reduce logging. actual training
This commit is contained in:
383
LIVE_TRAINING_IMPLEMENTATION_STATUS.md
Normal file
383
LIVE_TRAINING_IMPLEMENTATION_STATUS.md
Normal file
@@ -0,0 +1,383 @@
|
||||
# Live Training Implementation Status
|
||||
|
||||
## ✅ Phase 1: Backend Integration (COMPLETED)
|
||||
|
||||
### 1. Orchestrator Integration
|
||||
|
||||
**File**: `core/orchestrator.py`
|
||||
|
||||
#### Initialization
|
||||
```python
|
||||
# Initialize EnhancedRealtimeTrainingSystem
|
||||
if ENHANCED_TRAINING_AVAILABLE:
|
||||
self.enhanced_training_system = EnhancedRealtimeTrainingSystem(
|
||||
orchestrator=self,
|
||||
data_provider=self.data_provider,
|
||||
dashboard=None
|
||||
)
|
||||
logger.info("EnhancedRealtimeTrainingSystem initialized successfully")
|
||||
```
|
||||
|
||||
#### Methods Added
|
||||
1. **`start_live_training()`** - Start live inference and training
|
||||
2. **`stop_live_training()`** - Stop live training
|
||||
3. **`is_live_training_active()`** - Check if active
|
||||
4. **`get_live_training_stats()`** - Get performance statistics
|
||||
|
||||
---
|
||||
|
||||
### 2. API Endpoints
|
||||
|
||||
**File**: `ANNOTATE/web/app.py`
|
||||
|
||||
#### Endpoints Added
|
||||
|
||||
| Endpoint | Method | Description |
|
||||
|----------|--------|-------------|
|
||||
| `/api/live-training/start` | POST | Start live training mode |
|
||||
| `/api/live-training/stop` | POST | Stop live training mode |
|
||||
| `/api/live-training/status` | GET | Get status and statistics |
|
||||
|
||||
#### Example Usage
|
||||
|
||||
**Start Live Training:**
|
||||
```bash
|
||||
curl -X POST http://localhost:8051/api/live-training/start
|
||||
```
|
||||
|
||||
Response:
|
||||
```json
|
||||
{
|
||||
"success": true,
|
||||
"status": "started",
|
||||
"message": "Live training mode started"
|
||||
}
|
||||
```
|
||||
|
||||
**Get Status:**
|
||||
```bash
|
||||
curl http://localhost:8051/api/live-training/status
|
||||
```
|
||||
|
||||
Response:
|
||||
```json
|
||||
{
|
||||
"success": true,
|
||||
"active": true,
|
||||
"stats": {
|
||||
"predictions_per_sec": 1.0,
|
||||
"training_batches_per_min": 6,
|
||||
"accuracy": 0.75,
|
||||
"models": {
|
||||
"dqn": {"loss": 0.234, "accuracy": 0.78},
|
||||
"cnn": {"loss": 0.156, "accuracy": 0.82}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## ⏳ Phase 2: Core Functionality (NEEDS IMPLEMENTATION)
|
||||
|
||||
### What's Missing
|
||||
|
||||
The `EnhancedRealtimeTrainingSystem` exists but needs these methods implemented:
|
||||
|
||||
#### 1. Live Inference Loop
|
||||
```python
|
||||
def _live_inference_loop(self):
|
||||
"""Main loop - predict next candle every second"""
|
||||
# TODO: Implement
|
||||
pass
|
||||
```
|
||||
|
||||
#### 2. Prediction Method
|
||||
```python
|
||||
def _make_next_candle_prediction(self, timeframe: str) -> Dict:
|
||||
"""Predict next candle OHLCV values"""
|
||||
# TODO: Implement using transformer's next_candles output
|
||||
pass
|
||||
```
|
||||
|
||||
#### 3. Training Method
|
||||
```python
|
||||
def _train_on_timeframe(self, timeframe: str):
|
||||
"""Train on resolved predictions"""
|
||||
# TODO: Implement batch training
|
||||
pass
|
||||
```
|
||||
|
||||
#### 4. Prediction Resolution
|
||||
```python
|
||||
def _resolve_timeframe_predictions(self, timeframe: str):
|
||||
"""Compare predicted vs actual candles"""
|
||||
# TODO: Implement
|
||||
pass
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## ⏳ Phase 3: UI Integration (NEEDS IMPLEMENTATION)
|
||||
|
||||
### Dashboard Panel
|
||||
|
||||
Create `ANNOTATE/web/templates/components/live_training_panel.html`:
|
||||
|
||||
```html
|
||||
<div class="card mb-4">
|
||||
<div class="card-header">
|
||||
<h5>Live Inference & Training</h5>
|
||||
</div>
|
||||
<div class="card-body">
|
||||
<div class="row mb-3">
|
||||
<div class="col-md-6">
|
||||
<div class="status-indicator">
|
||||
<span id="live-status-badge" class="badge bg-secondary">Inactive</span>
|
||||
<span id="live-status-text">Not Running</span>
|
||||
</div>
|
||||
</div>
|
||||
<div class="col-md-6 text-end">
|
||||
<button id="start-live-btn" class="btn btn-success">
|
||||
<i class="fas fa-play"></i> Start Live Mode
|
||||
</button>
|
||||
<button id="stop-live-btn" class="btn btn-danger" disabled>
|
||||
<i class="fas fa-stop"></i> Stop
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="row" id="live-metrics" style="display: none;">
|
||||
<div class="col-md-3">
|
||||
<div class="metric-card">
|
||||
<div class="metric-label">Predictions/sec</div>
|
||||
<div class="metric-value" id="predictions-per-sec">0</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="col-md-3">
|
||||
<div class="metric-card">
|
||||
<div class="metric-label">Training/min</div>
|
||||
<div class="metric-value" id="training-per-min">0</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="col-md-3">
|
||||
<div class="metric-card">
|
||||
<div class="metric-label">Accuracy (1m)</div>
|
||||
<div class="metric-value" id="accuracy-1m">0%</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="col-md-3">
|
||||
<div class="metric-card">
|
||||
<div class="metric-label">GPU Load</div>
|
||||
<div class="metric-value" id="gpu-load">0%</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
```
|
||||
|
||||
### JavaScript Integration
|
||||
|
||||
Add to `ANNOTATE/web/static/js/main.js`:
|
||||
|
||||
```javascript
|
||||
// Live Training Controls
|
||||
let liveTrainingInterval = null;
|
||||
|
||||
function startLiveTraining() {
|
||||
fetch('/api/live-training/start', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'}
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success) {
|
||||
updateLiveStatus(true);
|
||||
startLiveStatusPolling();
|
||||
showNotification('Live training started', 'success');
|
||||
} else {
|
||||
showNotification('Failed to start: ' + data.error, 'error');
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
function stopLiveTraining() {
|
||||
fetch('/api/live-training/stop', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'}
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success) {
|
||||
updateLiveStatus(false);
|
||||
stopLiveStatusPolling();
|
||||
showNotification('Live training stopped', 'info');
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
function startLiveStatusPolling() {
|
||||
liveTrainingInterval = setInterval(() => {
|
||||
fetch('/api/live-training/status')
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success && data.active) {
|
||||
updateLiveMetrics(data.stats);
|
||||
}
|
||||
});
|
||||
}, 2000); // Poll every 2 seconds
|
||||
}
|
||||
|
||||
function stopLiveStatusPolling() {
|
||||
if (liveTrainingInterval) {
|
||||
clearInterval(liveTrainingInterval);
|
||||
liveTrainingInterval = null;
|
||||
}
|
||||
}
|
||||
|
||||
function updateLiveStatus(active) {
|
||||
const badge = document.getElementById('live-status-badge');
|
||||
const text = document.getElementById('live-status-text');
|
||||
const startBtn = document.getElementById('start-live-btn');
|
||||
const stopBtn = document.getElementById('stop-live-btn');
|
||||
const metrics = document.getElementById('live-metrics');
|
||||
|
||||
if (active) {
|
||||
badge.className = 'badge bg-success';
|
||||
badge.textContent = 'Active';
|
||||
text.textContent = 'Running';
|
||||
startBtn.disabled = true;
|
||||
stopBtn.disabled = false;
|
||||
metrics.style.display = 'block';
|
||||
} else {
|
||||
badge.className = 'badge bg-secondary';
|
||||
badge.textContent = 'Inactive';
|
||||
text.textContent = 'Not Running';
|
||||
startBtn.disabled = false;
|
||||
stopBtn.disabled = true;
|
||||
metrics.style.display = 'none';
|
||||
}
|
||||
}
|
||||
|
||||
function updateLiveMetrics(stats) {
|
||||
document.getElementById('predictions-per-sec').textContent =
|
||||
(stats.predictions_per_sec || 0).toFixed(1);
|
||||
document.getElementById('training-per-min').textContent =
|
||||
(stats.training_batches_per_min || 0).toFixed(0);
|
||||
document.getElementById('accuracy-1m').textContent =
|
||||
((stats.accuracy || 0) * 100).toFixed(1) + '%';
|
||||
document.getElementById('gpu-load').textContent =
|
||||
((stats.gpu_load || 0) * 100).toFixed(0) + '%';
|
||||
}
|
||||
|
||||
// Initialize on page load
|
||||
document.addEventListener('DOMContentLoaded', function() {
|
||||
document.getElementById('start-live-btn').addEventListener('click', startLiveTraining);
|
||||
document.getElementById('stop-live-btn').addEventListener('click', stopLiveTraining);
|
||||
|
||||
// Check initial status
|
||||
fetch('/api/live-training/status')
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success && data.active) {
|
||||
updateLiveStatus(true);
|
||||
startLiveStatusPolling();
|
||||
}
|
||||
});
|
||||
});
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Testing
|
||||
|
||||
### 1. Test Backend Integration
|
||||
|
||||
```python
|
||||
# In Python console or test script
|
||||
from core.orchestrator import TradingOrchestrator
|
||||
from core.data_provider import DataProvider
|
||||
|
||||
# Initialize
|
||||
data_provider = DataProvider()
|
||||
orchestrator = TradingOrchestrator(data_provider=data_provider)
|
||||
|
||||
# Check if available
|
||||
print(f"Enhanced training available: {orchestrator.enhanced_training_system is not None}")
|
||||
|
||||
# Start live training
|
||||
success = orchestrator.start_live_training()
|
||||
print(f"Started: {success}")
|
||||
|
||||
# Check status
|
||||
active = orchestrator.is_live_training_active()
|
||||
print(f"Active: {active}")
|
||||
|
||||
# Get stats
|
||||
stats = orchestrator.get_live_training_stats()
|
||||
print(f"Stats: {stats}")
|
||||
|
||||
# Stop
|
||||
orchestrator.stop_live_training()
|
||||
```
|
||||
|
||||
### 2. Test API Endpoints
|
||||
|
||||
```bash
|
||||
# Start
|
||||
curl -X POST http://localhost:8051/api/live-training/start
|
||||
|
||||
# Status
|
||||
curl http://localhost:8051/api/live-training/status
|
||||
|
||||
# Stop
|
||||
curl -X POST http://localhost:8051/api/live-training/stop
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Next Steps
|
||||
|
||||
### Priority 1: Core Functionality
|
||||
1. Implement `_live_inference_loop()` in `EnhancedRealtimeTrainingSystem`
|
||||
2. Implement `_make_next_candle_prediction()` using transformer
|
||||
3. Implement `_train_on_timeframe()` for batch training
|
||||
4. Implement `_resolve_timeframe_predictions()` for accuracy tracking
|
||||
|
||||
### Priority 2: UI Integration
|
||||
1. Create live training panel HTML
|
||||
2. Add JavaScript controls
|
||||
3. Add CSS styling
|
||||
4. Integrate into main dashboard
|
||||
|
||||
### Priority 3: Testing & Optimization
|
||||
1. Test with 1s timeframe first
|
||||
2. Monitor GPU/CPU usage
|
||||
3. Optimize batch sizes
|
||||
4. Add error handling
|
||||
5. Add logging
|
||||
|
||||
---
|
||||
|
||||
## Summary
|
||||
|
||||
### ✅ Completed
|
||||
- Orchestrator integration
|
||||
- Start/stop methods
|
||||
- API endpoints
|
||||
- Basic infrastructure
|
||||
|
||||
### ⏳ In Progress
|
||||
- Core prediction loop
|
||||
- Training logic
|
||||
- UI components
|
||||
|
||||
### 📋 TODO
|
||||
- Implement prediction methods
|
||||
- Implement training methods
|
||||
- Create UI panel
|
||||
- Add JavaScript controls
|
||||
- Testing and optimization
|
||||
|
||||
The foundation is in place - now we need to implement the core prediction and training logic!
|
||||
Reference in New Issue
Block a user