fix model mappings,dash updates, trading
This commit is contained in:
@ -430,6 +430,43 @@ The implementation will follow a phased approach:
|
||||
- Fix bugs and optimize performance
|
||||
- Deploy to production
|
||||
|
||||
## Monitoring and Visualization
|
||||
|
||||
### TensorBoard Integration (Future Enhancement)
|
||||
|
||||
A comprehensive TensorBoard integration has been designed to provide detailed training visualization and monitoring capabilities:
|
||||
|
||||
#### Features
|
||||
- **Training Metrics Visualization**: Real-time tracking of model losses, rewards, and performance metrics
|
||||
- **Feature Distribution Analysis**: Histograms and statistics of input features to validate data quality
|
||||
- **State Quality Monitoring**: Tracking of comprehensive state building (13,400 features) success rates
|
||||
- **Reward Component Analysis**: Detailed breakdown of reward calculations including PnL, confidence, volatility, and order flow
|
||||
- **Model Performance Comparison**: Side-by-side comparison of CNN, RL, and orchestrator performance
|
||||
|
||||
#### Implementation Status
|
||||
- **Completed**: TensorBoardLogger utility class with comprehensive logging methods
|
||||
- **Completed**: Integration points in enhanced_rl_training_integration.py
|
||||
- **Completed**: Enhanced run_tensorboard.py with improved visualization options
|
||||
- **Status**: Ready for deployment when system stability is achieved
|
||||
|
||||
#### Usage
|
||||
```bash
|
||||
# Start TensorBoard dashboard
|
||||
python run_tensorboard.py
|
||||
|
||||
# Access at http://localhost:6006
|
||||
# View training metrics, feature distributions, and model performance
|
||||
```
|
||||
|
||||
#### Benefits
|
||||
- Real-time validation of training process
|
||||
- Early detection of training issues
|
||||
- Feature importance analysis
|
||||
- Model performance comparison
|
||||
- Historical training progress tracking
|
||||
|
||||
**Note**: TensorBoard integration is currently deprioritized in favor of system stability and core model improvements. It will be activated once the core training system is stable and performing optimally.
|
||||
|
||||
## Conclusion
|
||||
|
||||
This design document outlines the architecture, components, data flow, and implementation details for the Multi-Modal Trading System. The system is designed to be modular, extensible, and robust, with a focus on performance, reliability, and user experience.
|
||||
|
Reference in New Issue
Block a user