infinite lowad WIP

This commit is contained in:
Dobromir Popov
2025-10-24 23:04:29 +03:00
parent 07b82f0a1f
commit 2233a88d3e
5 changed files with 522 additions and 73 deletions

View File

@@ -79,11 +79,14 @@ class HistoricalDataLoader:
if len(cached_df) >= min(limit, 100): # Use cached if we have at least 100 candles
logger.debug(f"Using DataProvider cached data for {symbol} {timeframe} ({len(cached_df)} candles)")
# Filter by time range if specified
if start_time or end_time:
filtered_df = self._filter_by_time_range(cached_df.copy(), start_time, end_time)
else:
filtered_df = cached_df.tail(limit).copy()
# Filter by time range with direction support
filtered_df = self._filter_by_time_range(
cached_df.copy(),
start_time,
end_time,
direction,
limit
)
# Cache in memory
self.memory_cache[cache_key] = (filtered_df, datetime.now())
@@ -140,13 +143,14 @@ class HistoricalDataLoader:
df = self.data_provider.cached_data[symbol][timeframe]
if df is not None and not df.empty:
# Filter by time range if specified
if start_time or end_time:
df = self._filter_by_time_range(df, start_time, end_time)
# Limit number of candles
if len(df) > limit:
df = df.tail(limit)
# Filter by time range with direction support
df = self._filter_by_time_range(
df.copy(),
start_time,
end_time,
direction,
limit
)
# Cache in memory
self.memory_cache[cache_key] = (df.copy(), datetime.now())
@@ -182,10 +186,37 @@ class HistoricalDataLoader:
self.memory_cache[cache_key] = (df.copy(), datetime.now())
return df
else:
logger.info(f"No data in DuckDB, fetching from API for {symbol} {timeframe}")
logger.info(f"📡 No data in DuckDB, fetching from exchange API for {symbol} {timeframe}")
# Fetch from exchange API with time range
df = self._fetch_from_exchange_api(
symbol=symbol,
timeframe=timeframe,
start_time=start_time,
end_time=end_time,
limit=limit,
direction=direction
)
if df is not None and not df.empty:
# Store in DuckDB for future use
if self.data_provider.duckdb_storage:
stored_count = self.data_provider.duckdb_storage.store_ohlcv_data(
symbol=symbol,
timeframe=timeframe,
df=df
)
logger.info(f"💾 Stored {stored_count} new candles in DuckDB")
# Cache in memory
self.memory_cache[cache_key] = (df.copy(), datetime.now())
return df
else:
logger.warning(f"No data available from exchange API for {symbol} {timeframe}")
return None
# Fetch from API and store in DuckDB
logger.info(f"Fetching data from API for {symbol} {timeframe}")
# Fetch from API and store in DuckDB (no time range specified)
logger.info(f"Fetching latest data from API for {symbol} {timeframe}")
df = self.data_provider.get_historical_data(
symbol=symbol,
timeframe=timeframe,
@@ -194,9 +225,14 @@ class HistoricalDataLoader:
)
if df is not None and not df.empty:
# Filter by time range if specified
if start_time or end_time:
df = self._filter_by_time_range(df, start_time, end_time)
# Filter by time range with direction support
df = self._filter_by_time_range(
df.copy(),
start_time,
end_time,
direction,
limit
)
# Cache in memory
self.memory_cache[cache_key] = (df.copy(), datetime.now())
@@ -211,14 +247,156 @@ class HistoricalDataLoader:
logger.error(f"Error loading data for {symbol} {timeframe}: {e}")
return None
def _fetch_from_exchange_api(self, symbol: str, timeframe: str,
start_time: Optional[datetime] = None,
end_time: Optional[datetime] = None,
limit: int = 1000,
direction: str = 'latest') -> Optional[pd.DataFrame]:
"""
Fetch historical data from exchange API (Binance/MEXC) with time range support
Args:
symbol: Trading pair
timeframe: Timeframe
start_time: Start time for data range
end_time: End time for data range
limit: Maximum number of candles
direction: 'latest', 'before', or 'after'
Returns:
DataFrame with OHLCV data or None
"""
try:
import requests
from core.api_rate_limiter import get_rate_limiter
# Convert symbol format for Binance
binance_symbol = symbol.replace('/', '').upper()
# Convert timeframe
timeframe_map = {
'1s': '1s', '1m': '1m', '5m': '5m', '15m': '15m', '30m': '30m',
'1h': '1h', '4h': '4h', '1d': '1d'
}
binance_timeframe = timeframe_map.get(timeframe, '1m')
# Build API parameters
params = {
'symbol': binance_symbol,
'interval': binance_timeframe,
'limit': min(limit, 1000) # Binance max is 1000
}
# Add time range parameters if specified
if direction == 'before' and end_time:
# Get data ending at end_time
params['endTime'] = int(end_time.timestamp() * 1000)
elif direction == 'after' and start_time:
# Get data starting at start_time
params['startTime'] = int(start_time.timestamp() * 1000)
elif start_time:
params['startTime'] = int(start_time.timestamp() * 1000)
if end_time and direction != 'before':
params['endTime'] = int(end_time.timestamp() * 1000)
# Use rate limiter
rate_limiter = get_rate_limiter()
url = "https://api.binance.com/api/v3/klines"
logger.info(f"Fetching from Binance: {symbol} {timeframe} (direction={direction}, limit={limit})")
response = rate_limiter.make_request('binance_api', url, 'GET', params=params)
if response is None or response.status_code != 200:
logger.warning(f"Binance API failed, trying MEXC...")
# Try MEXC as fallback
return self._fetch_from_mexc_with_time_range(
symbol, timeframe, start_time, end_time, limit, direction
)
data = response.json()
if not data:
logger.warning(f"No data returned from Binance for {symbol} {timeframe}")
return None
# Convert to DataFrame
df = pd.DataFrame(data, columns=[
'timestamp', 'open', 'high', 'low', 'close', 'volume',
'close_time', 'quote_volume', 'trades', 'taker_buy_base',
'taker_buy_quote', 'ignore'
])
# Process columns
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms', utc=True)
for col in ['open', 'high', 'low', 'close', 'volume']:
df[col] = df[col].astype(float)
# Keep only OHLCV columns
df = df[['timestamp', 'open', 'high', 'low', 'close', 'volume']]
df = df.set_index('timestamp')
df = df.sort_index()
logger.info(f"✅ Fetched {len(df)} candles from Binance for {symbol} {timeframe}")
return df
except Exception as e:
logger.error(f"Error fetching from exchange API: {e}")
return None
def _fetch_from_mexc_with_time_range(self, symbol: str, timeframe: str,
start_time: Optional[datetime] = None,
end_time: Optional[datetime] = None,
limit: int = 1000,
direction: str = 'latest') -> Optional[pd.DataFrame]:
"""Fetch from MEXC with time range support (fallback)"""
try:
# MEXC implementation would go here
# For now, just return None to indicate unavailable
logger.warning("MEXC time range fetch not implemented yet")
return None
except Exception as e:
logger.error(f"Error fetching from MEXC: {e}")
return None
def _filter_by_time_range(self, df: pd.DataFrame,
start_time: Optional[datetime],
end_time: Optional[datetime]) -> pd.DataFrame:
"""Filter DataFrame by time range"""
if start_time:
df = df[df.index >= start_time]
if end_time:
df = df[df.index <= end_time]
end_time: Optional[datetime],
direction: str = 'latest',
limit: int = 500) -> pd.DataFrame:
"""
Filter DataFrame by time range with direction support
Args:
df: DataFrame to filter
start_time: Start time filter
end_time: End time filter
direction: 'latest', 'before', or 'after'
limit: Maximum number of candles
Returns:
Filtered DataFrame
"""
if direction == 'before' and end_time:
# Get candles BEFORE end_time
df = df[df.index < end_time]
# Return the most recent N candles before end_time
df = df.tail(limit)
elif direction == 'after' and start_time:
# Get candles AFTER start_time
df = df[df.index > start_time]
# Return the oldest N candles after start_time
df = df.head(limit)
else:
# Default: filter by range
if start_time:
df = df[df.index >= start_time]
if end_time:
df = df[df.index <= end_time]
# Return most recent candles
if len(df) > limit:
df = df.tail(limit)
return df
def get_multi_timeframe_data(self, symbol: str,