reduce logging. actual training
This commit is contained in:
@@ -615,7 +615,7 @@ class RealTrainingAdapter:
|
||||
# Show breakdown of before/after
|
||||
before_count = sum(1 for s in negative_samples if 'before' in str(s.get('timestamp', '')))
|
||||
after_count = len(negative_samples) - before_count
|
||||
logger.info(f" -> {before_count} beforesignal, {after_count} after signal")
|
||||
logger.info(f" -> {before_count} before signal, {after_count} after signal")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f" Error preparing test case {i+1}: {e}")
|
||||
@@ -1413,12 +1413,17 @@ class RealTrainingAdapter:
|
||||
result = trainer.train_step(batch)
|
||||
|
||||
if result is not None:
|
||||
epoch_loss += result.get('total_loss', 0.0)
|
||||
epoch_accuracy += result.get('accuracy', 0.0)
|
||||
batch_loss = result.get('total_loss', 0.0)
|
||||
batch_accuracy = result.get('accuracy', 0.0)
|
||||
epoch_loss += batch_loss
|
||||
epoch_accuracy += batch_accuracy
|
||||
num_batches += 1
|
||||
|
||||
if (i + 1) % 100 == 0:
|
||||
logger.info(f" Batch {i + 1}/{len(converted_batches)}, Loss: {result.get('total_loss', 0.0):.6f}, Accuracy: {result.get('accuracy', 0.0):.2%}")
|
||||
|
||||
# Log first batch and every 100th batch for debugging
|
||||
if (i + 1) == 1 or (i + 1) % 100 == 0:
|
||||
logger.info(f" Batch {i + 1}/{len(converted_batches)}, Loss: {batch_loss:.6f}, Accuracy: {batch_accuracy:.4f}")
|
||||
else:
|
||||
logger.warning(f" Batch {i + 1} returned None result - skipping")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f" Error in batch {i + 1}: {e}")
|
||||
|
||||
Reference in New Issue
Block a user