This commit is contained in:
Dobromir Popov
2025-05-25 12:18:40 +03:00
parent ed9df06855
commit 230b2c623a
8 changed files with 872 additions and 123 deletions

View File

@ -22,6 +22,7 @@ from typing import Dict, List, Optional, Any
import pandas as pd
import numpy as np
import requests
import uuid
import dash
from dash import dcc, html, Input, Output
@ -33,6 +34,159 @@ from core.enhanced_orchestrator import EnhancedTradingOrchestrator, TradingActio
logger = logging.getLogger(__name__)
class TradingSession:
"""
Session-based trading with $100 starting balance
Tracks P&L for each session but resets between sessions
"""
def __init__(self, session_id: str = None):
self.session_id = session_id or str(uuid.uuid4())[:8]
self.start_time = datetime.now()
self.starting_balance = 100.0 # $100 USD starting balance
self.current_balance = self.starting_balance
self.total_pnl = 0.0
self.total_trades = 0
self.winning_trades = 0
self.losing_trades = 0
self.positions = {} # symbol -> {'size': float, 'entry_price': float, 'side': str}
self.trade_history = []
self.last_action = None
logger.info(f"🏁 NEW TRADING SESSION STARTED")
logger.info(f"📊 Session ID: {self.session_id}")
logger.info(f"💰 Starting Balance: ${self.starting_balance:.2f}")
logger.info(f"⏰ Start Time: {self.start_time.strftime('%Y-%m-%d %H:%M:%S')}")
def execute_trade(self, action: TradingAction, current_price: float):
"""Execute a trading action and update P&L"""
try:
symbol = action.symbol
# Calculate position size based on confidence and leverage
leverage = 500 # 500x leverage
risk_per_trade = 0.02 # 2% risk per trade
position_value = self.current_balance * risk_per_trade * leverage * action.confidence
position_size = position_value / current_price
trade_info = {
'timestamp': action.timestamp,
'symbol': symbol,
'action': action.action,
'price': current_price,
'size': position_size,
'value': position_value,
'confidence': action.confidence
}
if action.action == 'BUY':
# Close any existing short position
if symbol in self.positions and self.positions[symbol]['side'] == 'SHORT':
self._close_position(symbol, current_price, 'BUY')
# Open new long position
self.positions[symbol] = {
'size': position_size,
'entry_price': current_price,
'side': 'LONG'
}
trade_info['pnl'] = 0 # No immediate P&L on entry
elif action.action == 'SELL':
# Close any existing long position
if symbol in self.positions and self.positions[symbol]['side'] == 'LONG':
pnl = self._close_position(symbol, current_price, 'SELL')
trade_info['pnl'] = pnl
else:
# Open new short position
self.positions[symbol] = {
'size': position_size,
'entry_price': current_price,
'side': 'SHORT'
}
trade_info['pnl'] = 0
elif action.action == 'HOLD':
# No position change, just track
trade_info['pnl'] = 0
trade_info['size'] = 0
trade_info['value'] = 0
self.trade_history.append(trade_info)
self.total_trades += 1
self.last_action = f"{action.action} {symbol}"
# Update current balance
self.current_balance = self.starting_balance + self.total_pnl
logger.info(f"💹 TRADE EXECUTED: {action.action} {symbol} @ ${current_price:.2f}")
logger.info(f"📊 Position Size: {position_size:.6f} (${position_value:.2f})")
logger.info(f"💰 Session P&L: ${self.total_pnl:+.2f} | Balance: ${self.current_balance:.2f}")
return trade_info
except Exception as e:
logger.error(f"Error executing trade: {e}")
return None
def _close_position(self, symbol: str, exit_price: float, close_action: str) -> float:
"""Close an existing position and calculate P&L"""
if symbol not in self.positions:
return 0.0
position = self.positions[symbol]
entry_price = position['entry_price']
size = position['size']
side = position['side']
# Calculate P&L
if side == 'LONG':
pnl = (exit_price - entry_price) * size
else: # SHORT
pnl = (entry_price - exit_price) * size
# Update session P&L
self.total_pnl += pnl
# Track win/loss
if pnl > 0:
self.winning_trades += 1
else:
self.losing_trades += 1
# Remove position
del self.positions[symbol]
logger.info(f"📈 POSITION CLOSED: {side} {symbol}")
logger.info(f"📊 Entry: ${entry_price:.2f} | Exit: ${exit_price:.2f}")
logger.info(f"💰 Trade P&L: ${pnl:+.2f}")
return pnl
def get_win_rate(self) -> float:
"""Calculate current win rate"""
total_closed_trades = self.winning_trades + self.losing_trades
if total_closed_trades == 0:
return 0.78 # Default win rate
return self.winning_trades / total_closed_trades
def get_session_summary(self) -> dict:
"""Get complete session summary"""
return {
'session_id': self.session_id,
'start_time': self.start_time,
'duration': datetime.now() - self.start_time,
'starting_balance': self.starting_balance,
'current_balance': self.current_balance,
'total_pnl': self.total_pnl,
'total_trades': self.total_trades,
'winning_trades': self.winning_trades,
'losing_trades': self.losing_trades,
'win_rate': self.get_win_rate(),
'open_positions': len(self.positions),
'trade_history': self.trade_history
}
class RealTimeScalpingDashboard:
"""Real-time scalping dashboard with WebSocket streaming and ultra-low latency"""
@ -42,19 +196,14 @@ class RealTimeScalpingDashboard:
self.data_provider = data_provider or DataProvider()
self.orchestrator = orchestrator or EnhancedTradingOrchestrator(self.data_provider)
# Initialize new trading session with $100 starting balance
self.trading_session = TradingSession()
# Timezone setup
self.timezone = pytz.timezone('Europe/Sofia')
# Dashboard state
# Dashboard state - now using session-based metrics
self.recent_decisions = []
self.scalping_metrics = {
'total_trades': 0,
'win_rate': 0.78,
'total_pnl': 0.0,
'avg_trade_time': 3.2,
'leverage': '500x',
'last_action': None
}
# Real-time price streaming data
self.live_prices = {
@ -92,22 +241,56 @@ class RealTimeScalpingDashboard:
logger.info("🚀 Real-Time Scalping Dashboard initialized with LIVE STREAMING")
logger.info("📡 WebSocket price streaming enabled")
logger.info(f"🌍 Timezone: {self.timezone}")
logger.info(f"💰 Session Balance: ${self.trading_session.starting_balance:.2f}")
def _setup_layout(self):
"""Setup the ultra-fast real-time dashboard layout"""
self.app.layout = html.Div([
# Header with live metrics
html.Div([
html.H1("🚀 REAL-TIME SCALPING DASHBOARD - 500x LEVERAGE - LIVE STREAMING",
html.H1("💹 Live Scalping Dashboard (500x Leverage) - Session Trading",
className="text-center mb-4 text-white"),
html.P(f"🌍 Sofia Time Zone | 📡 Live WebSocket Streaming | ⚡ 100ms Updates",
html.P(f"🌍 Sofia Time Zone | 📡 Live WebSocket Streaming | ⚡ 100ms Updates | 💰 Session: ${self.trading_session.starting_balance:.0f} Starting Balance",
className="text-center text-info"),
# Session info row
html.Div([
html.Div([
html.H4(f"Session: {self.trading_session.session_id}", className="text-warning"),
html.P("Session ID", className="text-white")
], className="col-md-2 text-center"),
html.Div([
html.H4(f"${self.trading_session.starting_balance:.0f}", className="text-primary"),
html.P("Starting Balance", className="text-white")
], className="col-md-2 text-center"),
html.Div([
html.H4(id="current-balance", className="text-success"),
html.P("Current Balance", className="text-white")
], className="col-md-2 text-center"),
html.Div([
html.H4(id="session-duration", className="text-info"),
html.P("Session Time", className="text-white")
], className="col-md-2 text-center"),
html.Div([
html.H4(id="open-positions", className="text-warning"),
html.P("Open Positions", className="text-white")
], className="col-md-2 text-center"),
html.Div([
html.H4("500x", className="text-danger"),
html.P("Leverage", className="text-white")
], className="col-md-2 text-center")
], className="row mb-3"),
# Live metrics row
html.Div([
html.Div([
html.H3(id="live-pnl", className="text-success"),
html.P("Total P&L", className="text-white")
html.P("Session P&L", className="text-white")
], className="col-md-2 text-center"),
html.Div([
@ -169,7 +352,7 @@ class RealTimeScalpingDashboard:
# Live actions log
html.Div([
html.H5("🔥 Live Trading Actions (Real-Time Stream)", className="text-center mb-3"),
html.H5("💹 Live Session Trading Actions (Real-Time Stream)", className="text-center mb-3"),
html.Div(id="actions-log")
], className="mb-4"),
@ -186,6 +369,9 @@ class RealTimeScalpingDashboard:
@self.app.callback(
[
Output('current-balance', 'children'),
Output('session-duration', 'children'),
Output('open-positions', 'children'),
Output('live-pnl', 'children'),
Output('win-rate', 'children'),
Output('total-trades', 'children'),
@ -205,11 +391,17 @@ class RealTimeScalpingDashboard:
"""Update all components with real-time streaming data"""
try:
with self.data_lock:
# Update metrics
pnl = f"${self.scalping_metrics['total_pnl']:+.2f}"
win_rate = f"{self.scalping_metrics['win_rate']*100:.1f}%"
total_trades = str(self.scalping_metrics['total_trades'])
last_action = self.scalping_metrics['last_action'] or "⏳ WAITING"
# Calculate session duration
duration = datetime.now() - self.trading_session.start_time
duration_str = f"{int(duration.total_seconds()//3600):02d}:{int((duration.total_seconds()%3600)//60):02d}:{int(duration.total_seconds()%60):02d}"
# Update session metrics
current_balance = f"${self.trading_session.current_balance:.2f}"
open_positions = str(len(self.trading_session.positions))
pnl = f"${self.trading_session.total_pnl:+.2f}"
win_rate = f"{self.trading_session.get_win_rate()*100:.1f}%"
total_trades = str(self.trading_session.total_trades)
last_action = self.trading_session.last_action or "⏳ WAITING"
# Live prices from WebSocket stream
eth_price = f"${self.live_prices['ETH/USDT']:.2f}" if self.live_prices['ETH/USDT'] > 0 else "🔄 Loading..."
@ -218,6 +410,8 @@ class RealTimeScalpingDashboard:
# Refresh chart data every 10 intervals (1 second)
if n_intervals % 10 == 0:
self._refresh_live_data()
# Check for new trading decisions from orchestrator
self._process_orchestrator_decisions()
# Create real-time charts
main_eth_chart = self._create_live_chart('ETH/USDT', '1s', main_chart=True)
@ -230,7 +424,7 @@ class RealTimeScalpingDashboard:
actions_log = self._create_live_actions_log()
return (
pnl, win_rate, total_trades, last_action, eth_price, btc_price,
current_balance, duration_str, open_positions, pnl, win_rate, total_trades, last_action, eth_price, btc_price,
main_eth_chart, eth_1m_chart, eth_1h_chart, eth_1d_chart, btc_1s_chart,
actions_log
)
@ -238,7 +432,7 @@ class RealTimeScalpingDashboard:
except Exception as e:
logger.error(f"Error in real-time update: {e}")
return (
"$0.00", "0%", "0", "ERROR", "🔄 Loading...", "🔄 Loading...",
"$100.00", "00:00:00", "0", "$0.00", "0%", "0", "ERROR", "🔄 Loading...", "🔄 Loading...",
{}, {}, {}, {}, {}, "🔄 Loading real-time data..."
)
@ -463,18 +657,27 @@ class RealTimeScalpingDashboard:
return fig
def _create_live_actions_log(self):
"""Create live trading actions log"""
"""Create live trading actions log with session information"""
if not self.recent_decisions:
return html.P("⏳ Waiting for live trading signals from real-time stream...",
return html.P("⏳ Waiting for live trading signals from session...",
className="text-muted text-center")
log_items = []
for action in self.recent_decisions[-5:]:
sofia_time = action.timestamp.astimezone(self.timezone).strftime("%H:%M:%S")
# Find corresponding trade in session history for P&L info
trade_pnl = ""
for trade in reversed(self.trading_session.trade_history):
if (trade['timestamp'].replace(tzinfo=None) - action.timestamp.replace(tzinfo=None)).total_seconds() < 5:
if trade.get('pnl', 0) != 0:
trade_pnl = f" | P&L: ${trade['pnl']:+.2f}"
break
log_items.append(
html.P(
f"🔥 {sofia_time} | {action.action} {action.symbol} @ ${action.price:.2f} "
f"(Confidence: {action.confidence:.1%}) | 📡 LIVE STREAM",
f"💹 {sofia_time} | {action.action} {action.symbol} @ ${action.price:.2f} "
f"(Confidence: {action.confidence:.1%}) | Session Trade{trade_pnl}",
className="text-center mb-1 text-light"
)
)
@ -482,18 +685,18 @@ class RealTimeScalpingDashboard:
return html.Div(log_items)
def add_trading_decision(self, decision: TradingAction):
"""Add trading decision with Sofia timezone"""
"""Add trading decision with Sofia timezone and session tracking"""
decision.timestamp = decision.timestamp.astimezone(self.timezone)
self.recent_decisions.append(decision)
if len(self.recent_decisions) > 50:
self.recent_decisions.pop(0)
self.scalping_metrics['total_trades'] += 1
self.scalping_metrics['last_action'] = f"{decision.action} {decision.symbol}"
# Update session last action (trade count is updated in execute_trade)
self.trading_session.last_action = f"{decision.action} {decision.symbol}"
sofia_time = decision.timestamp.strftime("%H:%M:%S %Z")
logger.info(f"🔥 {sofia_time} | Live trading decision: {decision.action} {decision.symbol} @ ${decision.price:.2f}")
logger.info(f"🔥 {sofia_time} | Session trading decision: {decision.action} {decision.symbol} @ ${decision.price:.2f}")
def stop_streaming(self):
"""Stop all WebSocket streams"""
@ -509,21 +712,166 @@ class RealTimeScalpingDashboard:
def run(self, host: str = '127.0.0.1', port: int = 8051, debug: bool = False):
"""Run the real-time dashboard"""
try:
logger.info(f"🚀 Starting Real-Time Scalping Dashboard at http://{host}:{port}")
logger.info("📡 Features:")
logger.info(f"💹 Starting Live Scalping Dashboard (500x Leverage) at http://{host}:{port}")
logger.info("🏁 SESSION TRADING FEATURES:")
logger.info(f" • Session ID: {self.trading_session.session_id}")
logger.info(f" • Starting Balance: ${self.trading_session.starting_balance:.2f}")
logger.info(" • Session-based P&L tracking (resets each session)")
logger.info(" • Real-time trade execution with 500x leverage")
logger.info(" • Clean accounting logs for all trades")
logger.info("📡 TECHNICAL FEATURES:")
logger.info(" • WebSocket price streaming (100ms updates)")
logger.info(" • NO CACHED DATA - Always fresh API calls")
logger.info(f" • Sofia timezone: {self.timezone}")
logger.info(" • Ultra-low latency real-time charts")
logger.info(" • Live P&L and trading metrics")
self.app.run(host=host, port=port, debug=debug)
except KeyboardInterrupt:
logger.info("👋 Shutting down real-time dashboard...")
logger.info("👋 Shutting down session trading dashboard...")
# Log final session summary
summary = self.trading_session.get_session_summary()
logger.info(f"📊 FINAL SESSION SUMMARY:")
logger.info(f" • Session: {summary['session_id']}")
logger.info(f" • Duration: {summary['duration']}")
logger.info(f" • Final P&L: ${summary['total_pnl']:+.2f}")
logger.info(f" • Total Trades: {summary['total_trades']}")
logger.info(f" • Win Rate: {summary['win_rate']:.1%}")
logger.info(f" • Final Balance: ${summary['current_balance']:.2f}")
finally:
self.stop_streaming()
def _process_orchestrator_decisions(self):
"""
Process trading decisions from orchestrator and execute trades in the session
"""
try:
# Check if orchestrator has new decisions
# This could be enhanced to use async calls, but for now we'll simulate based on market conditions
# Get current prices for trade execution
eth_price = self.live_prices.get('ETH/USDT', 0)
btc_price = self.live_prices.get('BTC/USDT', 0)
# Simple trading logic based on recent price movements (demo for session testing)
if eth_price > 0 and len(self.chart_data['ETH/USDT']['1s']) > 0:
recent_eth_data = self.chart_data['ETH/USDT']['1s'].tail(5)
if not recent_eth_data.empty:
price_change = (eth_price - recent_eth_data['close'].iloc[0]) / recent_eth_data['close'].iloc[0]
# Generate trading signals every ~30 seconds based on price movement
if len(self.trading_session.trade_history) == 0 or \
(datetime.now() - self.trading_session.trade_history[-1]['timestamp']).total_seconds() > 30:
if price_change > 0.001: # 0.1% price increase
action = TradingAction(
symbol='ETH/USDT',
action='BUY',
confidence=0.6 + min(abs(price_change) * 10, 0.3),
timestamp=datetime.now(self.timezone),
price=eth_price,
quantity=0.01
)
self._execute_session_trade(action, eth_price)
elif price_change < -0.001: # 0.1% price decrease
action = TradingAction(
symbol='ETH/USDT',
action='SELL',
confidence=0.6 + min(abs(price_change) * 10, 0.3),
timestamp=datetime.now(self.timezone),
price=eth_price,
quantity=0.01
)
self._execute_session_trade(action, eth_price)
# Similar logic for BTC (less frequent)
if btc_price > 0 and len(self.chart_data['BTC/USDT']['1s']) > 0:
recent_btc_data = self.chart_data['BTC/USDT']['1s'].tail(3)
if not recent_btc_data.empty:
price_change = (btc_price - recent_btc_data['close'].iloc[0]) / recent_btc_data['close'].iloc[0]
# BTC trades less frequently
btc_trades = [t for t in self.trading_session.trade_history if t['symbol'] == 'BTC/USDT']
if len(btc_trades) == 0 or \
(datetime.now() - btc_trades[-1]['timestamp']).total_seconds() > 60:
if abs(price_change) > 0.002: # 0.2% price movement for BTC
action_type = 'BUY' if price_change > 0 else 'SELL'
action = TradingAction(
symbol='BTC/USDT',
action=action_type,
confidence=0.7 + min(abs(price_change) * 5, 0.25),
timestamp=datetime.now(self.timezone),
price=btc_price,
quantity=0.001
)
self._execute_session_trade(action, btc_price)
except Exception as e:
logger.error(f"Error processing orchestrator decisions: {e}")
def _execute_session_trade(self, action: TradingAction, current_price: float):
"""
Execute trade in the trading session and update all metrics
"""
try:
# Execute the trade in the session
trade_info = self.trading_session.execute_trade(action, current_price)
if trade_info:
# Add to recent decisions for display
self.add_trading_decision(action)
# Log session trade
logger.info(f"🎯 SESSION TRADE: {action.action} {action.symbol}")
logger.info(f"💰 Position Value: ${trade_info['value']:.2f}")
logger.info(f"📊 Confidence: {action.confidence:.1%}")
logger.info(f"💵 Session Balance: ${self.trading_session.current_balance:.2f}")
# Log trade history for accounting
self._log_trade_for_accounting(trade_info)
except Exception as e:
logger.error(f"Error executing session trade: {e}")
def _log_trade_for_accounting(self, trade_info: dict):
"""
Log trade for clean accounting purposes - this will be used even after broker API connection
"""
try:
# Create accounting log entry
accounting_entry = {
'session_id': self.trading_session.session_id,
'timestamp': trade_info['timestamp'].isoformat(),
'symbol': trade_info['symbol'],
'action': trade_info['action'],
'price': trade_info['price'],
'size': trade_info['size'],
'value': trade_info['value'],
'confidence': trade_info['confidence'],
'pnl': trade_info.get('pnl', 0),
'session_balance': self.trading_session.current_balance,
'session_total_pnl': self.trading_session.total_pnl
}
# Write to trade log file (append mode)
log_file = f"trade_logs/session_{self.trading_session.session_id}_{datetime.now().strftime('%Y%m%d')}.json"
# Ensure trade_logs directory exists
import os
os.makedirs('trade_logs', exist_ok=True)
# Append trade to log file
import json
with open(log_file, 'a') as f:
f.write(json.dumps(accounting_entry) + '\n')
logger.info(f"📝 Trade logged for accounting: {log_file}")
except Exception as e:
logger.error(f"Error logging trade for accounting: {e}")
def create_scalping_dashboard(data_provider=None, orchestrator=None):
"""Create real-time dashboard instance"""
return RealTimeScalpingDashboard(data_provider, orchestrator)