(f"❌ Error notifying dashboard: {e}")
def get_status_summary(self) -> Dict[str, Any]:
"""Get status summary for all symbols"""
summary = {
'websockets_available': WEBSOCKETS_AVAILABLE,
'symbols': {},
'overall_status': 'unknown'
}
connected_count = 0
fallback_count = 0
for symbol in self.symbols:
status = self.status[symbol]
symbol_status = {
'connected': status.connected,
'last_message_time': status.last_message_time.isoformat() if status.last_message_time else None,
'connection_attempts': status.connection_attempts,
'last_error': status.last_error,
'messages_received': status.messages_received,
'rest_fallback_active': self.rest_fallback_active[symbol]
}
if status.connected:
connected_count += 1
elif self.rest_fallback_active[symbol]:
fallback_count += 1
summary['symbols'][symbol] = symbol_status
# Determine overall status
if connected_count == len(self.symbols):
summary['overall_status'] = 'all_connected'
elif connected_count + fallback_count == len(self.symbols):
summary['overall_status'] = 'partial_fallback'
else:
summary['overall_status'] = 'degraded'
return summary
# Global instance for easy access
enhanced_cob_websocket: Optional[EnhancedCOBWebSocket] = None
async def get_enhanced_cob_websocket(symbols: List[str] = None, dashboard_callback: Callable = None) -> EnhancedCOBWebSocket:
"""Get or create the global enhanced COB WebSocket instance"""
global enhanced_cob_websocket
if enhanced_cob_websocket is None:
enhanced_cob_websocket = EnhancedCOBWebSocket(symbols, dashboard_callback)
await enhanced_cob_websocket.start()
return enhanced_cob_websocket
async def stop_enhanced_cob_websocket():
"""Stop the global enhanced COB WebSocket instance"""
global enhanced_cob_websocket
if enhanced_cob_websocket:
await enhanced_cob_websocket.stop()
enhanced_cob_websocket = None

View File

@ -1369,15 +1369,31 @@ class TradingOrchestrator:
reasoning['models_aggregated'] = [pred.model_name for pred in predictions]
reasoning['aggregated_confidence'] = best_confidence
# Apply confidence thresholds for signal confirmation
# Calculate dynamic aggressiveness based on recent performance
entry_aggressiveness = self._calculate_dynamic_entry_aggressiveness(symbol)
# Adjust confidence threshold based on entry aggressiveness
# Higher aggressiveness = lower threshold (more trades)
# entry_aggressiveness: 0.0 = very conservative, 1.0 = very aggressive
base_threshold = self.confidence_threshold
aggressiveness_factor = 1.0 - entry_aggressiveness # Invert: high agg = low factor
dynamic_threshold = base_threshold * aggressiveness_factor
# Ensure minimum threshold for safety (don't go below 1% confidence)
dynamic_threshold = max(0.01, dynamic_threshold)
# Apply dynamic confidence threshold for signal confirmation
if best_action != 'HOLD':
if best_confidence < self.confidence_threshold:
logger.debug(f"Signal below confidence threshold: {best_action} {symbol} "
f"(confidence: {best_confidence:.3f} < {self.confidence_threshold})")
if best_confidence < dynamic_threshold:
logger.debug(f"Signal below dynamic confidence threshold: {best_action} {symbol} "
f"(confidence: {best_confidence:.3f} < {dynamic_threshold:.3f}, "
f"base: {base_threshold:.3f}, aggressiveness: {entry_aggressiveness:.2f})")
best_action = 'HOLD'
best_confidence = 0.0
reasoning['rejected_reason'] = 'low_confidence'
else:
logger.info(f"SIGNAL ACCEPTED: {best_action} {symbol} "
f"(confidence: {best_confidence:.3f} >= {dynamic_threshold:.3f}, "
f"aggressiveness: {entry_aggressiveness:.2f})")
# Add signal to accumulator for trend confirmation
signal_data = {
'action': best_action,
@ -1418,8 +1434,7 @@ class TradingOrchestrator:
except Exception:
memory_usage = {}
# Calculate dynamic aggressiveness based on recent performance
entry_aggressiveness = self._calculate_dynamic_entry_aggressiveness(symbol)
# Get exit aggressiveness (entry aggressiveness already calculated above)
exit_aggressiveness = self._calculate_dynamic_exit_aggressiveness(symbol, current_position_pnl)
# Create final decision
@ -1440,6 +1455,9 @@ class TradingOrchestrator:
f"entry_agg: {entry_aggressiveness:.2f}, exit_agg: {exit_aggressiveness:.2f}, "
f"pnl: ${current_position_pnl:.2f})")
# Trigger training on each decision (especially for executed trades)
self._trigger_training_on_decision(decision, price)
return decision
except Exception as e:
@ -2032,6 +2050,253 @@ class TradingOrchestrator:
logger.error(f"Error calculating enhanced reward: {e}")
return base_pnl
def _trigger_training_on_decision(self, decision: TradingDecision, current_price: float):
"""Trigger training on each decision, especially executed trades
This ensures models learn from every signal outcome, giving more weight
to executed trades as they have real market feedback.
"""
try:
# Only train if training is enabled and we have the enhanced training system
if not self.training_enabled or not self.enhanced_training_system:
return
symbol = decision.symbol
action = decision.action
confidence = decision.confidence
# Create training data from the decision
training_data = {
'symbol': symbol,
'action': action,
'confidence': confidence,
'price': current_price,
'timestamp': decision.timestamp,
'executed': action != 'HOLD', # Assume non-HOLD actions are executed
'entry_aggressiveness': decision.entry_aggressiveness,
'exit_aggressiveness': decision.exit_aggressiveness,
'reasoning': decision.reasoning
}
# Add to enhanced training system for immediate learning
if hasattr(self.enhanced_training_system, 'add_decision_for_training'):
self.enhanced_training_system.add_decision_for_training(training_data)
logger.debug(f"🎓 Added decision to training queue: {action} {symbol} (conf: {confidence:.3f})")
# Trigger immediate training for executed trades (higher priority)
if action != 'HOLD':
if hasattr(self.enhanced_training_system, 'trigger_immediate_training'):
self.enhanced_training_system.trigger_immediate_training(
symbol=symbol,
priority='high' if confidence > 0.7 else 'medium'
)
logger.info(f"🚀 Triggered immediate training for executed trade: {action} {symbol}")
# Train all models on the decision outcome
self._train_models_on_decision(decision, current_price)
except Exception as e:
logger.error(f"Error triggering training on decision: {e}")
def _train_models_on_decision(self, decision: TradingDecision, current_price: float):
"""Train all models on the decision outcome
This provides immediate feedback to models about their predictions,
allowing them to learn from each signal they generate.
"""
try:
symbol = decision.symbol
action = decision.action
confidence = decision.confidence
# Get current market data for training context
market_data = self._get_current_market_data(symbol)
if not market_data:
return
# Train DQN agent if available
if self.rl_agent and hasattr(self.rl_agent, 'add_experience'):
try:
# Create state representation
state = self._create_state_for_training(symbol, market_data)
# Map action to DQN action space
action_mapping = {'BUY': 0, 'SELL': 1, 'HOLD': 2}
dqn_action = action_mapping.get(action, 2)
# Calculate immediate reward based on confidence and execution
immediate_reward = confidence if action != 'HOLD' else 0.0
# Add experience to DQN
self.rl_agent.add_experience(
state=state,
action=dqn_action,
reward=immediate_reward,
next_state=state, # Will be updated with actual outcome later
done=False
)
logger.debug(f"🧠 Added DQN experience: {action} {symbol} (reward: {immediate_reward:.3f})")
except Exception as e:
logger.debug(f"Error training DQN on decision: {e}")
# Train CNN model if available
if self.cnn_model and hasattr(self.cnn_model, 'add_training_sample'):
try:
# Create CNN input features
cnn_features = self._create_cnn_features_for_training(symbol, market_data)
# Create target based on action
target_mapping = {'BUY': [1, 0, 0], 'SELL': [0, 1, 0], 'HOLD': [0, 0, 1]}
target = target_mapping.get(action, [0, 0, 1])
# Add training sample
self.cnn_model.add_training_sample(cnn_features, target, weight=confidence)
logger.debug(f"🔍 Added CNN training sample: {action} {symbol}")
except Exception as e:
logger.debug(f"Error training CNN on decision: {e}")
# Train COB RL model if available and we have COB data
if self.cob_rl_agent and symbol in self.latest_cob_data:
try:
cob_data = self.latest_cob_data[symbol]
if hasattr(self.cob_rl_agent, 'add_experience'):
# Create COB state representation
cob_state = self._create_cob_state_for_training(symbol, cob_data)
# Add COB experience
self.cob_rl_agent.add_experience(
state=cob_state,
action=action,
reward=confidence,
symbol=symbol
)
logger.debug(f"📊 Added COB RL experience: {action} {symbol}")
except Exception as e:
logger.debug(f"Error training COB RL on decision: {e}")
except Exception as e:
logger.error(f"Error training models on decision: {e}")
def _get_current_market_data(self, symbol: str) -> Optional[Dict]:
"""Get current market data for training context"""
try:
if self.data_provider:
# Get recent data for training
df = self.data_provider.get_historical_data(symbol, '1m', limit=100)
if df is not None and not df.empty:
return {
'ohlcv': df.tail(50).to_dict('records'), # Last 50 candles
'current_price': float(df['close'].iloc[-1]),
'volume': float(df['volume'].iloc[-1]),
'timestamp': df.index[-1]
}
return None
except Exception as e:
logger.debug(f"Error getting market data for training: {e}")
return None
def _create_state_for_training(self, symbol: str, market_data: Dict) -> np.ndarray:
"""Create state representation for DQN training"""
try:
# Create a basic state representation
ohlcv_data = market_data.get('ohlcv', [])
if not ohlcv_data:
return np.zeros(100) # Default state size
# Extract features from recent candles
features = []
for candle in ohlcv_data[-20:]: # Last 20 candles
features.extend([
candle.get('open', 0),
candle.get('high', 0),
candle.get('low', 0),
candle.get('close', 0),
candle.get('volume', 0)
])
# Pad or truncate to expected size
state = np.array(features[:100])
if len(state) < 100:
state = np.pad(state, (0, 100 - len(state)), 'constant')
return state
except Exception as e:
logger.debug(f"Error creating state for training: {e}")
return np.zeros(100)
def _create_cnn_features_for_training(self, symbol: str, market_data: Dict) -> np.ndarray:
"""Create CNN features for training"""
try:
# Similar to state creation but formatted for CNN
ohlcv_data = market_data.get('ohlcv', [])
if not ohlcv_data:
return np.zeros((1, 100))
# Create feature matrix
features = []
for candle in ohlcv_data[-20:]:
features.extend([
candle.get('open', 0),
candle.get('high', 0),
candle.get('low', 0),
candle.get('close', 0),
candle.get('volume', 0)
])
# Reshape for CNN input
cnn_features = np.array(features[:100]).reshape(1, -1)
if cnn_features.shape[1] < 100:
cnn_features = np.pad(cnn_features, ((0, 0), (0, 100 - cnn_features.shape[1])), 'constant')
return cnn_features
except Exception as e:
logger.debug(f"Error creating CNN features for training: {e}")
return np.zeros((1, 100))
def _create_cob_state_for_training(self, symbol: str, cob_data: Dict) -> np.ndarray:
"""Create COB state representation for training"""
try:
# Extract COB features for training
features = []
# Add bid/ask data
bids = cob_data.get('bids', [])[:10] # Top 10 bids
asks = cob_data.get('asks', [])[:10] # Top 10 asks
for bid in bids:
features.extend([bid.get('price', 0), bid.get('size', 0)])
for ask in asks:
features.extend([ask.get('price', 0), ask.get('size', 0)])
# Add market stats
stats = cob_data.get('stats', {})
features.extend([
stats.get('spread', 0),
stats.get('mid_price', 0),
stats.get('bid_volume', 0),
stats.get('ask_volume', 0),
stats.get('imbalance', 0)
])
# Pad to expected COB state size (2000 features)
cob_state = np.array(features[:2000])
if len(cob_state) < 2000:
cob_state = np.pad(cob_state, (0, 2000 - len(cob_state)), 'constant')
return cob_state
except Exception as e:
logger.debug(f"Error creating COB state for training: {e}")
return np.zeros(2000)
def _check_signal_confirmation(self, symbol: str, signal_data: Dict) -> Optional[str]:
"""Check if we have enough signal confirmations for trend confirmation with rate limiting"""
try: