show dummy references

This commit is contained in:
Dobromir Popov
2025-09-09 22:27:07 +03:00
parent 2e1b3be2cd
commit 1f35258a66
4 changed files with 915 additions and 112 deletions

View File

@@ -143,7 +143,7 @@ class EnhancedCNNModel(nn.Module):
def __init__(self,
input_size: int = 60,
feature_dim: int = 50,
output_size: int = 2, # BUY/SELL for 2-action system
output_size: int = 5, # OHLCV prediction (Open, High, Low, Close, Volume)
base_channels: int = 256, # Increased from 128 to 256
num_blocks: int = 12, # Increased from 6 to 12
num_attention_heads: int = 16, # Increased from 8 to 16
@@ -416,39 +416,40 @@ class EnhancedCNNModel(nn.Module):
volatility_pred = self._memory_barrier(self.volatility_predictor(processed_features))
confidence = self._memory_barrier(self.confidence_head(processed_features))
# Combine all features for final decision (8 regime classes + 1 volatility)
# Combine all features for OHLCV prediction
# Create completely independent tensors for concatenation
vol_pred_flat = self._memory_barrier(volatility_pred.reshape(volatility_pred.shape[0], -1)) # Flatten instead of squeeze
combined_features = torch.cat([processed_features, regime_probs, vol_pred_flat], dim=1)
combined_features = self._memory_barrier(combined_features)
trading_logits = self._memory_barrier(self.decision_head(combined_features))
# Apply temperature scaling for better calibration - create new tensor
temperature = 1.5
scaled_logits = trading_logits / temperature
trading_probs = self._memory_barrier(F.softmax(scaled_logits, dim=1))
# Flatten confidence to ensure consistent shape
# OHLCV prediction (Open, High, Low, Close, Volume)
ohlcv_pred = self._memory_barrier(self.decision_head(combined_features))
# Generate confidence based on prediction stability
confidence_flat = self._memory_barrier(confidence.reshape(confidence.shape[0], -1))
volatility_flat = self._memory_barrier(volatility_pred.reshape(volatility_pred.shape[0], -1))
# Calculate prediction confidence based on volatility and regime stability
regime_stability = torch.std(regime_probs, dim=1, keepdim=True)
prediction_confidence = 1.0 / (1.0 + regime_stability + volatility_flat * 0.1)
prediction_confidence = self._memory_barrier(prediction_confidence.squeeze(-1))
return {
'logits': self._memory_barrier(trading_logits),
'probabilities': self._memory_barrier(trading_probs),
'confidence': confidence_flat[:, 0] if confidence_flat.shape[1] > 0 else confidence_flat.reshape(-1)[0],
'ohlcv': self._memory_barrier(ohlcv_pred), # [batch_size, 5] - OHLCV predictions
'confidence': prediction_confidence,
'regime': self._memory_barrier(regime_probs),
'volatility': volatility_flat[:, 0] if volatility_flat.shape[1] > 0 else volatility_flat.reshape(-1)[0],
'features': self._memory_barrier(processed_features)
'features': self._memory_barrier(processed_features),
'regime_stability': self._memory_barrier(regime_stability.squeeze(-1))
}
def predict(self, feature_matrix) -> Dict[str, Any]:
"""
Make predictions on feature matrix
Make OHLCV predictions on feature matrix
Args:
feature_matrix: tensor or numpy array of shape [sequence_length, features]
Returns:
Dictionary with prediction results
Dictionary with OHLCV prediction results and trading signals
"""
self.eval()
@@ -468,17 +469,13 @@ class EnhancedCNNModel(nn.Module):
# Forward pass
outputs = self.forward(x)
# Extract results with proper shape handling
if HAS_NUMPY:
probs = outputs['probabilities'].cpu().numpy()[0]
confidence_tensor = outputs['confidence'].cpu().numpy()
regime = outputs['regime'].cpu().numpy()[0]
volatility = outputs['volatility'].cpu().numpy()
else:
probs = outputs['probabilities'].cpu().tolist()[0]
confidence_tensor = outputs['confidence'].cpu().tolist()
regime = outputs['regime'].cpu().tolist()[0]
volatility = outputs['volatility'].cpu().tolist()
# Extract OHLCV predictions
ohlcv_pred = outputs['ohlcv'].cpu().numpy()[0] if HAS_NUMPY else outputs['ohlcv'].cpu().tolist()[0]
# Extract other outputs
confidence_tensor = outputs['confidence'].cpu().numpy() if HAS_NUMPY else outputs['confidence'].cpu().tolist()
regime = outputs['regime'].cpu().numpy()[0] if HAS_NUMPY else outputs['regime'].cpu().tolist()[0]
volatility = outputs['volatility'].cpu().numpy() if HAS_NUMPY else outputs['volatility'].cpu().tolist()
# Handle confidence shape properly
if HAS_NUMPY and isinstance(confidence_tensor, np.ndarray):
@@ -490,7 +487,7 @@ class EnhancedCNNModel(nn.Module):
confidence = float(confidence_tensor[0] if len(confidence_tensor) > 0 else 0.7)
else:
confidence = float(confidence_tensor)
# Handle volatility shape properly
if HAS_NUMPY and isinstance(volatility, np.ndarray):
if volatility.ndim == 0:
@@ -502,28 +499,68 @@ class EnhancedCNNModel(nn.Module):
else:
volatility = float(volatility)
# Determine action (0=BUY, 1=SELL for 2-action system)
if HAS_NUMPY:
action = int(np.argmax(probs))
else:
action = int(torch.argmax(torch.tensor(probs)).item())
action_confidence = float(probs[action])
# Extract OHLCV values
open_price, high_price, low_price, close_price, volume = ohlcv_pred
# Convert logits to list
if HAS_NUMPY:
raw_logits = outputs['logits'].cpu().numpy()[0].tolist()
else:
raw_logits = outputs['logits'].cpu().tolist()[0]
# Calculate price movement and direction
price_change = close_price - open_price
price_change_pct = (price_change / open_price) * 100 if open_price != 0 else 0
# Calculate candle characteristics
body_size = abs(close_price - open_price)
upper_wick = high_price - max(open_price, close_price)
lower_wick = min(open_price, close_price) - low_price
total_range = high_price - low_price
# Determine trading action based on predicted candle
if price_change_pct > 0.1: # Bullish candle (>0.1% gain)
action = 0 # BUY
action_name = 'BUY'
action_confidence = min(0.95, confidence * (1 + abs(price_change_pct) * 10))
elif price_change_pct < -0.1: # Bearish candle (<-0.1% loss)
action = 1 # SELL
action_name = 'SELL'
action_confidence = min(0.95, confidence * (1 + abs(price_change_pct) * 10))
else: # Sideways/neutral candle
# Use body vs wick analysis for weak signals
if body_size / total_range > 0.7: # Strong directional body
action = 0 if price_change > 0 else 1
action_name = 'BUY' if action == 0 else 'SELL'
action_confidence = confidence * 0.6 # Reduce confidence for weak signals
else:
action = 2 # HOLD
action_name = 'HOLD'
action_confidence = confidence * 0.3 # Very low confidence
# Adjust confidence based on volatility
if volatility > 0.5: # High volatility
action_confidence *= 0.8 # Reduce confidence in volatile conditions
elif volatility < 0.2: # Low volatility
action_confidence *= 1.2 # Increase confidence in stable conditions
action_confidence = min(0.95, action_confidence) # Cap at 95%
return {
'action': action,
'action_name': 'BUY' if action == 0 else 'SELL',
'action_name': action_name,
'confidence': float(confidence),
'action_confidence': action_confidence,
'probabilities': probs if isinstance(probs, list) else probs.tolist(),
'ohlcv_prediction': {
'open': float(open_price),
'high': float(high_price),
'low': float(low_price),
'close': float(close_price),
'volume': float(volume)
},
'price_change_pct': price_change_pct,
'candle_characteristics': {
'body_size': body_size,
'upper_wick': upper_wick,
'lower_wick': lower_wick,
'total_range': total_range
},
'regime_probabilities': regime if isinstance(regime, list) else regime.tolist(),
'volatility_prediction': float(volatility),
'raw_logits': raw_logits
'prediction_quality': 'high' if action_confidence > 0.8 else 'medium' if action_confidence > 0.6 else 'low'
}
def get_memory_usage(self) -> Dict[str, Any]: