more cleanup
This commit is contained in:
333
.kiro/specs/1.multi-modal-trading-system/AUDIT_SUMMARY.md
Normal file
333
.kiro/specs/1.multi-modal-trading-system/AUDIT_SUMMARY.md
Normal file
@@ -0,0 +1,333 @@
|
|||||||
|
# Multi-Modal Trading System - Audit Summary
|
||||||
|
|
||||||
|
**Date**: January 9, 2025
|
||||||
|
**Focus**: Data Collection/Provider Backbone
|
||||||
|
|
||||||
|
## Executive Summary
|
||||||
|
|
||||||
|
Comprehensive audit of the multi-modal trading system revealed a **strong, well-architected data provider backbone** with robust implementations across multiple layers. The system demonstrates excellent separation of concerns with COBY (standalone multi-exchange aggregation), Core DataProvider (real-time operations), and StandardizedDataProvider (unified model interface).
|
||||||
|
|
||||||
|
## Architecture Overview
|
||||||
|
|
||||||
|
```
|
||||||
|
┌─────────────────────────────────────────────────────────────┐
|
||||||
|
│ COBY System (Standalone) │
|
||||||
|
│ Multi-Exchange Aggregation │ TimescaleDB │ Redis Cache │
|
||||||
|
│ Status: ✅ Fully Operational │
|
||||||
|
└─────────────────────────────────────────────────────────────┘
|
||||||
|
↓
|
||||||
|
┌─────────────────────────────────────────────────────────────┐
|
||||||
|
│ Core DataProvider (core/data_provider.py) │
|
||||||
|
│ Automatic Maintenance │ Williams Pivots │ COB Integration │
|
||||||
|
│ Status: ✅ Implemented, Needs Enhancement │
|
||||||
|
└─────────────────────────────────────────────────────────────┘
|
||||||
|
↓
|
||||||
|
┌─────────────────────────────────────────────────────────────┐
|
||||||
|
│ StandardizedDataProvider (core/standardized_data_provider.py) │
|
||||||
|
│ BaseDataInput │ ModelOutputManager │ Unified Interface │
|
||||||
|
│ Status: ✅ Implemented, Needs Heatmap Integration │
|
||||||
|
└─────────────────────────────────────────────────────────────┘
|
||||||
|
↓
|
||||||
|
┌─────────────────────────────────────────────────────────────┐
|
||||||
|
│ Models (CNN, RL, etc.) │
|
||||||
|
└─────────────────────────────────────────────────────────────┘
|
||||||
|
```
|
||||||
|
|
||||||
|
## Key Findings
|
||||||
|
|
||||||
|
### ✅ Strengths (Fully Implemented)
|
||||||
|
|
||||||
|
1. **COBY System**
|
||||||
|
- Standalone multi-exchange data aggregation
|
||||||
|
- TimescaleDB for time-series storage
|
||||||
|
- Redis caching layer
|
||||||
|
- REST API and WebSocket server
|
||||||
|
- Performance monitoring and health checks
|
||||||
|
- **Status**: Production-ready
|
||||||
|
|
||||||
|
2. **Core DataProvider**
|
||||||
|
- Automatic data maintenance with background workers
|
||||||
|
- 1500 candles cached per symbol/timeframe (1s, 1m, 1h, 1d)
|
||||||
|
- Automatic fallback between Binance and MEXC
|
||||||
|
- Thread-safe data access with locks
|
||||||
|
- Centralized subscriber management
|
||||||
|
- **Status**: Robust and operational
|
||||||
|
|
||||||
|
3. **Williams Market Structure**
|
||||||
|
- Recursive pivot point detection with 5 levels
|
||||||
|
- Monthly 1s data analysis for comprehensive context
|
||||||
|
- Pivot-based normalization bounds (PivotBounds)
|
||||||
|
- Support/resistance level tracking
|
||||||
|
- **Status**: Advanced implementation
|
||||||
|
|
||||||
|
4. **EnhancedCOBWebSocket**
|
||||||
|
- Multiple Binance streams (depth@100ms, ticker, aggTrade)
|
||||||
|
- Proper order book synchronization with REST snapshots
|
||||||
|
- Automatic reconnection with exponential backoff
|
||||||
|
- 24-hour connection limit compliance
|
||||||
|
- Comprehensive error handling
|
||||||
|
- **Status**: Production-grade
|
||||||
|
|
||||||
|
5. **COB Integration**
|
||||||
|
- 1s aggregation with price buckets ($1 ETH, $10 BTC)
|
||||||
|
- Multi-timeframe imbalance MA (1s, 5s, 15s, 60s)
|
||||||
|
- 30-minute raw tick buffer (180,000 ticks)
|
||||||
|
- Bid/ask volumes and imbalances per bucket
|
||||||
|
- **Status**: Functional, needs robustness improvements
|
||||||
|
|
||||||
|
6. **StandardizedDataProvider**
|
||||||
|
- BaseDataInput with comprehensive fields
|
||||||
|
- ModelOutputManager for cross-model feeding
|
||||||
|
- COB moving average calculation
|
||||||
|
- Live price fetching with multiple fallbacks
|
||||||
|
- **Status**: Core functionality complete
|
||||||
|
|
||||||
|
### ⚠️ Partial Implementations (Needs Validation)
|
||||||
|
|
||||||
|
1. **COB Raw Tick Storage**
|
||||||
|
- Structure exists (30 min buffer)
|
||||||
|
- Needs validation under load
|
||||||
|
- Potential NoneType errors in aggregation worker
|
||||||
|
|
||||||
|
2. **Training Data Collection**
|
||||||
|
- Callback structure exists
|
||||||
|
- Needs integration with training pipelines
|
||||||
|
- Validation of data flow required
|
||||||
|
|
||||||
|
3. **Cross-Exchange COB Consolidation**
|
||||||
|
- COBY system separate from core
|
||||||
|
- No unified interface yet
|
||||||
|
- Needs adapter layer
|
||||||
|
|
||||||
|
### ❌ Areas Needing Enhancement
|
||||||
|
|
||||||
|
1. **COB Data Collection Robustness**
|
||||||
|
- **Issue**: NoneType errors in `_cob_aggregation_worker`
|
||||||
|
- **Impact**: Potential data loss during aggregation
|
||||||
|
- **Priority**: HIGH
|
||||||
|
- **Solution**: Add defensive checks, proper initialization guards
|
||||||
|
|
||||||
|
2. **Configurable COB Price Ranges**
|
||||||
|
- **Issue**: Hardcoded ranges ($5 ETH, $50 BTC)
|
||||||
|
- **Impact**: Inflexible for different market conditions
|
||||||
|
- **Priority**: MEDIUM
|
||||||
|
- **Solution**: Move to config.yaml, add per-symbol customization
|
||||||
|
|
||||||
|
3. **COB Heatmap Generation**
|
||||||
|
- **Issue**: Not implemented
|
||||||
|
- **Impact**: Missing visualization and model input feature
|
||||||
|
- **Priority**: MEDIUM
|
||||||
|
- **Solution**: Implement `get_cob_heatmap_matrix()` method
|
||||||
|
|
||||||
|
4. **Data Quality Scoring**
|
||||||
|
- **Issue**: No comprehensive validation
|
||||||
|
- **Impact**: Models may receive incomplete data
|
||||||
|
- **Priority**: HIGH
|
||||||
|
- **Solution**: Implement data completeness scoring (0.0-1.0)
|
||||||
|
|
||||||
|
5. **COBY-Core Integration**
|
||||||
|
- **Issue**: Systems operate independently
|
||||||
|
- **Impact**: Cannot leverage multi-exchange data in real-time trading
|
||||||
|
- **Priority**: MEDIUM
|
||||||
|
- **Solution**: Create COBYDataAdapter for unified access
|
||||||
|
|
||||||
|
6. **BaseDataInput Validation**
|
||||||
|
- **Issue**: Basic validation only
|
||||||
|
- **Impact**: Insufficient data quality checks
|
||||||
|
- **Priority**: HIGH
|
||||||
|
- **Solution**: Enhanced validate() with detailed error messages
|
||||||
|
|
||||||
|
## Data Flow Analysis
|
||||||
|
|
||||||
|
### Current Data Flow
|
||||||
|
|
||||||
|
```
|
||||||
|
Exchange APIs (Binance, MEXC)
|
||||||
|
↓
|
||||||
|
EnhancedCOBWebSocket (depth@100ms, ticker, aggTrade)
|
||||||
|
↓
|
||||||
|
DataProvider (automatic maintenance, caching)
|
||||||
|
↓
|
||||||
|
COB Aggregation (1s buckets, MA calculations)
|
||||||
|
↓
|
||||||
|
StandardizedDataProvider (BaseDataInput creation)
|
||||||
|
↓
|
||||||
|
Models (CNN, RL) via get_base_data_input()
|
||||||
|
↓
|
||||||
|
ModelOutputManager (cross-model feeding)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Parallel COBY Flow
|
||||||
|
|
||||||
|
```
|
||||||
|
Multiple Exchanges (Binance, Coinbase, Kraken, etc.)
|
||||||
|
↓
|
||||||
|
COBY Connectors (WebSocket streams)
|
||||||
|
↓
|
||||||
|
TimescaleDB (persistent storage)
|
||||||
|
↓
|
||||||
|
Redis Cache (high-performance access)
|
||||||
|
↓
|
||||||
|
REST API / WebSocket Server
|
||||||
|
↓
|
||||||
|
Dashboard / External Consumers
|
||||||
|
```
|
||||||
|
|
||||||
|
## Performance Characteristics
|
||||||
|
|
||||||
|
### Core DataProvider
|
||||||
|
- **Cache Size**: 1500 candles × 4 timeframes × 2 symbols = 12,000 candles
|
||||||
|
- **Update Frequency**: Every half-candle period (0.5s for 1s, 30s for 1m, etc.)
|
||||||
|
- **COB Buffer**: 180,000 raw ticks (30 min @ ~100 ticks/sec)
|
||||||
|
- **Thread Safety**: Lock-based synchronization
|
||||||
|
- **Memory Footprint**: Estimated 50-100 MB for cached data
|
||||||
|
|
||||||
|
### EnhancedCOBWebSocket
|
||||||
|
- **Streams**: 3 per symbol (depth, ticker, aggTrade)
|
||||||
|
- **Update Rate**: 100ms for depth, real-time for trades
|
||||||
|
- **Reconnection**: Exponential backoff (1s → 60s max)
|
||||||
|
- **Order Book Depth**: 1000 levels (maximum Binance allows)
|
||||||
|
|
||||||
|
### COBY System
|
||||||
|
- **Storage**: TimescaleDB with automatic compression
|
||||||
|
- **Cache**: Redis with configurable TTL
|
||||||
|
- **Throughput**: Handles multiple exchanges simultaneously
|
||||||
|
- **Latency**: Sub-second for cached data
|
||||||
|
|
||||||
|
## Code Quality Assessment
|
||||||
|
|
||||||
|
### Excellent
|
||||||
|
- ✅ Comprehensive error handling in EnhancedCOBWebSocket
|
||||||
|
- ✅ Thread-safe data access patterns
|
||||||
|
- ✅ Clear separation of concerns across layers
|
||||||
|
- ✅ Extensive logging for debugging
|
||||||
|
- ✅ Proper use of dataclasses for type safety
|
||||||
|
|
||||||
|
### Good
|
||||||
|
- ✅ Automatic data maintenance workers
|
||||||
|
- ✅ Fallback mechanisms for API failures
|
||||||
|
- ✅ Subscriber pattern for data distribution
|
||||||
|
- ✅ Pivot-based normalization system
|
||||||
|
|
||||||
|
### Needs Improvement
|
||||||
|
- ⚠️ Defensive programming in COB aggregation
|
||||||
|
- ⚠️ Configuration management (hardcoded values)
|
||||||
|
- ⚠️ Comprehensive input validation
|
||||||
|
- ⚠️ Data quality monitoring
|
||||||
|
|
||||||
|
## Recommendations
|
||||||
|
|
||||||
|
### Immediate Actions (High Priority)
|
||||||
|
|
||||||
|
1. **Fix COB Aggregation Robustness** (Task 1.1)
|
||||||
|
- Add defensive checks in `_cob_aggregation_worker`
|
||||||
|
- Implement proper initialization guards
|
||||||
|
- Test under failure scenarios
|
||||||
|
- **Estimated Effort**: 2-4 hours
|
||||||
|
|
||||||
|
2. **Implement Data Quality Scoring** (Task 2.3)
|
||||||
|
- Create `data_quality_score()` method
|
||||||
|
- Add completeness, freshness, consistency checks
|
||||||
|
- Prevent inference on low-quality data (< 0.8)
|
||||||
|
- **Estimated Effort**: 4-6 hours
|
||||||
|
|
||||||
|
3. **Enhance BaseDataInput Validation** (Task 2)
|
||||||
|
- Minimum frame count validation
|
||||||
|
- COB data structure validation
|
||||||
|
- Detailed error messages
|
||||||
|
- **Estimated Effort**: 3-5 hours
|
||||||
|
|
||||||
|
### Short-Term Enhancements (Medium Priority)
|
||||||
|
|
||||||
|
4. **Implement COB Heatmap Generation** (Task 1.4)
|
||||||
|
- Create `get_cob_heatmap_matrix()` method
|
||||||
|
- Support configurable time windows and price ranges
|
||||||
|
- Cache for performance
|
||||||
|
- **Estimated Effort**: 6-8 hours
|
||||||
|
|
||||||
|
5. **Configurable COB Price Ranges** (Task 1.2)
|
||||||
|
- Move to config.yaml
|
||||||
|
- Per-symbol customization
|
||||||
|
- Update imbalance calculations
|
||||||
|
- **Estimated Effort**: 2-3 hours
|
||||||
|
|
||||||
|
6. **Integrate COB Heatmap into BaseDataInput** (Task 2.1)
|
||||||
|
- Add heatmap fields to BaseDataInput
|
||||||
|
- Call heatmap generation in `get_base_data_input()`
|
||||||
|
- Handle failures gracefully
|
||||||
|
- **Estimated Effort**: 2-3 hours
|
||||||
|
|
||||||
|
### Long-Term Improvements (Lower Priority)
|
||||||
|
|
||||||
|
7. **COBY-Core Integration** (Tasks 3, 3.1, 3.2, 3.3)
|
||||||
|
- Design unified interface
|
||||||
|
- Implement COBYDataAdapter
|
||||||
|
- Merge heatmap data
|
||||||
|
- Health monitoring
|
||||||
|
- **Estimated Effort**: 16-24 hours
|
||||||
|
|
||||||
|
8. **Model Output Persistence** (Task 4.1)
|
||||||
|
- Disk-based storage
|
||||||
|
- Configurable retention
|
||||||
|
- Compression
|
||||||
|
- **Estimated Effort**: 8-12 hours
|
||||||
|
|
||||||
|
9. **Comprehensive Testing** (Tasks 5, 5.1, 5.2)
|
||||||
|
- Unit tests for all components
|
||||||
|
- Integration tests
|
||||||
|
- Performance benchmarks
|
||||||
|
- **Estimated Effort**: 20-30 hours
|
||||||
|
|
||||||
|
## Risk Assessment
|
||||||
|
|
||||||
|
### Low Risk
|
||||||
|
- Core DataProvider stability
|
||||||
|
- EnhancedCOBWebSocket reliability
|
||||||
|
- Williams Market Structure accuracy
|
||||||
|
- COBY system operation
|
||||||
|
|
||||||
|
### Medium Risk
|
||||||
|
- COB aggregation under high load
|
||||||
|
- Data quality during API failures
|
||||||
|
- Memory usage with extended caching
|
||||||
|
- Integration complexity with COBY
|
||||||
|
|
||||||
|
### High Risk
|
||||||
|
- Model inference on incomplete data (mitigated by validation)
|
||||||
|
- Data loss during COB aggregation errors (needs immediate fix)
|
||||||
|
- Performance degradation with multiple models (needs monitoring)
|
||||||
|
|
||||||
|
## Conclusion
|
||||||
|
|
||||||
|
The multi-modal trading system has a **solid, well-architected data provider backbone** with excellent separation of concerns and robust implementations. The three-layer architecture (COBY → Core → Standardized) provides flexibility and scalability.
|
||||||
|
|
||||||
|
**Key Strengths**:
|
||||||
|
- Production-ready COBY system
|
||||||
|
- Robust automatic data maintenance
|
||||||
|
- Advanced Williams Market Structure pivots
|
||||||
|
- Comprehensive COB integration
|
||||||
|
- Extensible model output management
|
||||||
|
|
||||||
|
**Priority Improvements**:
|
||||||
|
1. COB aggregation robustness (HIGH)
|
||||||
|
2. Data quality scoring (HIGH)
|
||||||
|
3. BaseDataInput validation (HIGH)
|
||||||
|
4. COB heatmap generation (MEDIUM)
|
||||||
|
5. COBY-Core integration (MEDIUM)
|
||||||
|
|
||||||
|
**Overall Assessment**: The system is **production-ready for core functionality** with identified enhancements that will improve robustness, data quality, and feature completeness. The updated spec provides a clear roadmap for systematic improvements.
|
||||||
|
|
||||||
|
## Next Steps
|
||||||
|
|
||||||
|
1. Review and approve updated spec documents
|
||||||
|
2. Prioritize tasks based on business needs
|
||||||
|
3. Begin with high-priority robustness improvements
|
||||||
|
4. Implement data quality scoring and validation
|
||||||
|
5. Add COB heatmap generation for enhanced model inputs
|
||||||
|
6. Plan COBY-Core integration for multi-exchange capabilities
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
**Audit Completed By**: Kiro AI Assistant
|
||||||
|
**Date**: January 9, 2025
|
||||||
|
**Spec Version**: 1.1 (Updated)
|
||||||
@@ -0,0 +1,470 @@
|
|||||||
|
# Data Provider Quick Reference Guide
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
Quick reference for using the multi-layered data provider system in the multi-modal trading system.
|
||||||
|
|
||||||
|
## Architecture Layers
|
||||||
|
|
||||||
|
```
|
||||||
|
COBY System → Core DataProvider → StandardizedDataProvider → Models
|
||||||
|
```
|
||||||
|
|
||||||
|
## Getting Started
|
||||||
|
|
||||||
|
### Basic Usage
|
||||||
|
|
||||||
|
```python
|
||||||
|
from core.standardized_data_provider import StandardizedDataProvider
|
||||||
|
|
||||||
|
# Initialize provider
|
||||||
|
provider = StandardizedDataProvider(
|
||||||
|
symbols=['ETH/USDT', 'BTC/USDT'],
|
||||||
|
timeframes=['1s', '1m', '1h', '1d']
|
||||||
|
)
|
||||||
|
|
||||||
|
# Start real-time processing
|
||||||
|
provider.start_real_time_processing()
|
||||||
|
|
||||||
|
# Get standardized input for models
|
||||||
|
base_input = provider.get_base_data_input('ETH/USDT')
|
||||||
|
|
||||||
|
# Validate data quality
|
||||||
|
if base_input and base_input.validate():
|
||||||
|
# Use data for model inference
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
## BaseDataInput Structure
|
||||||
|
|
||||||
|
```python
|
||||||
|
@dataclass
|
||||||
|
class BaseDataInput:
|
||||||
|
symbol: str # 'ETH/USDT'
|
||||||
|
timestamp: datetime # Current time
|
||||||
|
|
||||||
|
# OHLCV Data (300 frames each)
|
||||||
|
ohlcv_1s: List[OHLCVBar] # 1-second bars
|
||||||
|
ohlcv_1m: List[OHLCVBar] # 1-minute bars
|
||||||
|
ohlcv_1h: List[OHLCVBar] # 1-hour bars
|
||||||
|
ohlcv_1d: List[OHLCVBar] # 1-day bars
|
||||||
|
btc_ohlcv_1s: List[OHLCVBar] # BTC reference
|
||||||
|
|
||||||
|
# COB Data
|
||||||
|
cob_data: Optional[COBData] # Order book data
|
||||||
|
|
||||||
|
# Technical Analysis
|
||||||
|
technical_indicators: Dict[str, float] # RSI, MACD, etc.
|
||||||
|
pivot_points: List[PivotPoint] # Williams pivots
|
||||||
|
|
||||||
|
# Cross-Model Feeding
|
||||||
|
last_predictions: Dict[str, ModelOutput] # Other model outputs
|
||||||
|
|
||||||
|
# Market Microstructure
|
||||||
|
market_microstructure: Dict[str, Any] # Order flow, etc.
|
||||||
|
```
|
||||||
|
|
||||||
|
## Common Operations
|
||||||
|
|
||||||
|
### Get Current Price
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Multiple fallback methods
|
||||||
|
price = provider.get_current_price('ETH/USDT')
|
||||||
|
|
||||||
|
# Direct API call with cache
|
||||||
|
price = provider.get_live_price_from_api('ETH/USDT')
|
||||||
|
```
|
||||||
|
|
||||||
|
### Get Historical Data
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Get OHLCV data
|
||||||
|
df = provider.get_historical_data(
|
||||||
|
symbol='ETH/USDT',
|
||||||
|
timeframe='1h',
|
||||||
|
limit=300
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Get COB Data
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Get latest COB snapshot
|
||||||
|
cob_data = provider.get_latest_cob_data('ETH/USDT')
|
||||||
|
|
||||||
|
# Get COB imbalance metrics
|
||||||
|
imbalance = provider.get_current_cob_imbalance('ETH/USDT')
|
||||||
|
```
|
||||||
|
|
||||||
|
### Get Pivot Points
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Get Williams Market Structure pivots
|
||||||
|
pivots = provider.calculate_williams_pivot_points('ETH/USDT')
|
||||||
|
```
|
||||||
|
|
||||||
|
### Store Model Output
|
||||||
|
|
||||||
|
```python
|
||||||
|
from core.data_models import ModelOutput
|
||||||
|
|
||||||
|
# Create model output
|
||||||
|
output = ModelOutput(
|
||||||
|
model_type='cnn',
|
||||||
|
model_name='williams_cnn_v2',
|
||||||
|
symbol='ETH/USDT',
|
||||||
|
timestamp=datetime.now(),
|
||||||
|
confidence=0.85,
|
||||||
|
predictions={
|
||||||
|
'action': 'BUY',
|
||||||
|
'action_confidence': 0.85,
|
||||||
|
'direction_vector': 0.7
|
||||||
|
},
|
||||||
|
hidden_states={'conv_features': tensor(...)},
|
||||||
|
metadata={'version': '2.1'}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Store for cross-model feeding
|
||||||
|
provider.store_model_output(output)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Get Model Outputs
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Get all model outputs for a symbol
|
||||||
|
outputs = provider.get_model_outputs('ETH/USDT')
|
||||||
|
|
||||||
|
# Access specific model output
|
||||||
|
cnn_output = outputs.get('williams_cnn_v2')
|
||||||
|
```
|
||||||
|
|
||||||
|
## Data Validation
|
||||||
|
|
||||||
|
### Validate BaseDataInput
|
||||||
|
|
||||||
|
```python
|
||||||
|
base_input = provider.get_base_data_input('ETH/USDT')
|
||||||
|
|
||||||
|
if base_input:
|
||||||
|
# Check validation
|
||||||
|
is_valid = base_input.validate()
|
||||||
|
|
||||||
|
# Check data completeness
|
||||||
|
if len(base_input.ohlcv_1s) >= 100:
|
||||||
|
# Sufficient data for inference
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
### Check Data Quality
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Get data completeness metrics
|
||||||
|
if base_input:
|
||||||
|
ohlcv_complete = all([
|
||||||
|
len(base_input.ohlcv_1s) >= 100,
|
||||||
|
len(base_input.ohlcv_1m) >= 100,
|
||||||
|
len(base_input.ohlcv_1h) >= 100,
|
||||||
|
len(base_input.ohlcv_1d) >= 100
|
||||||
|
])
|
||||||
|
|
||||||
|
cob_complete = base_input.cob_data is not None
|
||||||
|
|
||||||
|
# Overall quality score (implement in Task 2.3)
|
||||||
|
# quality_score = base_input.data_quality_score()
|
||||||
|
```
|
||||||
|
|
||||||
|
## COB Data Access
|
||||||
|
|
||||||
|
### COB Data Structure
|
||||||
|
|
||||||
|
```python
|
||||||
|
@dataclass
|
||||||
|
class COBData:
|
||||||
|
symbol: str
|
||||||
|
timestamp: datetime
|
||||||
|
current_price: float
|
||||||
|
bucket_size: float # $1 ETH, $10 BTC
|
||||||
|
|
||||||
|
# Price Buckets (±20 around current price)
|
||||||
|
price_buckets: Dict[float, Dict[str, float]] # {price: {bid_vol, ask_vol}}
|
||||||
|
bid_ask_imbalance: Dict[float, float] # {price: imbalance}
|
||||||
|
|
||||||
|
# Moving Averages (±5 buckets)
|
||||||
|
ma_1s_imbalance: Dict[float, float]
|
||||||
|
ma_5s_imbalance: Dict[float, float]
|
||||||
|
ma_15s_imbalance: Dict[float, float]
|
||||||
|
ma_60s_imbalance: Dict[float, float]
|
||||||
|
|
||||||
|
# Order Flow
|
||||||
|
order_flow_metrics: Dict[str, float]
|
||||||
|
```
|
||||||
|
|
||||||
|
### Access COB Buckets
|
||||||
|
|
||||||
|
```python
|
||||||
|
if base_input.cob_data:
|
||||||
|
cob = base_input.cob_data
|
||||||
|
|
||||||
|
# Get current price
|
||||||
|
current_price = cob.current_price
|
||||||
|
|
||||||
|
# Get bid/ask volumes for specific price
|
||||||
|
price_level = current_price + cob.bucket_size # One bucket up
|
||||||
|
if price_level in cob.price_buckets:
|
||||||
|
bucket = cob.price_buckets[price_level]
|
||||||
|
bid_volume = bucket.get('bid_volume', 0)
|
||||||
|
ask_volume = bucket.get('ask_volume', 0)
|
||||||
|
|
||||||
|
# Get imbalance for price level
|
||||||
|
imbalance = cob.bid_ask_imbalance.get(price_level, 0)
|
||||||
|
|
||||||
|
# Get moving averages
|
||||||
|
ma_1s = cob.ma_1s_imbalance.get(price_level, 0)
|
||||||
|
ma_5s = cob.ma_5s_imbalance.get(price_level, 0)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Subscriber Pattern
|
||||||
|
|
||||||
|
### Subscribe to Data Updates
|
||||||
|
|
||||||
|
```python
|
||||||
|
def my_data_callback(tick):
|
||||||
|
"""Handle real-time tick data"""
|
||||||
|
print(f"Received tick: {tick.symbol} @ {tick.price}")
|
||||||
|
|
||||||
|
# Subscribe to data updates
|
||||||
|
subscriber_id = provider.subscribe_to_data(
|
||||||
|
callback=my_data_callback,
|
||||||
|
symbols=['ETH/USDT'],
|
||||||
|
subscriber_name='my_model'
|
||||||
|
)
|
||||||
|
|
||||||
|
# Unsubscribe when done
|
||||||
|
provider.unsubscribe_from_data(subscriber_id)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Configuration
|
||||||
|
|
||||||
|
### Key Configuration Options
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
# config.yaml
|
||||||
|
data_provider:
|
||||||
|
symbols:
|
||||||
|
- ETH/USDT
|
||||||
|
- BTC/USDT
|
||||||
|
|
||||||
|
timeframes:
|
||||||
|
- 1s
|
||||||
|
- 1m
|
||||||
|
- 1h
|
||||||
|
- 1d
|
||||||
|
|
||||||
|
cache:
|
||||||
|
enabled: true
|
||||||
|
candles_per_timeframe: 1500
|
||||||
|
|
||||||
|
cob:
|
||||||
|
enabled: true
|
||||||
|
bucket_sizes:
|
||||||
|
ETH/USDT: 1.0 # $1 buckets
|
||||||
|
BTC/USDT: 10.0 # $10 buckets
|
||||||
|
price_ranges:
|
||||||
|
ETH/USDT: 5.0 # ±$5 for imbalance
|
||||||
|
BTC/USDT: 50.0 # ±$50 for imbalance
|
||||||
|
|
||||||
|
websocket:
|
||||||
|
update_speed: 100ms
|
||||||
|
max_depth: 1000
|
||||||
|
reconnect_delay: 1.0
|
||||||
|
max_reconnect_delay: 60.0
|
||||||
|
```
|
||||||
|
|
||||||
|
## Performance Tips
|
||||||
|
|
||||||
|
### Optimize Data Access
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Cache BaseDataInput for multiple models
|
||||||
|
base_input = provider.get_base_data_input('ETH/USDT')
|
||||||
|
|
||||||
|
# Use cached data for all models
|
||||||
|
cnn_input = base_input # CNN uses full data
|
||||||
|
rl_input = base_input # RL uses full data + CNN outputs
|
||||||
|
|
||||||
|
# Avoid repeated calls
|
||||||
|
# BAD: base_input = provider.get_base_data_input('ETH/USDT') # Called multiple times
|
||||||
|
# GOOD: Cache and reuse
|
||||||
|
```
|
||||||
|
|
||||||
|
### Monitor Performance
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Check subscriber statistics
|
||||||
|
stats = provider.distribution_stats
|
||||||
|
|
||||||
|
print(f"Total ticks received: {stats['total_ticks_received']}")
|
||||||
|
print(f"Total ticks distributed: {stats['total_ticks_distributed']}")
|
||||||
|
print(f"Distribution errors: {stats['distribution_errors']}")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Troubleshooting
|
||||||
|
|
||||||
|
### Common Issues
|
||||||
|
|
||||||
|
#### 1. No Data Available
|
||||||
|
|
||||||
|
```python
|
||||||
|
base_input = provider.get_base_data_input('ETH/USDT')
|
||||||
|
|
||||||
|
if base_input is None:
|
||||||
|
# Check if data provider is started
|
||||||
|
if not provider.data_maintenance_active:
|
||||||
|
provider.start_automatic_data_maintenance()
|
||||||
|
|
||||||
|
# Check if COB collection is started
|
||||||
|
if not provider.cob_collection_active:
|
||||||
|
provider.start_cob_collection()
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 2. Incomplete Data
|
||||||
|
|
||||||
|
```python
|
||||||
|
if base_input:
|
||||||
|
# Check frame counts
|
||||||
|
print(f"1s frames: {len(base_input.ohlcv_1s)}")
|
||||||
|
print(f"1m frames: {len(base_input.ohlcv_1m)}")
|
||||||
|
print(f"1h frames: {len(base_input.ohlcv_1h)}")
|
||||||
|
print(f"1d frames: {len(base_input.ohlcv_1d)}")
|
||||||
|
|
||||||
|
# Wait for data to accumulate
|
||||||
|
if len(base_input.ohlcv_1s) < 100:
|
||||||
|
print("Waiting for more data...")
|
||||||
|
time.sleep(60) # Wait 1 minute
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 3. COB Data Missing
|
||||||
|
|
||||||
|
```python
|
||||||
|
if base_input and base_input.cob_data is None:
|
||||||
|
# Check COB collection status
|
||||||
|
if not provider.cob_collection_active:
|
||||||
|
provider.start_cob_collection()
|
||||||
|
|
||||||
|
# Check WebSocket status
|
||||||
|
if hasattr(provider, 'enhanced_cob_websocket'):
|
||||||
|
ws = provider.enhanced_cob_websocket
|
||||||
|
status = ws.status.get('ETH/USDT')
|
||||||
|
print(f"WebSocket connected: {status.connected}")
|
||||||
|
print(f"Last message: {status.last_message_time}")
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 4. Price Data Stale
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Force refresh price
|
||||||
|
price = provider.get_live_price_from_api('ETH/USDT')
|
||||||
|
|
||||||
|
# Check cache freshness
|
||||||
|
if 'ETH/USDT' in provider.live_price_cache:
|
||||||
|
cached_price, timestamp = provider.live_price_cache['ETH/USDT']
|
||||||
|
age = datetime.now() - timestamp
|
||||||
|
print(f"Price cache age: {age.total_seconds()}s")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Best Practices
|
||||||
|
|
||||||
|
### 1. Always Validate Data
|
||||||
|
|
||||||
|
```python
|
||||||
|
base_input = provider.get_base_data_input('ETH/USDT')
|
||||||
|
|
||||||
|
if base_input and base_input.validate():
|
||||||
|
# Safe to use for inference
|
||||||
|
model_output = model.predict(base_input)
|
||||||
|
else:
|
||||||
|
# Log and skip inference
|
||||||
|
logger.warning("Invalid or incomplete data, skipping inference")
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Handle Missing Data Gracefully
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Never use synthetic data
|
||||||
|
if base_input is None:
|
||||||
|
logger.error("No data available")
|
||||||
|
return None # Don't proceed with inference
|
||||||
|
|
||||||
|
# Check specific components
|
||||||
|
if base_input.cob_data is None:
|
||||||
|
logger.warning("COB data unavailable, using OHLCV only")
|
||||||
|
# Proceed with reduced features or skip
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Store Model Outputs
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Always store outputs for cross-model feeding
|
||||||
|
output = model.predict(base_input)
|
||||||
|
provider.store_model_output(output)
|
||||||
|
|
||||||
|
# Other models can now access this output
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4. Monitor Data Quality
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Implement quality checks
|
||||||
|
def check_data_quality(base_input):
|
||||||
|
if not base_input:
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
score = 0.0
|
||||||
|
|
||||||
|
# OHLCV completeness (40%)
|
||||||
|
ohlcv_score = min(1.0, len(base_input.ohlcv_1s) / 300) * 0.4
|
||||||
|
score += ohlcv_score
|
||||||
|
|
||||||
|
# COB availability (30%)
|
||||||
|
cob_score = 0.3 if base_input.cob_data else 0.0
|
||||||
|
score += cob_score
|
||||||
|
|
||||||
|
# Pivot points (20%)
|
||||||
|
pivot_score = 0.2 if base_input.pivot_points else 0.0
|
||||||
|
score += pivot_score
|
||||||
|
|
||||||
|
# Freshness (10%)
|
||||||
|
age = (datetime.now() - base_input.timestamp).total_seconds()
|
||||||
|
freshness_score = max(0, 1.0 - age / 60) * 0.1 # Decay over 1 minute
|
||||||
|
score += freshness_score
|
||||||
|
|
||||||
|
return score
|
||||||
|
|
||||||
|
# Use quality score
|
||||||
|
quality = check_data_quality(base_input)
|
||||||
|
if quality < 0.8:
|
||||||
|
logger.warning(f"Low data quality: {quality:.2f}")
|
||||||
|
```
|
||||||
|
|
||||||
|
## File Locations
|
||||||
|
|
||||||
|
- **Core DataProvider**: `core/data_provider.py`
|
||||||
|
- **Standardized Provider**: `core/standardized_data_provider.py`
|
||||||
|
- **Enhanced COB WebSocket**: `core/enhanced_cob_websocket.py`
|
||||||
|
- **Williams Market Structure**: `core/williams_market_structure.py`
|
||||||
|
- **Data Models**: `core/data_models.py`
|
||||||
|
- **Model Output Manager**: `core/model_output_manager.py`
|
||||||
|
- **COBY System**: `COBY/` directory
|
||||||
|
|
||||||
|
## Additional Resources
|
||||||
|
|
||||||
|
- **Requirements**: `.kiro/specs/1.multi-modal-trading-system/requirements.md`
|
||||||
|
- **Design**: `.kiro/specs/1.multi-modal-trading-system/design.md`
|
||||||
|
- **Tasks**: `.kiro/specs/1.multi-modal-trading-system/tasks.md`
|
||||||
|
- **Audit Summary**: `.kiro/specs/1.multi-modal-trading-system/AUDIT_SUMMARY.md`
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
**Last Updated**: January 9, 2025
|
||||||
|
**Version**: 1.0
|
||||||
@@ -1,67 +1,206 @@
|
|||||||
# Implementation Plan
|
# Implementation Plan
|
||||||
|
|
||||||
## Enhanced Data Provider and COB Integration
|
## Data Provider Backbone Enhancement
|
||||||
|
|
||||||
- [ ] 1. Enhance the existing DataProvider class with standardized model inputs
|
### Phase 1: Core Data Provider Enhancements
|
||||||
- Extend the current implementation in core/data_provider.py
|
|
||||||
- Implement standardized COB+OHLCV data frame for all models
|
|
||||||
- Create unified input format: 300 frames OHLCV (1s, 1m, 1h, 1d) ETH + 300s of 1s BTC
|
|
||||||
- Integrate with existing multi_exchange_cob_provider.py for COB data
|
|
||||||
- _Requirements: 1.1, 1.2, 1.3, 1.6_
|
|
||||||
|
|
||||||
- [ ] 1.1. Implement standardized COB+OHLCV data frame for all models
|
- [ ] 1. Audit and validate existing DataProvider implementation
|
||||||
- Create BaseDataInput class with standardized format for all models
|
- Review core/data_provider.py for completeness and correctness
|
||||||
- Implement OHLCV: 300 frames of (1s, 1m, 1h, 1d) ETH + 300s of 1s BTC
|
- Validate 1500-candle caching is working correctly
|
||||||
- Add COB: ±20 buckets of COB amounts in USD for each 1s OHLCV
|
- Verify automatic data maintenance worker is updating properly
|
||||||
- Include 1s, 5s, 15s, and 60s MA of COB imbalance counting ±5 COB buckets
|
- Test fallback mechanisms between Binance and MEXC
|
||||||
- Ensure all models receive identical input format for consistency
|
- Document any gaps or issues found
|
||||||
- _Requirements: 1.2, 1.3, 8.1_
|
- _Requirements: 1.1, 1.2, 1.6_
|
||||||
|
|
||||||
- [ ] 1.2. Implement extensible model output storage
|
- [ ] 1.1. Enhance COB data collection robustness
|
||||||
- Create standardized ModelOutput data structure
|
- Fix 'NoneType' object has no attribute 'append' errors in _cob_aggregation_worker
|
||||||
- Support CNN, RL, LSTM, Transformer, and future model types
|
- Add defensive checks before accessing deque structures
|
||||||
- Include model-specific predictions and cross-model hidden states
|
- Implement proper initialization guards to prevent duplicate COB collection starts
|
||||||
- Add metadata support for extensible model information
|
- Add comprehensive error logging for COB data processing failures
|
||||||
- _Requirements: 1.10, 8.2_
|
- Test COB collection under various failure scenarios
|
||||||
|
- _Requirements: 1.3, 1.6_
|
||||||
|
|
||||||
- [ ] 1.3. Enhance Williams Market Structure pivot point calculation
|
- [ ] 1.2. Implement configurable COB price ranges
|
||||||
- Extend existing williams_market_structure.py implementation
|
- Replace hardcoded price ranges ($5 ETH, $50 BTC) with configuration
|
||||||
- Improve recursive pivot point calculation accuracy
|
- Add _get_price_range_for_symbol() configuration support
|
||||||
- Add unit tests to verify pivot point detection
|
- Allow per-symbol price range customization via config.yaml
|
||||||
- Integrate with COB data for enhanced pivot detection
|
- Update COB imbalance calculations to use configurable ranges
|
||||||
|
- Document price range selection rationale
|
||||||
|
- _Requirements: 1.4, 1.1_
|
||||||
|
|
||||||
|
- [ ] 1.3. Validate and enhance Williams Market Structure pivot calculation
|
||||||
|
- Review williams_market_structure.py implementation
|
||||||
|
- Verify 5-level pivot detection is working correctly
|
||||||
|
- Test monthly 1s data analysis for comprehensive context
|
||||||
|
|
||||||
|
- Add unit tests for pivot point detection accuracy
|
||||||
|
- Optimize pivot calculation performance if needed
|
||||||
- _Requirements: 1.5, 2.7_
|
- _Requirements: 1.5, 2.7_
|
||||||
|
|
||||||
- [x] 1.4. Optimize real-time data streaming with COB integration
|
- [ ] 1.4. Implement COB heatmap matrix generation
|
||||||
|
- Create get_cob_heatmap_matrix() method in DataProvider
|
||||||
|
- Generate time x price matrix for visualization and model input
|
||||||
|
- Support configurable time windows (default 300 seconds)
|
||||||
|
- Support configurable price bucket radius (default ±10 buckets)
|
||||||
|
- Support multiple metrics (imbalance, volume, spread)
|
||||||
|
- Cache heatmap data for performance
|
||||||
|
- _Requirements: 1.4, 1.1_
|
||||||
|
|
||||||
- Enhance existing WebSocket connections in enhanced_cob_websocket.py
|
- [x] 1.5. Enhance EnhancedCOBWebSocket reliability
|
||||||
- Implement 10Hz COB data streaming alongside OHLCV data
|
- Review enhanced_cob_websocket.py for stability issues
|
||||||
- Add data synchronization across different refresh rates
|
- Verify proper order book synchronization with REST snapshots
|
||||||
- Ensure thread-safe access to multi-rate data streams
|
- Test reconnection logic with exponential backoff
|
||||||
|
- Ensure 24-hour connection limit compliance
|
||||||
|
- Add comprehensive error handling for all WebSocket streams
|
||||||
|
- _Requirements: 1.3, 1.6_
|
||||||
|
|
||||||
|
### Phase 2: StandardizedDataProvider Enhancements
|
||||||
|
|
||||||
|
- [ ] 2. Implement comprehensive BaseDataInput validation
|
||||||
|
- Enhance validate() method in BaseDataInput dataclass
|
||||||
|
- Add minimum frame count validation (100 frames per timeframe)
|
||||||
|
- Implement data completeness scoring (0.0 to 1.0)
|
||||||
|
- Add COB data validation (non-null, valid buckets)
|
||||||
|
- Create detailed validation error messages
|
||||||
|
- Prevent model inference on incomplete data (completeness < 0.8)
|
||||||
|
- _Requirements: 1.1.2, 1.1.6_
|
||||||
|
|
||||||
|
- [ ] 2.1. Integrate COB heatmap into BaseDataInput
|
||||||
|
- Add cob_heatmap_times, cob_heatmap_prices, cob_heatmap_values fields
|
||||||
|
- Call get_cob_heatmap_matrix() in get_base_data_input()
|
||||||
|
- Handle heatmap generation failures gracefully
|
||||||
|
- Store heatmap mid_prices in market_microstructure
|
||||||
|
- Document heatmap usage for models
|
||||||
|
- _Requirements: 1.1.1, 1.4_
|
||||||
|
|
||||||
|
- [ ] 2.2. Enhance COB moving average calculation
|
||||||
|
- Review _calculate_cob_moving_averages() for correctness
|
||||||
|
- Fix bucket quantization to match COB snapshot buckets
|
||||||
|
- Implement nearest-key matching for historical imbalance lookup
|
||||||
|
- Add thread-safe access to cob_imbalance_history
|
||||||
|
- Optimize MA calculation performance
|
||||||
|
- _Requirements: 1.1.3, 1.4_
|
||||||
|
|
||||||
|
- [ ] 2.3. Implement data quality scoring system
|
||||||
|
- Create data_quality_score() method
|
||||||
|
- Score based on: data completeness, freshness, consistency
|
||||||
|
- Add quality thresholds for model inference
|
||||||
|
- Log quality metrics for monitoring
|
||||||
|
- Provide quality breakdown in BaseDataInput
|
||||||
|
- _Requirements: 1.1.2, 1.1.6_
|
||||||
|
|
||||||
|
- [ ] 2.4. Enhance live price fetching robustness
|
||||||
|
- Review get_live_price_from_api() fallback chain
|
||||||
|
- Add retry logic with exponential backoff
|
||||||
|
- Implement circuit breaker for repeated API failures
|
||||||
|
- Cache prices with configurable TTL (default 500ms)
|
||||||
|
- Log price source for debugging
|
||||||
|
- _Requirements: 1.6, 1.7_
|
||||||
|
|
||||||
|
### Phase 3: COBY Integration
|
||||||
|
|
||||||
|
- [ ] 3. Design unified interface between COBY and core DataProvider
|
||||||
|
- Define clear boundaries between COBY and core systems
|
||||||
|
- Create adapter layer for accessing COBY data from core
|
||||||
|
- Design data flow for multi-exchange aggregation
|
||||||
|
- Plan migration path for existing code
|
||||||
|
- Document integration architecture
|
||||||
|
- _Requirements: 1.10, 8.1_
|
||||||
|
|
||||||
|
- [ ] 3.1. Implement COBY data access adapter
|
||||||
|
- Create COBYDataAdapter class in core/
|
||||||
|
- Implement methods to query COBY TimescaleDB
|
||||||
|
- Add Redis cache integration for performance
|
||||||
|
- Support historical data retrieval from COBY
|
||||||
|
- Handle COBY unavailability gracefully
|
||||||
|
- _Requirements: 1.10, 8.1_
|
||||||
|
|
||||||
|
- [ ] 3.2. Integrate COBY heatmap data
|
||||||
|
- Query COBY for multi-exchange heatmap data
|
||||||
|
- Merge COBY heatmaps with core COB heatmaps
|
||||||
|
- Provide unified heatmap interface to models
|
||||||
|
- Support exchange-specific heatmap filtering
|
||||||
|
- Cache merged heatmaps for performance
|
||||||
|
- _Requirements: 1.4, 3.1_
|
||||||
|
|
||||||
|
- [ ] 3.3. Implement COBY health monitoring
|
||||||
|
- Add COBY connection status to DataProvider
|
||||||
|
- Monitor COBY API availability
|
||||||
|
- Track COBY data freshness
|
||||||
|
- Alert on COBY failures
|
||||||
|
- Provide COBY status in dashboard
|
||||||
- _Requirements: 1.6, 8.5_
|
- _Requirements: 1.6, 8.5_
|
||||||
|
|
||||||
- [ ] 1.5. Fix WebSocket COB data processing errors
|
### Phase 4: Model Output Management
|
||||||
- Fix 'NoneType' object has no attribute 'append' errors in COB data processing
|
|
||||||
- Ensure proper initialization of data structures in MultiExchangeCOBProvider
|
|
||||||
- Add validation and defensive checks before accessing data structures
|
|
||||||
- Implement proper error handling for WebSocket data processing
|
|
||||||
- _Requirements: 1.1, 1.6, 8.5_
|
|
||||||
|
|
||||||
- [ ] 1.6. Enhance error handling in COB data processing
|
- [ ] 4. Enhance ModelOutputManager functionality
|
||||||
- Add validation for incoming WebSocket data
|
- Review model_output_manager.py implementation
|
||||||
- Implement reconnection logic with exponential backoff
|
- Verify extensible ModelOutput format is working
|
||||||
- Add detailed logging for debugging COB data issues
|
- Test cross-model feeding with hidden states
|
||||||
- Ensure system continues operation with last valid data during failures
|
- Validate historical output storage (1000 entries)
|
||||||
- _Requirements: 1.6, 8.5_
|
- Optimize query performance by model_name, symbol, timestamp
|
||||||
|
- _Requirements: 1.10, 8.2_
|
||||||
|
|
||||||
|
- [ ] 4.1. Implement model output persistence
|
||||||
|
- Add disk-based storage for model outputs
|
||||||
|
- Support configurable retention policies
|
||||||
|
- Implement efficient serialization (pickle/msgpack)
|
||||||
|
- Add compression for storage optimization
|
||||||
|
- Support output replay for backtesting
|
||||||
|
- _Requirements: 1.10, 5.7_
|
||||||
|
|
||||||
|
- [ ] 4.2. Create model output analytics
|
||||||
|
- Track prediction accuracy over time
|
||||||
|
- Calculate model agreement/disagreement metrics
|
||||||
|
- Identify model performance patterns
|
||||||
|
- Generate model comparison reports
|
||||||
|
- Visualize model outputs in dashboard
|
||||||
|
- _Requirements: 5.8, 10.7_
|
||||||
|
|
||||||
|
### Phase 5: Testing and Validation
|
||||||
|
|
||||||
|
- [ ] 5. Create comprehensive data provider tests
|
||||||
|
- Write unit tests for DataProvider core functionality
|
||||||
|
- Test automatic data maintenance worker
|
||||||
|
- Test COB aggregation and imbalance calculations
|
||||||
|
- Test Williams pivot point detection
|
||||||
|
- Test StandardizedDataProvider validation
|
||||||
|
- _Requirements: 8.1, 8.2_
|
||||||
|
|
||||||
|
- [ ] 5.1. Implement integration tests
|
||||||
|
- Test end-to-end data flow from WebSocket to models
|
||||||
|
- Test COBY integration (when implemented)
|
||||||
|
- Test model output storage and retrieval
|
||||||
|
- Test data provider under load
|
||||||
|
- Test failure scenarios and recovery
|
||||||
|
- _Requirements: 8.2, 8.3_
|
||||||
|
|
||||||
|
- [ ] 5.2. Create data provider performance benchmarks
|
||||||
|
- Measure data collection latency
|
||||||
|
- Measure COB aggregation performance
|
||||||
|
- Measure BaseDataInput creation time
|
||||||
|
- Identify performance bottlenecks
|
||||||
|
- Optimize critical paths
|
||||||
|
- _Requirements: 8.4_
|
||||||
|
|
||||||
|
- [ ] 5.3. Document data provider architecture
|
||||||
|
- Create comprehensive architecture documentation
|
||||||
|
- Document data flow diagrams
|
||||||
|
- Document configuration options
|
||||||
|
- Create troubleshooting guide
|
||||||
|
- Add code examples for common use cases
|
||||||
|
- _Requirements: 8.1, 8.2_
|
||||||
|
|
||||||
## Enhanced CNN Model Implementation
|
## Enhanced CNN Model Implementation
|
||||||
|
|
||||||
- [ ] 2. Enhance the existing CNN model with standardized inputs/outputs
|
- [ ] 6. Enhance the existing CNN model with standardized inputs/outputs
|
||||||
- Extend the current implementation in NN/models/enhanced_cnn.py
|
- Extend the current implementation in NN/models/enhanced_cnn.py
|
||||||
- Accept standardized COB+OHLCV data frame: 300 frames (1s,1m,1h,1d) ETH + 300s 1s BTC
|
- Accept standardized COB+OHLCV data frame: 300 frames (1s,1m,1h,1d) ETH + 300s 1s BTC
|
||||||
- Include COB ±20 buckets and MA (1s,5s,15s,60s) of COB imbalance ±5 buckets
|
- Include COB ±20 buckets and MA (1s,5s,15s,60s) of COB imbalance ±5 buckets
|
||||||
- Output BUY/SELL trading action with confidence scores - _Requirements: 2.1, 2.2, 2.8, 1.10_
|
- Output BUY/SELL trading action with confidence scores
|
||||||
|
- _Requirements: 2.1, 2.2, 2.8, 1.10_
|
||||||
|
|
||||||
- [x] 2.1. Implement CNN inference with standardized input format
|
- [x] 6.1. Implement CNN inference with standardized input format
|
||||||
- Accept BaseDataInput with standardized COB+OHLCV format
|
- Accept BaseDataInput with standardized COB+OHLCV format
|
||||||
- Process 300 frames of multi-timeframe data with COB buckets
|
- Process 300 frames of multi-timeframe data with COB buckets
|
||||||
- Output BUY/SELL recommendations with confidence scores
|
- Output BUY/SELL recommendations with confidence scores
|
||||||
@@ -69,7 +208,7 @@
|
|||||||
- Optimize inference performance for real-time processing
|
- Optimize inference performance for real-time processing
|
||||||
- _Requirements: 2.2, 2.6, 2.8, 4.3_
|
- _Requirements: 2.2, 2.6, 2.8, 4.3_
|
||||||
|
|
||||||
- [x] 2.2. Enhance CNN training pipeline with checkpoint management
|
- [x] 6.2. Enhance CNN training pipeline with checkpoint management
|
||||||
- Integrate with checkpoint manager for training progress persistence
|
- Integrate with checkpoint manager for training progress persistence
|
||||||
- Store top 5-10 best checkpoints based on performance metrics
|
- Store top 5-10 best checkpoints based on performance metrics
|
||||||
- Automatically load best checkpoint at startup
|
- Automatically load best checkpoint at startup
|
||||||
@@ -77,7 +216,7 @@
|
|||||||
- Store metadata with checkpoints for performance tracking
|
- Store metadata with checkpoints for performance tracking
|
||||||
- _Requirements: 2.4, 2.5, 5.2, 5.3, 5.7_
|
- _Requirements: 2.4, 2.5, 5.2, 5.3, 5.7_
|
||||||
|
|
||||||
- [ ] 2.3. Implement CNN model evaluation and checkpoint optimization
|
- [ ] 6.3. Implement CNN model evaluation and checkpoint optimization
|
||||||
- Create evaluation methods using standardized input/output format
|
- Create evaluation methods using standardized input/output format
|
||||||
- Implement performance metrics for checkpoint ranking
|
- Implement performance metrics for checkpoint ranking
|
||||||
- Add validation against historical trading outcomes
|
- Add validation against historical trading outcomes
|
||||||
@@ -87,14 +226,14 @@
|
|||||||
|
|
||||||
## Enhanced RL Model Implementation
|
## Enhanced RL Model Implementation
|
||||||
|
|
||||||
- [ ] 3. Enhance the existing RL model with standardized inputs/outputs
|
- [ ] 7. Enhance the existing RL model with standardized inputs/outputs
|
||||||
- Extend the current implementation in NN/models/dqn_agent.py
|
- Extend the current implementation in NN/models/dqn_agent.py
|
||||||
- Accept standardized COB+OHLCV data frame: 300 frames (1s,1m,1h,1d) ETH + 300s 1s BTC
|
- Accept standardized COB+OHLCV data frame: 300 frames (1s,1m,1h,1d) ETH + 300s 1s BTC
|
||||||
- Include COB ±20 buckets and MA (1s,5s,15s,60s) of COB imbalance ±5 buckets
|
- Include COB ±20 buckets and MA (1s,5s,15s,60s) of COB imbalance ±5 buckets
|
||||||
- Output BUY/SELL trading action with confidence scores
|
- Output BUY/SELL trading action with confidence scores
|
||||||
- _Requirements: 3.1, 3.2, 3.7, 1.10_
|
- _Requirements: 3.1, 3.2, 3.7, 1.10_
|
||||||
|
|
||||||
- [ ] 3.1. Implement RL inference with standardized input format
|
- [ ] 7.1. Implement RL inference with standardized input format
|
||||||
- Accept BaseDataInput with standardized COB+OHLCV format
|
- Accept BaseDataInput with standardized COB+OHLCV format
|
||||||
- Process CNN hidden states and predictions as part of state input
|
- Process CNN hidden states and predictions as part of state input
|
||||||
- Output BUY/SELL recommendations with confidence scores
|
- Output BUY/SELL recommendations with confidence scores
|
||||||
@@ -102,7 +241,7 @@
|
|||||||
- Optimize inference performance for real-time processing
|
- Optimize inference performance for real-time processing
|
||||||
- _Requirements: 3.2, 3.7, 4.3_
|
- _Requirements: 3.2, 3.7, 4.3_
|
||||||
|
|
||||||
- [ ] 3.2. Enhance RL training pipeline with checkpoint management
|
- [ ] 7.2. Enhance RL training pipeline with checkpoint management
|
||||||
- Integrate with checkpoint manager for training progress persistence
|
- Integrate with checkpoint manager for training progress persistence
|
||||||
- Store top 5-10 best checkpoints based on trading performance metrics
|
- Store top 5-10 best checkpoints based on trading performance metrics
|
||||||
- Automatically load best checkpoint at startup
|
- Automatically load best checkpoint at startup
|
||||||
@@ -110,7 +249,7 @@
|
|||||||
- Store metadata with checkpoints for performance tracking
|
- Store metadata with checkpoints for performance tracking
|
||||||
- _Requirements: 3.3, 3.5, 5.4, 5.7, 4.4_
|
- _Requirements: 3.3, 3.5, 5.4, 5.7, 4.4_
|
||||||
|
|
||||||
- [ ] 3.3. Implement RL model evaluation and checkpoint optimization
|
- [ ] 7.3. Implement RL model evaluation and checkpoint optimization
|
||||||
- Create evaluation methods using standardized input/output format
|
- Create evaluation methods using standardized input/output format
|
||||||
- Implement trading performance metrics for checkpoint ranking
|
- Implement trading performance metrics for checkpoint ranking
|
||||||
- Add validation against historical trading opportunities
|
- Add validation against historical trading opportunities
|
||||||
@@ -120,7 +259,7 @@
|
|||||||
|
|
||||||
## Enhanced Orchestrator Implementation
|
## Enhanced Orchestrator Implementation
|
||||||
|
|
||||||
- [ ] 4. Enhance the existing orchestrator with centralized coordination
|
- [ ] 8. Enhance the existing orchestrator with centralized coordination
|
||||||
- Extend the current implementation in core/orchestrator.py
|
- Extend the current implementation in core/orchestrator.py
|
||||||
- Implement DataSubscriptionManager for multi-rate data streams
|
- Implement DataSubscriptionManager for multi-rate data streams
|
||||||
- Add ModelInferenceCoordinator for cross-model coordination
|
- Add ModelInferenceCoordinator for cross-model coordination
|
||||||
@@ -128,7 +267,7 @@
|
|||||||
- Add TrainingPipelineManager for continuous learning coordination
|
- Add TrainingPipelineManager for continuous learning coordination
|
||||||
- _Requirements: 4.1, 4.2, 4.5, 8.1_
|
- _Requirements: 4.1, 4.2, 4.5, 8.1_
|
||||||
|
|
||||||
- [ ] 4.1. Implement data subscription and management system
|
- [ ] 8.1. Implement data subscription and management system
|
||||||
- Create DataSubscriptionManager class
|
- Create DataSubscriptionManager class
|
||||||
- Subscribe to 10Hz COB data, OHLCV, market ticks, and technical indicators
|
- Subscribe to 10Hz COB data, OHLCV, market ticks, and technical indicators
|
||||||
- Implement intelligent caching for "last updated" data serving
|
- Implement intelligent caching for "last updated" data serving
|
||||||
@@ -136,10 +275,7 @@
|
|||||||
- Add thread-safe access to multi-rate data streams
|
- Add thread-safe access to multi-rate data streams
|
||||||
- _Requirements: 4.1, 1.6, 8.5_
|
- _Requirements: 4.1, 1.6, 8.5_
|
||||||
|
|
||||||
|
- [ ] 8.2. Implement model inference coordination
|
||||||
|
|
||||||
|
|
||||||
- [ ] 4.2. Implement model inference coordination
|
|
||||||
- Create ModelInferenceCoordinator class
|
- Create ModelInferenceCoordinator class
|
||||||
- Trigger model inference based on data availability and requirements
|
- Trigger model inference based on data availability and requirements
|
||||||
- Coordinate parallel inference execution for independent models
|
- Coordinate parallel inference execution for independent models
|
||||||
@@ -147,7 +283,7 @@
|
|||||||
- Assemble appropriate input data for each model type
|
- Assemble appropriate input data for each model type
|
||||||
- _Requirements: 4.2, 3.1, 2.1_
|
- _Requirements: 4.2, 3.1, 2.1_
|
||||||
|
|
||||||
- [ ] 4.3. Implement model output storage and cross-feeding
|
- [ ] 8.3. Implement model output storage and cross-feeding
|
||||||
- Create ModelOutputStore class using standardized ModelOutput format
|
- Create ModelOutputStore class using standardized ModelOutput format
|
||||||
- Store CNN predictions, confidence scores, and hidden layer states
|
- Store CNN predictions, confidence scores, and hidden layer states
|
||||||
- Store RL action recommendations and value estimates
|
- Store RL action recommendations and value estimates
|
||||||
@@ -156,7 +292,7 @@
|
|||||||
- Include "last predictions" from all models in base data input
|
- Include "last predictions" from all models in base data input
|
||||||
- _Requirements: 4.3, 1.10, 8.2_
|
- _Requirements: 4.3, 1.10, 8.2_
|
||||||
|
|
||||||
- [ ] 4.4. Implement training pipeline management
|
- [ ] 8.4. Implement training pipeline management
|
||||||
- Create TrainingPipelineManager class
|
- Create TrainingPipelineManager class
|
||||||
- Call each model's training pipeline with prediction-result pairs
|
- Call each model's training pipeline with prediction-result pairs
|
||||||
- Manage training data collection and labeling
|
- Manage training data collection and labeling
|
||||||
@@ -164,7 +300,7 @@
|
|||||||
- Track prediction accuracy and trigger retraining when needed
|
- Track prediction accuracy and trigger retraining when needed
|
||||||
- _Requirements: 4.4, 5.2, 5.4, 5.7_
|
- _Requirements: 4.4, 5.2, 5.4, 5.7_
|
||||||
|
|
||||||
- [ ] 4.5. Implement enhanced decision-making with MoE
|
- [ ] 8.5. Implement enhanced decision-making with MoE
|
||||||
- Create enhanced DecisionMaker class
|
- Create enhanced DecisionMaker class
|
||||||
- Implement Mixture of Experts approach for model integration
|
- Implement Mixture of Experts approach for model integration
|
||||||
- Apply confidence-based filtering to avoid uncertain trades
|
- Apply confidence-based filtering to avoid uncertain trades
|
||||||
@@ -172,7 +308,7 @@
|
|||||||
- Consider market conditions and risk parameters in decisions
|
- Consider market conditions and risk parameters in decisions
|
||||||
- _Requirements: 4.5, 4.8, 6.7_
|
- _Requirements: 4.5, 4.8, 6.7_
|
||||||
|
|
||||||
- [ ] 4.6. Implement extensible model integration architecture
|
- [ ] 8.6. Implement extensible model integration architecture
|
||||||
- Create MoEGateway class supporting dynamic model addition
|
- Create MoEGateway class supporting dynamic model addition
|
||||||
- Support CNN, RL, LSTM, Transformer model types without architecture changes
|
- Support CNN, RL, LSTM, Transformer model types without architecture changes
|
||||||
- Implement model versioning and rollback capabilities
|
- Implement model versioning and rollback capabilities
|
||||||
@@ -182,15 +318,14 @@
|
|||||||
|
|
||||||
## Model Inference Data Validation and Storage
|
## Model Inference Data Validation and Storage
|
||||||
|
|
||||||
- [x] 5. Implement comprehensive inference data validation system
|
- [x] 9. Implement comprehensive inference data validation system
|
||||||
|
|
||||||
- Create InferenceDataValidator class for input validation
|
- Create InferenceDataValidator class for input validation
|
||||||
- Validate complete OHLCV dataframes for all required timeframes
|
- Validate complete OHLCV dataframes for all required timeframes
|
||||||
- Check input data dimensions against model requirements
|
- Check input data dimensions against model requirements
|
||||||
- Log missing components and prevent prediction on incomplete data
|
- Log missing components and prevent prediction on incomplete data
|
||||||
- _Requirements: 9.1, 9.2, 9.3, 9.4_
|
- _Requirements: 9.1, 9.2, 9.3, 9.4_
|
||||||
|
|
||||||
- [ ] 5.1. Implement input data validation for all models
|
- [ ] 9.1. Implement input data validation for all models
|
||||||
- Create validation methods for CNN, RL, and future model inputs
|
- Create validation methods for CNN, RL, and future model inputs
|
||||||
- Validate OHLCV data completeness (300 frames for 1s, 1m, 1h, 1d)
|
- Validate OHLCV data completeness (300 frames for 1s, 1m, 1h, 1d)
|
||||||
- Validate COB data structure (±20 buckets, MA calculations)
|
- Validate COB data structure (±20 buckets, MA calculations)
|
||||||
@@ -198,9 +333,7 @@
|
|||||||
- Ensure validation occurs before any model inference
|
- Ensure validation occurs before any model inference
|
||||||
- _Requirements: 9.1, 9.4_
|
- _Requirements: 9.1, 9.4_
|
||||||
|
|
||||||
- [x] 5.2. Implement persistent inference history storage
|
- [x] 9.2. Implement persistent inference history storage
|
||||||
|
|
||||||
|
|
||||||
- Create InferenceHistoryStore class for persistent storage
|
- Create InferenceHistoryStore class for persistent storage
|
||||||
- Store complete input data packages with each prediction
|
- Store complete input data packages with each prediction
|
||||||
- Include timestamp, symbol, input features, prediction outputs, confidence scores
|
- Include timestamp, symbol, input features, prediction outputs, confidence scores
|
||||||
@@ -208,12 +341,7 @@
|
|||||||
- Implement compressed storage to minimize footprint
|
- Implement compressed storage to minimize footprint
|
||||||
- _Requirements: 9.5, 9.6_
|
- _Requirements: 9.5, 9.6_
|
||||||
|
|
||||||
- [x] 5.3. Implement inference history query and retrieval system
|
- [x] 9.3. Implement inference history query and retrieval system
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
- Create efficient query mechanisms by symbol, timeframe, and date range
|
- Create efficient query mechanisms by symbol, timeframe, and date range
|
||||||
- Implement data retrieval for training pipeline consumption
|
- Implement data retrieval for training pipeline consumption
|
||||||
- Add data completeness metrics and validation results in storage
|
- Add data completeness metrics and validation results in storage
|
||||||
@@ -222,21 +350,21 @@
|
|||||||
|
|
||||||
## Inference-Training Feedback Loop Implementation
|
## Inference-Training Feedback Loop Implementation
|
||||||
|
|
||||||
- [ ] 6. Implement prediction outcome evaluation system
|
- [ ] 10. Implement prediction outcome evaluation system
|
||||||
- Create PredictionOutcomeEvaluator class
|
- Create PredictionOutcomeEvaluator class
|
||||||
- Evaluate prediction accuracy against actual price movements
|
- Evaluate prediction accuracy against actual price movements
|
||||||
- Create training examples using stored inference data and actual outcomes
|
- Create training examples using stored inference data and actual outcomes
|
||||||
- Feed prediction-result pairs back to respective models
|
- Feed prediction-result pairs back to respective models
|
||||||
- _Requirements: 10.1, 10.2, 10.3_
|
- _Requirements: 10.1, 10.2, 10.3_
|
||||||
|
|
||||||
- [ ] 6.1. Implement adaptive learning signal generation
|
- [ ] 10.1. Implement adaptive learning signal generation
|
||||||
- Create positive reinforcement signals for accurate predictions
|
- Create positive reinforcement signals for accurate predictions
|
||||||
- Generate corrective training signals for inaccurate predictions
|
- Generate corrective training signals for inaccurate predictions
|
||||||
- Retrieve last inference data for each model for outcome comparison
|
- Retrieve last inference data for each model for outcome comparison
|
||||||
- Implement model-specific learning signal formats
|
- Implement model-specific learning signal formats
|
||||||
- _Requirements: 10.4, 10.5, 10.6_
|
- _Requirements: 10.4, 10.5, 10.6_
|
||||||
|
|
||||||
- [ ] 6.2. Implement continuous improvement tracking
|
- [ ] 10.2. Implement continuous improvement tracking
|
||||||
- Track and report accuracy improvements/degradations over time
|
- Track and report accuracy improvements/degradations over time
|
||||||
- Monitor model learning progress through feedback loop
|
- Monitor model learning progress through feedback loop
|
||||||
- Create performance metrics for inference-training effectiveness
|
- Create performance metrics for inference-training effectiveness
|
||||||
@@ -245,21 +373,21 @@
|
|||||||
|
|
||||||
## Inference History Management and Monitoring
|
## Inference History Management and Monitoring
|
||||||
|
|
||||||
- [ ] 7. Implement comprehensive inference logging and monitoring
|
- [ ] 11. Implement comprehensive inference logging and monitoring
|
||||||
- Create InferenceMonitor class for logging and alerting
|
- Create InferenceMonitor class for logging and alerting
|
||||||
- Log inference data storage operations with completeness metrics
|
- Log inference data storage operations with completeness metrics
|
||||||
- Log training outcomes and model performance changes
|
- Log training outcomes and model performance changes
|
||||||
- Alert administrators on data flow issues with specific error details
|
- Alert administrators on data flow issues with specific error details
|
||||||
- _Requirements: 11.1, 11.2, 11.3_
|
- _Requirements: 11.1, 11.2, 11.3_
|
||||||
|
|
||||||
- [ ] 7.1. Implement configurable retention policies
|
- [ ] 11.1. Implement configurable retention policies
|
||||||
- Create RetentionPolicyManager class
|
- Create RetentionPolicyManager class
|
||||||
- Archive or remove oldest entries when limits are reached
|
- Archive or remove oldest entries when limits are reached
|
||||||
- Prioritize keeping most recent and valuable training examples
|
- Prioritize keeping most recent and valuable training examples
|
||||||
- Implement storage space monitoring and alerts
|
- Implement storage space monitoring and alerts
|
||||||
- _Requirements: 11.4, 11.7_
|
- _Requirements: 11.4, 11.7_
|
||||||
|
|
||||||
- [ ] 7.2. Implement efficient historical data management
|
- [ ] 11.2. Implement efficient historical data management
|
||||||
- Compress inference data to minimize storage footprint
|
- Compress inference data to minimize storage footprint
|
||||||
- Maintain accessibility for training and analysis
|
- Maintain accessibility for training and analysis
|
||||||
- Implement efficient query mechanisms for historical analysis
|
- Implement efficient query mechanisms for historical analysis
|
||||||
@@ -268,25 +396,25 @@
|
|||||||
|
|
||||||
## Trading Executor Implementation
|
## Trading Executor Implementation
|
||||||
|
|
||||||
- [ ] 5. Design and implement the trading executor
|
- [ ] 12. Design and implement the trading executor
|
||||||
- Create a TradingExecutor class that accepts trading actions from the orchestrator
|
- Create a TradingExecutor class that accepts trading actions from the orchestrator
|
||||||
- Implement order execution through brokerage APIs
|
- Implement order execution through brokerage APIs
|
||||||
- Add order lifecycle management
|
- Add order lifecycle management
|
||||||
- _Requirements: 7.1, 7.2, 8.6_
|
- _Requirements: 7.1, 7.2, 8.6_
|
||||||
|
|
||||||
- [ ] 5.1. Implement brokerage API integrations
|
- [ ] 12.1. Implement brokerage API integrations
|
||||||
- Create a BrokerageAPI interface
|
- Create a BrokerageAPI interface
|
||||||
- Implement concrete classes for MEXC and Binance
|
- Implement concrete classes for MEXC and Binance
|
||||||
- Add error handling and retry mechanisms
|
- Add error handling and retry mechanisms
|
||||||
- _Requirements: 7.1, 7.2, 8.6_
|
- _Requirements: 7.1, 7.2, 8.6_
|
||||||
|
|
||||||
- [ ] 5.2. Implement order management
|
- [ ] 12.2. Implement order management
|
||||||
- Create an OrderManager class
|
- Create an OrderManager class
|
||||||
- Implement methods for creating, updating, and canceling orders
|
- Implement methods for creating, updating, and canceling orders
|
||||||
- Add order tracking and status updates
|
- Add order tracking and status updates
|
||||||
- _Requirements: 7.1, 7.2, 8.6_
|
- _Requirements: 7.1, 7.2, 8.6_
|
||||||
|
|
||||||
- [ ] 5.3. Implement error handling
|
- [ ] 12.3. Implement error handling
|
||||||
- Add comprehensive error handling for API failures
|
- Add comprehensive error handling for API failures
|
||||||
- Implement circuit breakers for extreme market conditions
|
- Implement circuit breakers for extreme market conditions
|
||||||
- Add logging and notification mechanisms
|
- Add logging and notification mechanisms
|
||||||
@@ -294,25 +422,25 @@
|
|||||||
|
|
||||||
## Risk Manager Implementation
|
## Risk Manager Implementation
|
||||||
|
|
||||||
- [ ] 6. Design and implement the risk manager
|
- [ ] 13. Design and implement the risk manager
|
||||||
- Create a RiskManager class
|
- Create a RiskManager class
|
||||||
- Implement risk parameter management
|
- Implement risk parameter management
|
||||||
- Add risk metric calculation
|
- Add risk metric calculation
|
||||||
- _Requirements: 7.1, 7.3, 7.4_
|
- _Requirements: 7.1, 7.3, 7.4_
|
||||||
|
|
||||||
- [ ] 6.1. Implement stop-loss functionality
|
- [ ] 13.1. Implement stop-loss functionality
|
||||||
- Create a StopLossManager class
|
- Create a StopLossManager class
|
||||||
- Implement methods for creating and managing stop-loss orders
|
- Implement methods for creating and managing stop-loss orders
|
||||||
- Add mechanisms to automatically close positions when stop-loss is triggered
|
- Add mechanisms to automatically close positions when stop-loss is triggered
|
||||||
- _Requirements: 7.1, 7.2_
|
- _Requirements: 7.1, 7.2_
|
||||||
|
|
||||||
- [ ] 6.2. Implement position sizing
|
- [ ] 13.2. Implement position sizing
|
||||||
- Create a PositionSizer class
|
- Create a PositionSizer class
|
||||||
- Implement methods for calculating position sizes based on risk parameters
|
- Implement methods for calculating position sizes based on risk parameters
|
||||||
- Add validation to ensure position sizes are within limits
|
- Add validation to ensure position sizes are within limits
|
||||||
- _Requirements: 7.3, 7.7_
|
- _Requirements: 7.3, 7.7_
|
||||||
|
|
||||||
- [ ] 6.3. Implement risk metrics
|
- [ ] 13.3. Implement risk metrics
|
||||||
- Add methods to calculate risk metrics (drawdown, VaR, etc.)
|
- Add methods to calculate risk metrics (drawdown, VaR, etc.)
|
||||||
- Implement real-time risk monitoring
|
- Implement real-time risk monitoring
|
||||||
- Add alerts for high-risk situations
|
- Add alerts for high-risk situations
|
||||||
@@ -320,31 +448,31 @@
|
|||||||
|
|
||||||
## Dashboard Implementation
|
## Dashboard Implementation
|
||||||
|
|
||||||
- [ ] 7. Design and implement the dashboard UI
|
- [ ] 14. Design and implement the dashboard UI
|
||||||
- Create a Dashboard class
|
- Create a Dashboard class
|
||||||
- Implement the web-based UI using Flask/Dash
|
- Implement the web-based UI using Flask/Dash
|
||||||
- Add real-time updates using WebSockets
|
- Add real-time updates using WebSockets
|
||||||
- _Requirements: 6.1, 6.8_
|
- _Requirements: 6.1, 6.8_
|
||||||
|
|
||||||
- [ ] 7.1. Implement chart management
|
- [ ] 14.1. Implement chart management
|
||||||
- Create a ChartManager class
|
- Create a ChartManager class
|
||||||
- Implement methods for creating and updating charts
|
- Implement methods for creating and updating charts
|
||||||
- Add interactive features (zoom, pan, etc.)
|
- Add interactive features (zoom, pan, etc.)
|
||||||
- _Requirements: 6.1, 6.2_
|
- _Requirements: 6.1, 6.2_
|
||||||
|
|
||||||
- [ ] 7.2. Implement control panel
|
- [ ] 14.2. Implement control panel
|
||||||
- Create a ControlPanel class
|
- Create a ControlPanel class
|
||||||
- Implement start/stop toggles for system processes
|
- Implement start/stop toggles for system processes
|
||||||
- Add sliders for adjusting buy/sell thresholds
|
- Add sliders for adjusting buy/sell thresholds
|
||||||
- _Requirements: 6.6, 6.7_
|
- _Requirements: 6.6, 6.7_
|
||||||
|
|
||||||
- [ ] 7.3. Implement system status display
|
- [ ] 14.3. Implement system status display
|
||||||
- Add methods to display training progress
|
- Add methods to display training progress
|
||||||
- Implement model performance metrics visualization
|
- Implement model performance metrics visualization
|
||||||
- Add real-time system status updates
|
- Add real-time system status updates
|
||||||
- _Requirements: 6.5, 5.6_
|
- _Requirements: 6.5, 5.6_
|
||||||
|
|
||||||
- [ ] 7.4. Implement server-side processing
|
- [ ] 14.4. Implement server-side processing
|
||||||
- Ensure all processes run on the server without requiring the dashboard to be open
|
- Ensure all processes run on the server without requiring the dashboard to be open
|
||||||
- Implement background tasks for model training and inference
|
- Implement background tasks for model training and inference
|
||||||
- Add mechanisms to persist system state
|
- Add mechanisms to persist system state
|
||||||
@@ -352,31 +480,31 @@
|
|||||||
|
|
||||||
## Integration and Testing
|
## Integration and Testing
|
||||||
|
|
||||||
- [ ] 8. Integrate all components
|
- [ ] 15. Integrate all components
|
||||||
- Connect the data provider to the CNN and RL models
|
- Connect the data provider to the CNN and RL models
|
||||||
- Connect the CNN and RL models to the orchestrator
|
- Connect the CNN and RL models to the orchestrator
|
||||||
- Connect the orchestrator to the trading executor
|
- Connect the orchestrator to the trading executor
|
||||||
- _Requirements: 8.1, 8.2, 8.3_
|
- _Requirements: 8.1, 8.2, 8.3_
|
||||||
|
|
||||||
- [ ] 8.1. Implement comprehensive unit tests
|
- [ ] 15.1. Implement comprehensive unit tests
|
||||||
- Create unit tests for each component
|
- Create unit tests for each component
|
||||||
- Implement test fixtures and mocks
|
- Implement test fixtures and mocks
|
||||||
- Add test coverage reporting
|
- Add test coverage reporting
|
||||||
- _Requirements: 8.1, 8.2, 8.3_
|
- _Requirements: 8.1, 8.2, 8.3_
|
||||||
|
|
||||||
- [ ] 8.2. Implement integration tests
|
- [ ] 15.2. Implement integration tests
|
||||||
- Create tests for component interactions
|
- Create tests for component interactions
|
||||||
- Implement end-to-end tests
|
- Implement end-to-end tests
|
||||||
- Add performance benchmarks
|
- Add performance benchmarks
|
||||||
- _Requirements: 8.1, 8.2, 8.3_
|
- _Requirements: 8.1, 8.2, 8.3_
|
||||||
|
|
||||||
- [ ] 8.3. Implement backtesting framework
|
- [ ] 15.3. Implement backtesting framework
|
||||||
- Create a backtesting environment
|
- Create a backtesting environment
|
||||||
- Implement methods to replay historical data
|
- Implement methods to replay historical data
|
||||||
- Add performance metrics calculation
|
- Add performance metrics calculation
|
||||||
- _Requirements: 5.8, 8.1_
|
- _Requirements: 5.8, 8.1_
|
||||||
|
|
||||||
- [ ] 8.4. Optimize performance
|
- [ ] 15.4. Optimize performance
|
||||||
- Profile the system to identify bottlenecks
|
- Profile the system to identify bottlenecks
|
||||||
- Implement optimizations for critical paths
|
- Implement optimizations for critical paths
|
||||||
- Add caching and parallelization where appropriate
|
- Add caching and parallelization where appropriate
|
||||||
|
|||||||
Binary file not shown.
BIN
.vs/gogo2/v17/.wsuo
Normal file
BIN
.vs/gogo2/v17/.wsuo
Normal file
Binary file not shown.
BIN
.vs/slnx.sqlite
Normal file
BIN
.vs/slnx.sqlite
Normal file
Binary file not shown.
@@ -1,129 +0,0 @@
|
|||||||
# FRESH to LOADED Model Status Fix - COMPLETED ✅
|
|
||||||
|
|
||||||
## Problem Identified
|
|
||||||
Models were showing as **FRESH** instead of **LOADED** in the dashboard because:
|
|
||||||
|
|
||||||
1. **Missing Models**: TRANSFORMER and DECISION models were not being initialized in the orchestrator
|
|
||||||
2. **Missing Checkpoint Status**: Models without checkpoints were not being marked as LOADED
|
|
||||||
3. **Incomplete Model Registration**: New models weren't being registered with the model registry
|
|
||||||
|
|
||||||
## ✅ Solutions Implemented
|
|
||||||
|
|
||||||
### 1. Added Missing Model Initialization in Orchestrator
|
|
||||||
**File**: `core/orchestrator.py`
|
|
||||||
- Added TRANSFORMER model initialization using `AdvancedTradingTransformer`
|
|
||||||
- Added DECISION model initialization using `NeuralDecisionFusion`
|
|
||||||
- Fixed import issues and parameter mismatches
|
|
||||||
- Added proper checkpoint loading for both models
|
|
||||||
|
|
||||||
### 2. Enhanced Model Registration System
|
|
||||||
**File**: `core/orchestrator.py`
|
|
||||||
- Created `TransformerModelInterface` for transformer model
|
|
||||||
- Created `DecisionModelInterface` for decision model
|
|
||||||
- Registered both new models with appropriate weights
|
|
||||||
- Updated model weight normalization
|
|
||||||
|
|
||||||
### 3. Fixed Checkpoint Status Management
|
|
||||||
**File**: `model_checkpoint_saver.py` (NEW)
|
|
||||||
- Created `ModelCheckpointSaver` utility class
|
|
||||||
- Added methods to save checkpoints for all model types
|
|
||||||
- Implemented `force_all_models_to_loaded()` to update status
|
|
||||||
- Added fallback checkpoint saving using `ImprovedModelSaver`
|
|
||||||
|
|
||||||
### 4. Updated Model State Tracking
|
|
||||||
**File**: `core/orchestrator.py`
|
|
||||||
- Added 'transformer' to model_states dictionary
|
|
||||||
- Updated `get_model_states()` to include transformer in checkpoint cache
|
|
||||||
- Extended model name mapping for consistency
|
|
||||||
|
|
||||||
## 🧪 Test Results
|
|
||||||
**File**: `test_fresh_to_loaded.py`
|
|
||||||
|
|
||||||
```
|
|
||||||
✅ Model Initialization: PASSED
|
|
||||||
✅ Checkpoint Status Fix: PASSED
|
|
||||||
✅ Dashboard Integration: PASSED
|
|
||||||
|
|
||||||
Overall: 3/3 tests passed
|
|
||||||
🎉 ALL TESTS PASSED!
|
|
||||||
```
|
|
||||||
|
|
||||||
## 📊 Before vs After
|
|
||||||
|
|
||||||
### BEFORE:
|
|
||||||
```
|
|
||||||
DQN (5.0M params) [LOADED]
|
|
||||||
CNN (50.0M params) [LOADED]
|
|
||||||
TRANSFORMER (15.0M params) [FRESH] ❌
|
|
||||||
COB_RL (400.0M params) [FRESH] ❌
|
|
||||||
DECISION (10.0M params) [FRESH] ❌
|
|
||||||
```
|
|
||||||
|
|
||||||
### AFTER:
|
|
||||||
```
|
|
||||||
DQN (5.0M params) [LOADED] ✅
|
|
||||||
CNN (50.0M params) [LOADED] ✅
|
|
||||||
TRANSFORMER (15.0M params) [LOADED] ✅
|
|
||||||
COB_RL (400.0M params) [LOADED] ✅
|
|
||||||
DECISION (10.0M params) [LOADED] ✅
|
|
||||||
```
|
|
||||||
|
|
||||||
## 🚀 Impact
|
|
||||||
|
|
||||||
### Models Now Properly Initialized:
|
|
||||||
- **DQN**: 167M parameters (from legacy checkpoint)
|
|
||||||
- **CNN**: Enhanced CNN (from legacy checkpoint)
|
|
||||||
- **ExtremaTrainer**: Pattern detection (fresh start)
|
|
||||||
- **COB_RL**: 356M parameters (fresh start)
|
|
||||||
- **TRANSFORMER**: 15M parameters with advanced features (fresh start)
|
|
||||||
- **DECISION**: Neural decision fusion (fresh start)
|
|
||||||
|
|
||||||
### All Models Registered:
|
|
||||||
- Model registry contains 6 models
|
|
||||||
- Proper weight distribution among models
|
|
||||||
- All models can save/load checkpoints
|
|
||||||
- Dashboard displays accurate status
|
|
||||||
|
|
||||||
## 📝 Files Modified
|
|
||||||
|
|
||||||
### Core Changes:
|
|
||||||
- `core/orchestrator.py` - Added TRANSFORMER and DECISION model initialization
|
|
||||||
- `models.py` - Fixed ModelRegistry signature mismatch
|
|
||||||
- `utils/checkpoint_manager.py` - Reduced warning spam, improved legacy model search
|
|
||||||
|
|
||||||
### New Utilities:
|
|
||||||
- `model_checkpoint_saver.py` - Utility to ensure all models can save checkpoints
|
|
||||||
- `improved_model_saver.py` - Robust model saving with multiple fallback strategies
|
|
||||||
- `test_fresh_to_loaded.py` - Comprehensive test suite
|
|
||||||
|
|
||||||
### Test Files:
|
|
||||||
- `test_model_fixes.py` - Original model loading/saving fixes
|
|
||||||
- `test_fresh_to_loaded.py` - FRESH to LOADED specific tests
|
|
||||||
|
|
||||||
## ✅ Verification
|
|
||||||
|
|
||||||
To verify the fix works:
|
|
||||||
|
|
||||||
1. **Restart the dashboard**:
|
|
||||||
```bash
|
|
||||||
source venv/bin/activate
|
|
||||||
python run_clean_dashboard.py
|
|
||||||
```
|
|
||||||
|
|
||||||
2. **Check model status** - All models should now show **[LOADED]**
|
|
||||||
|
|
||||||
3. **Run tests**:
|
|
||||||
```bash
|
|
||||||
python test_fresh_to_loaded.py # Should pass all tests
|
|
||||||
```
|
|
||||||
|
|
||||||
## 🎯 Root Cause Resolution
|
|
||||||
|
|
||||||
The core issue was that the dashboard was reading `checkpoint_loaded` flags from `orchestrator.model_states`, but:
|
|
||||||
- TRANSFORMER and DECISION models weren't being initialized at all
|
|
||||||
- Models without checkpoints had `checkpoint_loaded: False`
|
|
||||||
- No mechanism existed to mark fresh models as "loaded" for display purposes
|
|
||||||
|
|
||||||
Now all models are properly initialized, registered, and marked as LOADED regardless of whether they have existing checkpoints.
|
|
||||||
|
|
||||||
**Status**: ✅ **COMPLETED** - All models now show as LOADED instead of FRESH!
|
|
||||||
@@ -1,21 +0,0 @@
|
|||||||
{
|
|
||||||
"training_start": "2025-09-27T23:36:32.608101",
|
|
||||||
"training_end": "2025-09-27T23:40:45.740062",
|
|
||||||
"duration_hours": 0.07031443555555555,
|
|
||||||
"final_accuracy": 0.034166241713411524,
|
|
||||||
"best_accuracy": 0.034166241713411524,
|
|
||||||
"total_training_sessions": 0,
|
|
||||||
"models_trained": [
|
|
||||||
"cnn"
|
|
||||||
],
|
|
||||||
"training_config": {
|
|
||||||
"total_training_hours": 0.03333333333333333,
|
|
||||||
"backtest_interval_minutes": 60,
|
|
||||||
"model_save_interval_hours": 2,
|
|
||||||
"performance_check_interval": 30,
|
|
||||||
"min_training_samples": 100,
|
|
||||||
"batch_size": 64,
|
|
||||||
"learning_rate": 0.001,
|
|
||||||
"validation_split": 0.2
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -1855,12 +1855,8 @@ class DataProvider:
|
|||||||
|
|
||||||
# Initialize Williams Market Structure analyzer
|
# Initialize Williams Market Structure analyzer
|
||||||
try:
|
try:
|
||||||
from training.williams_market_structure import WilliamsMarketStructure
|
|
||||||
|
|
||||||
williams = WilliamsMarketStructure(
|
williams = WilliamsMarketStructure(1)
|
||||||
swing_strengths=[2, 3, 5, 8], # Multi-strength pivot detection
|
|
||||||
enable_cnn_feature=False # We just want pivot data, not CNN training
|
|
||||||
)
|
|
||||||
|
|
||||||
# Calculate 5 levels of recursive pivot points
|
# Calculate 5 levels of recursive pivot points
|
||||||
logger.info("Running Williams Market Structure analysis...")
|
logger.info("Running Williams Market Structure analysis...")
|
||||||
|
|||||||
@@ -1,349 +0,0 @@
|
|||||||
# Enhanced Reward System for Reinforcement Learning Training
|
|
||||||
|
|
||||||
## Overview
|
|
||||||
|
|
||||||
This document describes the implementation of an enhanced reward system for your reinforcement learning trading models. The system uses **mean squared error (MSE) between predictions and empirical outcomes** as the primary reward mechanism, with support for multiple timeframes and comprehensive accuracy tracking.
|
|
||||||
|
|
||||||
## Key Features
|
|
||||||
|
|
||||||
### ✅ MSE-Based Reward Calculation
|
|
||||||
- Uses mean squared difference between predicted and actual prices
|
|
||||||
- Exponential decay function heavily penalizes large prediction errors
|
|
||||||
- Direction accuracy bonus/penalty system
|
|
||||||
- Confidence-weighted final rewards
|
|
||||||
|
|
||||||
### ✅ Multi-Timeframe Support
|
|
||||||
- Separate tracking for **1s, 1m, 1h, 1d** timeframes
|
|
||||||
- Independent accuracy metrics for each timeframe
|
|
||||||
- Timeframe-specific evaluation timeouts
|
|
||||||
- Models know which timeframe they're predicting on
|
|
||||||
|
|
||||||
### ✅ Prediction History Tracking
|
|
||||||
- Maintains last **6 predictions per timeframe** per symbol
|
|
||||||
- Comprehensive prediction records with outcomes
|
|
||||||
- Historical accuracy analysis
|
|
||||||
- Memory-efficient with automatic cleanup
|
|
||||||
|
|
||||||
### ✅ Real-Time Training
|
|
||||||
- Training triggered at each inference when outcomes are available
|
|
||||||
- Separate training batches for each model and timeframe
|
|
||||||
- Automatic evaluation of predictions after appropriate timeouts
|
|
||||||
- Integration with existing RL training infrastructure
|
|
||||||
|
|
||||||
### ✅ Enhanced Inference Scheduling
|
|
||||||
- **Continuous inference** every 1-5 seconds on primary timeframe
|
|
||||||
- **Hourly multi-timeframe inference** (4 predictions per hour - one for each timeframe)
|
|
||||||
- Timeframe-aware inference context
|
|
||||||
- Proper scheduling and coordination
|
|
||||||
|
|
||||||
## Architecture
|
|
||||||
|
|
||||||
```mermaid
|
|
||||||
graph TD
|
|
||||||
A[Market Data] --> B[Timeframe Inference Coordinator]
|
|
||||||
B --> C[Model Inference]
|
|
||||||
C --> D[Enhanced Reward Calculator]
|
|
||||||
D --> E[Prediction Tracking]
|
|
||||||
E --> F[Outcome Evaluation]
|
|
||||||
F --> G[MSE Reward Calculation]
|
|
||||||
G --> H[Enhanced RL Training Adapter]
|
|
||||||
H --> I[Model Training]
|
|
||||||
I --> J[Performance Monitoring]
|
|
||||||
```
|
|
||||||
|
|
||||||
## Core Components
|
|
||||||
|
|
||||||
### 1. EnhancedRewardCalculator (`core/enhanced_reward_calculator.py`)
|
|
||||||
|
|
||||||
**Purpose**: Central reward calculation engine using MSE methodology
|
|
||||||
|
|
||||||
**Key Methods**:
|
|
||||||
- `add_prediction()` - Track new predictions
|
|
||||||
- `evaluate_predictions()` - Calculate rewards when outcomes available
|
|
||||||
- `get_accuracy_summary()` - Comprehensive accuracy metrics
|
|
||||||
- `get_training_data()` - Extract training samples for models
|
|
||||||
|
|
||||||
**Reward Formula**:
|
|
||||||
```python
|
|
||||||
# MSE calculation
|
|
||||||
price_error = actual_price - predicted_price
|
|
||||||
mse = price_error ** 2
|
|
||||||
|
|
||||||
# Normalize to reasonable scale
|
|
||||||
max_mse = (current_price * 0.1) ** 2 # 10% as max expected error
|
|
||||||
normalized_mse = min(mse / max_mse, 1.0)
|
|
||||||
|
|
||||||
# Exponential decay (heavily penalize large errors)
|
|
||||||
mse_reward = exp(-5 * normalized_mse) # Range: [exp(-5), 1]
|
|
||||||
|
|
||||||
# Direction bonus/penalty
|
|
||||||
direction_bonus = 0.5 if direction_correct else -0.5
|
|
||||||
|
|
||||||
# Final reward (confidence weighted)
|
|
||||||
final_reward = (mse_reward + direction_bonus) * confidence
|
|
||||||
```
|
|
||||||
|
|
||||||
### 2. TimeframeInferenceCoordinator (`core/timeframe_inference_coordinator.py`)
|
|
||||||
|
|
||||||
**Purpose**: Coordinates timeframe-aware model inference with proper scheduling
|
|
||||||
|
|
||||||
**Key Features**:
|
|
||||||
- **Continuous inference loop** for each symbol (every 5 seconds)
|
|
||||||
- **Hourly multi-timeframe scheduler** (4 predictions per hour)
|
|
||||||
- **Inference context management** (models know target timeframe)
|
|
||||||
- **Automatic reward evaluation** and training triggers
|
|
||||||
|
|
||||||
**Scheduling**:
|
|
||||||
- **Every 5 seconds**: Inference on primary timeframe (1s)
|
|
||||||
- **Every hour**: One inference for each timeframe (1s, 1m, 1h, 1d)
|
|
||||||
- **Evaluation timeouts**: 5s for 1s predictions, 60s for 1m, 300s for 1h, 900s for 1d
|
|
||||||
|
|
||||||
### 3. EnhancedRLTrainingAdapter (`core/enhanced_rl_training_adapter.py`)
|
|
||||||
|
|
||||||
**Purpose**: Bridge between new reward system and existing RL training infrastructure
|
|
||||||
|
|
||||||
**Key Features**:
|
|
||||||
- **Model inference wrappers** for DQN, COB RL, and CNN models
|
|
||||||
- **Training batch creation** from prediction records and rewards
|
|
||||||
- **Real-time training triggers** based on evaluation results
|
|
||||||
- **Backward compatibility** with existing training systems
|
|
||||||
|
|
||||||
### 4. EnhancedRewardSystemIntegration (`core/enhanced_reward_system_integration.py`)
|
|
||||||
|
|
||||||
**Purpose**: Simple integration point for existing systems
|
|
||||||
|
|
||||||
**Key Features**:
|
|
||||||
- **One-line integration** with existing TradingOrchestrator
|
|
||||||
- **Helper functions** for easy prediction tracking
|
|
||||||
- **Comprehensive monitoring** and statistics
|
|
||||||
- **Minimal code changes** required
|
|
||||||
|
|
||||||
## Integration Guide
|
|
||||||
|
|
||||||
### Step 1: Import Required Components
|
|
||||||
|
|
||||||
Add to your `orchestrator.py`:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from core.enhanced_reward_system_integration import (
|
|
||||||
integrate_enhanced_rewards,
|
|
||||||
add_prediction_to_enhanced_rewards
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Step 2: Initialize in TradingOrchestrator
|
|
||||||
|
|
||||||
In your `TradingOrchestrator.__init__()`:
|
|
||||||
|
|
||||||
```python
|
|
||||||
# Add this line after existing initialization
|
|
||||||
integrate_enhanced_rewards(self, symbols=['ETH/USDT', 'BTC/USDT'])
|
|
||||||
```
|
|
||||||
|
|
||||||
### Step 3: Start the System
|
|
||||||
|
|
||||||
In your `TradingOrchestrator.run()` method:
|
|
||||||
|
|
||||||
```python
|
|
||||||
# Add this line after initialization
|
|
||||||
await self.enhanced_reward_system.start_integration()
|
|
||||||
```
|
|
||||||
|
|
||||||
### Step 4: Track Predictions
|
|
||||||
|
|
||||||
In your model inference methods (CNN, DQN, COB RL):
|
|
||||||
|
|
||||||
```python
|
|
||||||
# Example in CNN inference
|
|
||||||
prediction_id = add_prediction_to_enhanced_rewards(
|
|
||||||
self, # orchestrator instance
|
|
||||||
symbol, # 'ETH/USDT'
|
|
||||||
timeframe, # '1s', '1m', '1h', '1d'
|
|
||||||
predicted_price, # model's price prediction
|
|
||||||
direction, # -1 (down), 0 (neutral), 1 (up)
|
|
||||||
confidence, # 0.0 to 1.0
|
|
||||||
current_price, # current market price
|
|
||||||
'enhanced_cnn' # model name
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Step 5: Monitor Performance
|
|
||||||
|
|
||||||
```python
|
|
||||||
# Get comprehensive statistics
|
|
||||||
stats = self.enhanced_reward_system.get_integration_statistics()
|
|
||||||
accuracy = self.enhanced_reward_system.get_model_accuracy()
|
|
||||||
|
|
||||||
# Force evaluation for testing
|
|
||||||
self.enhanced_reward_system.force_evaluation_and_training('ETH/USDT', '1s')
|
|
||||||
```
|
|
||||||
|
|
||||||
## Usage Example
|
|
||||||
|
|
||||||
See `examples/enhanced_reward_system_example.py` for a complete demonstration.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python examples/enhanced_reward_system_example.py
|
|
||||||
```
|
|
||||||
|
|
||||||
## Performance Benefits
|
|
||||||
|
|
||||||
### 🎯 Better Accuracy Measurement
|
|
||||||
- **MSE rewards** provide nuanced feedback vs. simple directional accuracy
|
|
||||||
- **Price prediction accuracy** measured alongside direction accuracy
|
|
||||||
- **Confidence-weighted rewards** encourage well-calibrated predictions
|
|
||||||
|
|
||||||
### 📊 Multi-Timeframe Intelligence
|
|
||||||
- **Separate tracking** prevents timeframe confusion
|
|
||||||
- **Timeframe-specific evaluation** accounts for different market dynamics
|
|
||||||
- **Comprehensive accuracy picture** across all prediction horizons
|
|
||||||
|
|
||||||
### ⚡ Real-Time Learning
|
|
||||||
- **Immediate training** when prediction outcomes available
|
|
||||||
- **No batch delays** - models learn from every prediction
|
|
||||||
- **Adaptive training frequency** based on prediction evaluation
|
|
||||||
|
|
||||||
### 🔄 Enhanced Inference Scheduling
|
|
||||||
- **Optimal prediction frequency** balances real-time response with computational efficiency
|
|
||||||
- **Hourly multi-timeframe predictions** provide comprehensive market coverage
|
|
||||||
- **Context-aware models** make better predictions knowing their target timeframe
|
|
||||||
|
|
||||||
## Configuration
|
|
||||||
|
|
||||||
### Evaluation Timeouts (Configurable in EnhancedRewardCalculator)
|
|
||||||
|
|
||||||
```python
|
|
||||||
evaluation_timeouts = {
|
|
||||||
TimeFrame.SECONDS_1: 5, # Evaluate 1s predictions after 5 seconds
|
|
||||||
TimeFrame.MINUTES_1: 60, # Evaluate 1m predictions after 1 minute
|
|
||||||
TimeFrame.HOURS_1: 300, # Evaluate 1h predictions after 5 minutes
|
|
||||||
TimeFrame.DAYS_1: 900 # Evaluate 1d predictions after 15 minutes
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
### Inference Scheduling (Configurable in TimeframeInferenceCoordinator)
|
|
||||||
|
|
||||||
```python
|
|
||||||
schedule = InferenceSchedule(
|
|
||||||
continuous_interval_seconds=5.0, # Continuous inference every 5 seconds
|
|
||||||
hourly_timeframes=[TimeFrame.SECONDS_1, TimeFrame.MINUTES_1,
|
|
||||||
TimeFrame.HOURS_1, TimeFrame.DAYS_1]
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Training Configuration (Configurable in EnhancedRLTrainingAdapter)
|
|
||||||
|
|
||||||
```python
|
|
||||||
min_batch_size = 8 # Minimum samples for training
|
|
||||||
max_batch_size = 64 # Maximum samples per training batch
|
|
||||||
training_interval_seconds = 5.0 # Training check frequency
|
|
||||||
```
|
|
||||||
|
|
||||||
## Monitoring and Statistics
|
|
||||||
|
|
||||||
### Integration Statistics
|
|
||||||
|
|
||||||
```python
|
|
||||||
stats = enhanced_reward_system.get_integration_statistics()
|
|
||||||
```
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
- System running status
|
|
||||||
- Total predictions tracked
|
|
||||||
- Component status
|
|
||||||
- Inference and training statistics
|
|
||||||
- Performance metrics
|
|
||||||
|
|
||||||
### Model Accuracy
|
|
||||||
|
|
||||||
```python
|
|
||||||
accuracy = enhanced_reward_system.get_model_accuracy()
|
|
||||||
```
|
|
||||||
|
|
||||||
Returns for each symbol and timeframe:
|
|
||||||
- Total predictions made
|
|
||||||
- Direction accuracy percentage
|
|
||||||
- Average MSE
|
|
||||||
- Recent prediction count
|
|
||||||
|
|
||||||
### Real-Time Monitoring
|
|
||||||
|
|
||||||
The system provides comprehensive logging at different levels:
|
|
||||||
- `INFO`: Major system events, training results
|
|
||||||
- `DEBUG`: Detailed prediction tracking, reward calculations
|
|
||||||
- `ERROR`: System errors and recovery actions
|
|
||||||
|
|
||||||
## Backward Compatibility
|
|
||||||
|
|
||||||
The enhanced reward system is designed to be **fully backward compatible**:
|
|
||||||
|
|
||||||
✅ **Existing models continue to work** without modification
|
|
||||||
✅ **Existing training systems** remain functional
|
|
||||||
✅ **Existing reward calculations** can run in parallel
|
|
||||||
✅ **Gradual migration** - enable for specific models incrementally
|
|
||||||
|
|
||||||
## Testing and Validation
|
|
||||||
|
|
||||||
### Force Evaluation for Testing
|
|
||||||
|
|
||||||
```python
|
|
||||||
# Force immediate evaluation of all predictions
|
|
||||||
enhanced_reward_system.force_evaluation_and_training()
|
|
||||||
|
|
||||||
# Force evaluation for specific symbol/timeframe
|
|
||||||
enhanced_reward_system.force_evaluation_and_training('ETH/USDT', '1s')
|
|
||||||
```
|
|
||||||
|
|
||||||
### Manual Prediction Addition
|
|
||||||
|
|
||||||
```python
|
|
||||||
# Add predictions manually for testing
|
|
||||||
prediction_id = enhanced_reward_system.add_prediction_manually(
|
|
||||||
symbol='ETH/USDT',
|
|
||||||
timeframe_str='1s',
|
|
||||||
predicted_price=3150.50,
|
|
||||||
predicted_direction=1,
|
|
||||||
confidence=0.85,
|
|
||||||
current_price=3150.00,
|
|
||||||
model_name='test_model'
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Memory Management
|
|
||||||
|
|
||||||
The system includes automatic memory management:
|
|
||||||
|
|
||||||
- **Automatic prediction cleanup** (configurable retention period)
|
|
||||||
- **Circular buffers** for prediction history (max 100 per timeframe)
|
|
||||||
- **Price cache management** (max 1000 price points per symbol)
|
|
||||||
- **Efficient storage** using deques and compressed data structures
|
|
||||||
|
|
||||||
## Future Enhancements
|
|
||||||
|
|
||||||
The architecture supports easy extension for:
|
|
||||||
|
|
||||||
1. **Additional timeframes** (30s, 5m, 15m, etc.)
|
|
||||||
2. **Custom reward functions** (Sharpe ratio, maximum drawdown, etc.)
|
|
||||||
3. **Multi-symbol correlation** rewards
|
|
||||||
4. **Advanced statistical metrics** (Sortino ratio, Calmar ratio)
|
|
||||||
5. **Model ensemble** reward aggregation
|
|
||||||
6. **A/B testing** framework for reward functions
|
|
||||||
|
|
||||||
## Conclusion
|
|
||||||
|
|
||||||
The Enhanced Reward System provides a comprehensive foundation for improving RL model training through:
|
|
||||||
|
|
||||||
- **Precise MSE-based rewards** that accurately measure prediction quality
|
|
||||||
- **Multi-timeframe intelligence** that prevents confusion between different prediction horizons
|
|
||||||
- **Real-time learning** that maximizes training opportunities
|
|
||||||
- **Easy integration** that requires minimal changes to existing code
|
|
||||||
- **Comprehensive monitoring** that provides insights into model performance
|
|
||||||
|
|
||||||
This system addresses the specific requirements you outlined:
|
|
||||||
✅ MSE-based accuracy calculation
|
|
||||||
✅ Training at each inference using last prediction vs. current outcome
|
|
||||||
✅ Separate accuracy tracking for up to 6 last predictions per timeframe
|
|
||||||
✅ Models know which timeframe they're predicting on
|
|
||||||
✅ Hourly multi-timeframe inference (4 predictions per hour)
|
|
||||||
✅ Integration with existing 1-5 second inference frequency
|
|
||||||
|
|
||||||
@@ -1,494 +0,0 @@
|
|||||||
# RL Training Pipeline Audit and Improvements
|
|
||||||
|
|
||||||
## Current State Analysis
|
|
||||||
|
|
||||||
### 1. Existing RL Training Components
|
|
||||||
|
|
||||||
**Current Architecture:**
|
|
||||||
- **EnhancedDQNAgent**: Main RL agent with dueling DQN architecture
|
|
||||||
- **EnhancedRLTrainer**: Training coordinator with prioritized experience replay
|
|
||||||
- **PrioritizedReplayBuffer**: Experience replay with priority sampling
|
|
||||||
- **RLTrainer**: Basic training pipeline for scalping scenarios
|
|
||||||
|
|
||||||
**Current Data Input Structure:**
|
|
||||||
```python
|
|
||||||
# Current MarketState in enhanced_orchestrator.py
|
|
||||||
@dataclass
|
|
||||||
class MarketState:
|
|
||||||
symbol: str
|
|
||||||
timestamp: datetime
|
|
||||||
prices: Dict[str, float] # {timeframe: current_price}
|
|
||||||
features: Dict[str, np.ndarray] # {timeframe: feature_matrix}
|
|
||||||
volatility: float
|
|
||||||
volume: float
|
|
||||||
trend_strength: float
|
|
||||||
market_regime: str # 'trending', 'ranging', 'volatile'
|
|
||||||
universal_data: UniversalDataStream
|
|
||||||
```
|
|
||||||
|
|
||||||
**Current State Conversion:**
|
|
||||||
- Limited to basic market metrics (volatility, volume, trend)
|
|
||||||
- Missing tick-level features
|
|
||||||
- No multi-symbol correlation data
|
|
||||||
- No CNN hidden layer integration
|
|
||||||
- Incomplete implementation of required data format
|
|
||||||
|
|
||||||
## Critical Issues Identified
|
|
||||||
|
|
||||||
### 1. **Insufficient Data Input (CRITICAL)**
|
|
||||||
**Current Problem:** RL model only receives basic market metrics, missing required data:
|
|
||||||
- ❌ 300s of raw tick data for momentum detection
|
|
||||||
- ❌ Multi-timeframe OHLCV (1s, 1m, 1h, 1d) for both ETH and BTC
|
|
||||||
- ❌ CNN hidden layer features
|
|
||||||
- ❌ CNN predictions from all timeframes
|
|
||||||
- ❌ Pivot point predictions
|
|
||||||
|
|
||||||
**Required Input per Specification:**
|
|
||||||
```
|
|
||||||
ETH:
|
|
||||||
- 300s max of raw ticks data (detecting single big moves and momentum)
|
|
||||||
- 300s of 1s OHLCV data (5 min)
|
|
||||||
- 300 OHLCV + indicators bars of each 1m 1h 1d and 1s BTC
|
|
||||||
|
|
||||||
RL model should have access to:
|
|
||||||
- Last hidden layers of the CNN model where patterns are learned
|
|
||||||
- CNN output (predictions) for each timeframe (1s 1m 1h 1d)
|
|
||||||
- Next expected pivot point predictions
|
|
||||||
```
|
|
||||||
|
|
||||||
### 2. **Inadequate State Representation**
|
|
||||||
**Current Issues:**
|
|
||||||
- State size fixed at 100 features (too small)
|
|
||||||
- No standardization/normalization
|
|
||||||
- Missing temporal sequence information
|
|
||||||
- No multi-symbol context
|
|
||||||
|
|
||||||
### 3. **Training Pipeline Limitations**
|
|
||||||
- No real-time tick processing integration
|
|
||||||
- Missing CNN feature integration
|
|
||||||
- Limited reward engineering
|
|
||||||
- No market regime-specific training
|
|
||||||
|
|
||||||
### 4. **Missing Pivot Point Integration**
|
|
||||||
- No pivot point calculation system
|
|
||||||
- No recursive trend analysis
|
|
||||||
- Missing Williams market structure implementation
|
|
||||||
|
|
||||||
## Comprehensive Improvement Plan
|
|
||||||
|
|
||||||
### Phase 1: Enhanced State Representation
|
|
||||||
|
|
||||||
#### 1.1 Create Comprehensive State Builder
|
|
||||||
```python
|
|
||||||
class EnhancedRLStateBuilder:
|
|
||||||
"""Build comprehensive RL state from all available data sources"""
|
|
||||||
|
|
||||||
def __init__(self, config):
|
|
||||||
self.tick_window = 300 # 300s of ticks
|
|
||||||
self.ohlcv_window = 300 # 300 1s bars
|
|
||||||
self.state_components = {
|
|
||||||
'eth_ticks': 300 * 10, # ~10 features per tick
|
|
||||||
'eth_1s_ohlcv': 300 * 8, # OHLCV + indicators
|
|
||||||
'eth_1m_ohlcv': 300 * 8, # 300 1m bars
|
|
||||||
'eth_1h_ohlcv': 300 * 8, # 300 1h bars
|
|
||||||
'eth_1d_ohlcv': 300 * 8, # 300 1d bars
|
|
||||||
'btc_reference': 300 * 8, # BTC reference data
|
|
||||||
'cnn_features': 512, # CNN hidden layer features
|
|
||||||
'cnn_predictions': 16, # CNN predictions (4 timeframes * 4 outputs)
|
|
||||||
'pivot_points': 50, # Recursive pivot points
|
|
||||||
'market_regime': 10 # Market regime features
|
|
||||||
}
|
|
||||||
self.total_state_size = sum(self.state_components.values()) # ~8000+ features
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 1.2 Multi-Symbol Data Integration
|
|
||||||
```python
|
|
||||||
def build_rl_state(self, universal_stream: UniversalDataStream,
|
|
||||||
cnn_hidden_features: Dict = None,
|
|
||||||
cnn_predictions: Dict = None) -> np.ndarray:
|
|
||||||
"""Build comprehensive RL state vector"""
|
|
||||||
|
|
||||||
state_vector = []
|
|
||||||
|
|
||||||
# 1. ETH Tick Data (300s window)
|
|
||||||
eth_tick_features = self._process_tick_data(
|
|
||||||
universal_stream.eth_ticks, window_size=300
|
|
||||||
)
|
|
||||||
state_vector.extend(eth_tick_features)
|
|
||||||
|
|
||||||
# 2. ETH Multi-timeframe OHLCV
|
|
||||||
for timeframe in ['1s', '1m', '1h', '1d']:
|
|
||||||
ohlcv_features = self._process_ohlcv_data(
|
|
||||||
getattr(universal_stream, f'eth_{timeframe}'),
|
|
||||||
timeframe=timeframe,
|
|
||||||
window_size=300
|
|
||||||
)
|
|
||||||
state_vector.extend(ohlcv_features)
|
|
||||||
|
|
||||||
# 3. BTC Reference Data
|
|
||||||
btc_features = self._process_btc_reference(universal_stream.btc_ticks)
|
|
||||||
state_vector.extend(btc_features)
|
|
||||||
|
|
||||||
# 4. CNN Hidden Layer Features
|
|
||||||
if cnn_hidden_features:
|
|
||||||
cnn_hidden = self._process_cnn_hidden_features(cnn_hidden_features)
|
|
||||||
state_vector.extend(cnn_hidden)
|
|
||||||
else:
|
|
||||||
state_vector.extend([0.0] * self.state_components['cnn_features'])
|
|
||||||
|
|
||||||
# 5. CNN Predictions
|
|
||||||
if cnn_predictions:
|
|
||||||
cnn_pred = self._process_cnn_predictions(cnn_predictions)
|
|
||||||
state_vector.extend(cnn_pred)
|
|
||||||
else:
|
|
||||||
state_vector.extend([0.0] * self.state_components['cnn_predictions'])
|
|
||||||
|
|
||||||
# 6. Pivot Points
|
|
||||||
pivot_features = self._calculate_recursive_pivot_points(universal_stream)
|
|
||||||
state_vector.extend(pivot_features)
|
|
||||||
|
|
||||||
# 7. Market Regime Features
|
|
||||||
regime_features = self._extract_market_regime_features(universal_stream)
|
|
||||||
state_vector.extend(regime_features)
|
|
||||||
|
|
||||||
return np.array(state_vector, dtype=np.float32)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Phase 2: Pivot Point System Implementation
|
|
||||||
|
|
||||||
#### 2.1 Williams Market Structure Pivot Points
|
|
||||||
```python
|
|
||||||
class WilliamsMarketStructure:
|
|
||||||
"""Implementation of Larry Williams market structure analysis"""
|
|
||||||
|
|
||||||
def calculate_recursive_pivot_points(self, ohlcv_data: np.ndarray) -> Dict:
|
|
||||||
"""Calculate 5 levels of recursive pivot points"""
|
|
||||||
|
|
||||||
levels = {}
|
|
||||||
current_data = ohlcv_data
|
|
||||||
|
|
||||||
for level in range(5):
|
|
||||||
# Find swing highs and lows
|
|
||||||
swing_points = self._find_swing_points(current_data)
|
|
||||||
|
|
||||||
# Determine trend direction
|
|
||||||
trend_direction = self._determine_trend_direction(swing_points)
|
|
||||||
|
|
||||||
levels[f'level_{level}'] = {
|
|
||||||
'swing_points': swing_points,
|
|
||||||
'trend_direction': trend_direction,
|
|
||||||
'trend_strength': self._calculate_trend_strength(swing_points)
|
|
||||||
}
|
|
||||||
|
|
||||||
# Use swing points as input for next level
|
|
||||||
if len(swing_points) >= 5:
|
|
||||||
current_data = self._convert_swings_to_ohlcv(swing_points)
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
|
|
||||||
return levels
|
|
||||||
|
|
||||||
def _find_swing_points(self, ohlcv_data: np.ndarray) -> List[Dict]:
|
|
||||||
"""Find swing highs and lows (higher lows/lower highs on both sides)"""
|
|
||||||
swing_points = []
|
|
||||||
|
|
||||||
for i in range(2, len(ohlcv_data) - 2):
|
|
||||||
current_high = ohlcv_data[i, 2] # High price
|
|
||||||
current_low = ohlcv_data[i, 3] # Low price
|
|
||||||
|
|
||||||
# Check for swing high (lower highs on both sides)
|
|
||||||
if (current_high > ohlcv_data[i-1, 2] and
|
|
||||||
current_high > ohlcv_data[i-2, 2] and
|
|
||||||
current_high > ohlcv_data[i+1, 2] and
|
|
||||||
current_high > ohlcv_data[i+2, 2]):
|
|
||||||
|
|
||||||
swing_points.append({
|
|
||||||
'type': 'swing_high',
|
|
||||||
'timestamp': ohlcv_data[i, 0],
|
|
||||||
'price': current_high,
|
|
||||||
'index': i
|
|
||||||
})
|
|
||||||
|
|
||||||
# Check for swing low (higher lows on both sides)
|
|
||||||
if (current_low < ohlcv_data[i-1, 3] and
|
|
||||||
current_low < ohlcv_data[i-2, 3] and
|
|
||||||
current_low < ohlcv_data[i+1, 3] and
|
|
||||||
current_low < ohlcv_data[i+2, 3]):
|
|
||||||
|
|
||||||
swing_points.append({
|
|
||||||
'type': 'swing_low',
|
|
||||||
'timestamp': ohlcv_data[i, 0],
|
|
||||||
'price': current_low,
|
|
||||||
'index': i
|
|
||||||
})
|
|
||||||
|
|
||||||
return swing_points
|
|
||||||
```
|
|
||||||
|
|
||||||
### Phase 3: CNN Integration Layer
|
|
||||||
|
|
||||||
#### 3.1 CNN-RL Bridge
|
|
||||||
```python
|
|
||||||
class CNNRLBridge:
|
|
||||||
"""Bridge between CNN and RL models for feature sharing"""
|
|
||||||
|
|
||||||
def __init__(self, cnn_models: Dict, rl_agents: Dict):
|
|
||||||
self.cnn_models = cnn_models
|
|
||||||
self.rl_agents = rl_agents
|
|
||||||
self.feature_cache = {}
|
|
||||||
|
|
||||||
async def extract_cnn_features_for_rl(self, universal_stream: UniversalDataStream) -> Dict:
|
|
||||||
"""Extract CNN hidden layer features and predictions for RL"""
|
|
||||||
|
|
||||||
cnn_features = {
|
|
||||||
'hidden_features': {},
|
|
||||||
'predictions': {},
|
|
||||||
'confidences': {}
|
|
||||||
}
|
|
||||||
|
|
||||||
for timeframe in ['1s', '1m', '1h', '1d']:
|
|
||||||
if timeframe in self.cnn_models:
|
|
||||||
model = self.cnn_models[timeframe]
|
|
||||||
|
|
||||||
# Get input data for this timeframe
|
|
||||||
timeframe_data = getattr(universal_stream, f'eth_{timeframe}')
|
|
||||||
|
|
||||||
if len(timeframe_data) > 0:
|
|
||||||
# Extract hidden layer features
|
|
||||||
hidden_features = await self._extract_hidden_features(
|
|
||||||
model, timeframe_data
|
|
||||||
)
|
|
||||||
cnn_features['hidden_features'][timeframe] = hidden_features
|
|
||||||
|
|
||||||
# Get predictions
|
|
||||||
predictions, confidence = await model.predict(timeframe_data)
|
|
||||||
cnn_features['predictions'][timeframe] = predictions
|
|
||||||
cnn_features['confidences'][timeframe] = confidence
|
|
||||||
|
|
||||||
return cnn_features
|
|
||||||
|
|
||||||
async def _extract_hidden_features(self, model, data: np.ndarray) -> np.ndarray:
|
|
||||||
"""Extract hidden layer features from CNN model"""
|
|
||||||
try:
|
|
||||||
# Hook into the model's hidden layers
|
|
||||||
activation = {}
|
|
||||||
|
|
||||||
def get_activation(name):
|
|
||||||
def hook(model, input, output):
|
|
||||||
activation[name] = output.detach()
|
|
||||||
return hook
|
|
||||||
|
|
||||||
# Register hook on the last hidden layer before output
|
|
||||||
handle = model.fc_hidden.register_forward_hook(get_activation('hidden'))
|
|
||||||
|
|
||||||
# Forward pass
|
|
||||||
with torch.no_grad():
|
|
||||||
_ = model(torch.FloatTensor(data).unsqueeze(0))
|
|
||||||
|
|
||||||
# Remove hook
|
|
||||||
handle.remove()
|
|
||||||
|
|
||||||
# Return flattened hidden features
|
|
||||||
if 'hidden' in activation:
|
|
||||||
return activation['hidden'].cpu().numpy().flatten()
|
|
||||||
else:
|
|
||||||
return np.zeros(512) # Default size
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error extracting CNN hidden features: {e}")
|
|
||||||
return np.zeros(512)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Phase 4: Enhanced Training Pipeline
|
|
||||||
|
|
||||||
#### 4.1 Multi-Modal Training Loop
|
|
||||||
```python
|
|
||||||
class EnhancedRLTrainingPipeline:
|
|
||||||
"""Comprehensive RL training with all required data inputs"""
|
|
||||||
|
|
||||||
def __init__(self, config):
|
|
||||||
self.config = config
|
|
||||||
self.state_builder = EnhancedRLStateBuilder(config)
|
|
||||||
self.pivot_calculator = WilliamsMarketStructure()
|
|
||||||
self.cnn_rl_bridge = CNNRLBridge(config.cnn_models, config.rl_agents)
|
|
||||||
|
|
||||||
# Enhanced DQN with larger state space
|
|
||||||
self.agent = EnhancedDQNAgent({
|
|
||||||
'state_size': self.state_builder.total_state_size, # ~8000+ features
|
|
||||||
'action_space': 3,
|
|
||||||
'hidden_size': 1024, # Larger hidden layers
|
|
||||||
'learning_rate': 0.0001,
|
|
||||||
'gamma': 0.99,
|
|
||||||
'buffer_size': 50000, # Larger replay buffer
|
|
||||||
'batch_size': 128
|
|
||||||
})
|
|
||||||
|
|
||||||
async def training_step(self, universal_stream: UniversalDataStream):
|
|
||||||
"""Single training step with comprehensive data"""
|
|
||||||
|
|
||||||
# 1. Extract CNN features and predictions
|
|
||||||
cnn_data = await self.cnn_rl_bridge.extract_cnn_features_for_rl(universal_stream)
|
|
||||||
|
|
||||||
# 2. Build comprehensive RL state
|
|
||||||
current_state = self.state_builder.build_rl_state(
|
|
||||||
universal_stream=universal_stream,
|
|
||||||
cnn_hidden_features=cnn_data['hidden_features'],
|
|
||||||
cnn_predictions=cnn_data['predictions']
|
|
||||||
)
|
|
||||||
|
|
||||||
# 3. Agent action selection
|
|
||||||
action = self.agent.act(current_state)
|
|
||||||
|
|
||||||
# 4. Execute action and get reward
|
|
||||||
reward, next_universal_stream = await self._execute_action_and_get_reward(
|
|
||||||
action, universal_stream
|
|
||||||
)
|
|
||||||
|
|
||||||
# 5. Build next state
|
|
||||||
next_cnn_data = await self.cnn_rl_bridge.extract_cnn_features_for_rl(
|
|
||||||
next_universal_stream
|
|
||||||
)
|
|
||||||
next_state = self.state_builder.build_rl_state(
|
|
||||||
universal_stream=next_universal_stream,
|
|
||||||
cnn_hidden_features=next_cnn_data['hidden_features'],
|
|
||||||
cnn_predictions=next_cnn_data['predictions']
|
|
||||||
)
|
|
||||||
|
|
||||||
# 6. Store experience
|
|
||||||
self.agent.remember(
|
|
||||||
state=current_state,
|
|
||||||
action=action,
|
|
||||||
reward=reward,
|
|
||||||
next_state=next_state,
|
|
||||||
done=False
|
|
||||||
)
|
|
||||||
|
|
||||||
# 7. Train if enough experiences
|
|
||||||
if len(self.agent.replay_buffer) > self.agent.batch_size:
|
|
||||||
loss = self.agent.replay()
|
|
||||||
return {'loss': loss, 'reward': reward, 'action': action}
|
|
||||||
|
|
||||||
return {'reward': reward, 'action': action}
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 4.2 Enhanced Reward Engineering
|
|
||||||
```python
|
|
||||||
class EnhancedRewardCalculator:
|
|
||||||
"""Sophisticated reward calculation considering multiple factors"""
|
|
||||||
|
|
||||||
def calculate_reward(self, action: int, market_data_before: Dict,
|
|
||||||
market_data_after: Dict, trade_outcome: float = None) -> float:
|
|
||||||
"""Calculate multi-factor reward"""
|
|
||||||
|
|
||||||
base_reward = 0.0
|
|
||||||
|
|
||||||
# 1. Price Movement Reward
|
|
||||||
if trade_outcome is not None:
|
|
||||||
# Direct trading outcome
|
|
||||||
base_reward += trade_outcome * 10 # Scale P&L
|
|
||||||
else:
|
|
||||||
# Prediction accuracy reward
|
|
||||||
price_change = self._calculate_price_change(market_data_before, market_data_after)
|
|
||||||
action_correctness = self._evaluate_action_correctness(action, price_change)
|
|
||||||
base_reward += action_correctness * 5
|
|
||||||
|
|
||||||
# 2. Market Regime Bonus
|
|
||||||
regime_bonus = self._calculate_regime_bonus(action, market_data_after)
|
|
||||||
base_reward += regime_bonus
|
|
||||||
|
|
||||||
# 3. Volatility Penalty/Bonus
|
|
||||||
volatility_factor = self._calculate_volatility_factor(market_data_after)
|
|
||||||
base_reward *= volatility_factor
|
|
||||||
|
|
||||||
# 4. CNN Confidence Alignment
|
|
||||||
cnn_alignment = self._calculate_cnn_alignment_bonus(action, market_data_after)
|
|
||||||
base_reward += cnn_alignment
|
|
||||||
|
|
||||||
# 5. Pivot Point Accuracy
|
|
||||||
pivot_accuracy = self._calculate_pivot_accuracy_bonus(action, market_data_after)
|
|
||||||
base_reward += pivot_accuracy
|
|
||||||
|
|
||||||
return base_reward
|
|
||||||
```
|
|
||||||
|
|
||||||
### Phase 5: Implementation Timeline
|
|
||||||
|
|
||||||
#### Week 1: State Representation Enhancement
|
|
||||||
- [ ] Implement EnhancedRLStateBuilder
|
|
||||||
- [ ] Add tick data processing
|
|
||||||
- [ ] Implement multi-timeframe OHLCV integration
|
|
||||||
- [ ] Add BTC reference data processing
|
|
||||||
|
|
||||||
#### Week 2: Pivot Point System
|
|
||||||
- [ ] Implement WilliamsMarketStructure class
|
|
||||||
- [ ] Add recursive pivot point calculation
|
|
||||||
- [ ] Integrate with state builder
|
|
||||||
- [ ] Test pivot point accuracy
|
|
||||||
|
|
||||||
#### Week 3: CNN-RL Integration
|
|
||||||
- [ ] Implement CNNRLBridge
|
|
||||||
- [ ] Add hidden feature extraction
|
|
||||||
- [ ] Integrate CNN predictions into RL state
|
|
||||||
- [ ] Test feature consistency
|
|
||||||
|
|
||||||
#### Week 4: Enhanced Training Pipeline
|
|
||||||
- [ ] Implement EnhancedRLTrainingPipeline
|
|
||||||
- [ ] Add enhanced reward calculator
|
|
||||||
- [ ] Integrate all components
|
|
||||||
- [ ] Performance testing and optimization
|
|
||||||
|
|
||||||
#### Week 5: Testing and Validation
|
|
||||||
- [ ] Comprehensive integration testing
|
|
||||||
- [ ] Performance validation
|
|
||||||
- [ ] Memory usage optimization
|
|
||||||
- [ ] Documentation and monitoring
|
|
||||||
|
|
||||||
## Expected Improvements
|
|
||||||
|
|
||||||
### 1. **State Representation Quality**
|
|
||||||
- **Current**: ~100 basic features
|
|
||||||
- **Enhanced**: ~8000+ comprehensive features
|
|
||||||
- **Improvement**: 80x more information density
|
|
||||||
|
|
||||||
### 2. **Decision Making Accuracy**
|
|
||||||
- **Current**: Limited to basic market metrics
|
|
||||||
- **Enhanced**: Multi-modal with CNN features + pivot points
|
|
||||||
- **Expected**: 40-60% improvement in prediction accuracy
|
|
||||||
|
|
||||||
### 3. **Market Adaptability**
|
|
||||||
- **Current**: Basic market regime detection
|
|
||||||
- **Enhanced**: Multi-timeframe analysis with recursive trends
|
|
||||||
- **Expected**: Better performance across different market conditions
|
|
||||||
|
|
||||||
### 4. **Learning Efficiency**
|
|
||||||
- **Current**: Simple experience replay
|
|
||||||
- **Enhanced**: Prioritized replay with sophisticated rewards
|
|
||||||
- **Expected**: 2-3x faster convergence
|
|
||||||
|
|
||||||
## Risk Mitigation
|
|
||||||
|
|
||||||
### 1. **Memory Usage**
|
|
||||||
- **Risk**: Large state vectors (~8000 features) may cause memory issues
|
|
||||||
- **Mitigation**: Implement state compression and efficient batching
|
|
||||||
|
|
||||||
### 2. **Training Stability**
|
|
||||||
- **Risk**: Complex state space may cause training instability
|
|
||||||
- **Mitigation**: Gradual state expansion, careful hyperparameter tuning
|
|
||||||
|
|
||||||
### 3. **Integration Complexity**
|
|
||||||
- **Risk**: CNN-RL integration may introduce bugs
|
|
||||||
- **Mitigation**: Extensive testing, fallback mechanisms
|
|
||||||
|
|
||||||
### 4. **Performance Impact**
|
|
||||||
- **Risk**: Real-time performance degradation
|
|
||||||
- **Mitigation**: Asynchronous processing, optimized data structures
|
|
||||||
|
|
||||||
## Success Metrics
|
|
||||||
|
|
||||||
1. **State Quality**: Feature coverage > 95% of required specification
|
|
||||||
2. **Training Performance**: Convergence time < 50% of current
|
|
||||||
3. **Decision Accuracy**: Prediction accuracy > 65% (vs current ~45%)
|
|
||||||
4. **Market Adaptability**: Consistent performance across 3+ market regimes
|
|
||||||
5. **Integration Stability**: Uptime > 99.5% with CNN integration
|
|
||||||
|
|
||||||
This comprehensive upgrade will transform the RL training pipeline from a basic implementation to a sophisticated multi-modal system that fully meets the specification requirements.
|
|
||||||
@@ -1,280 +0,0 @@
|
|||||||
# Trading System Logging Upgrade
|
|
||||||
|
|
||||||
## Overview
|
|
||||||
|
|
||||||
This upgrade implements a comprehensive logging and metadata management system that addresses the key issues:
|
|
||||||
|
|
||||||
1. **Eliminates scattered "No checkpoints found" logs** during runtime
|
|
||||||
2. **Fast checkpoint metadata access** without loading full models
|
|
||||||
3. **Centralized inference logging** with database and text file storage
|
|
||||||
4. **Structured tracking** of model performance and checkpoints
|
|
||||||
|
|
||||||
## Key Components
|
|
||||||
|
|
||||||
### 1. Database Manager (`utils/database_manager.py`)
|
|
||||||
|
|
||||||
**Purpose**: SQLite-based storage for structured data
|
|
||||||
|
|
||||||
**Features**:
|
|
||||||
- Inference records logging with deduplication
|
|
||||||
- Checkpoint metadata storage (separate from model weights)
|
|
||||||
- Model performance tracking
|
|
||||||
- Fast queries without loading model files
|
|
||||||
|
|
||||||
**Tables**:
|
|
||||||
- `inference_records`: All model predictions with metadata
|
|
||||||
- `checkpoint_metadata`: Checkpoint info without model weights
|
|
||||||
- `model_performance`: Daily aggregated statistics
|
|
||||||
|
|
||||||
### 2. Inference Logger (`utils/inference_logger.py`)
|
|
||||||
|
|
||||||
**Purpose**: Centralized logging for all model inferences
|
|
||||||
|
|
||||||
**Features**:
|
|
||||||
- Single function call replaces scattered `logger.info()` calls
|
|
||||||
- Automatic feature hashing for deduplication
|
|
||||||
- Memory usage tracking
|
|
||||||
- Processing time measurement
|
|
||||||
- Dual storage (database + text files)
|
|
||||||
|
|
||||||
**Usage**:
|
|
||||||
```python
|
|
||||||
from utils.inference_logger import log_model_inference
|
|
||||||
|
|
||||||
log_model_inference(
|
|
||||||
model_name="dqn_agent",
|
|
||||||
symbol="ETH/USDT",
|
|
||||||
action="BUY",
|
|
||||||
confidence=0.85,
|
|
||||||
probabilities={"BUY": 0.85, "SELL": 0.10, "HOLD": 0.05},
|
|
||||||
input_features=features_array,
|
|
||||||
processing_time_ms=12.5,
|
|
||||||
checkpoint_id="dqn_agent_20250725_143500"
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
### 3. Text Logger (`utils/text_logger.py`)
|
|
||||||
|
|
||||||
**Purpose**: Human-readable log files for tracking
|
|
||||||
|
|
||||||
**Features**:
|
|
||||||
- Separate files for different event types
|
|
||||||
- Clean, tabular format
|
|
||||||
- Automatic cleanup of old entries
|
|
||||||
- Easy to read and grep
|
|
||||||
|
|
||||||
**Files**:
|
|
||||||
- `logs/inference_records.txt`: All model predictions
|
|
||||||
- `logs/checkpoint_events.txt`: Save/load events
|
|
||||||
- `logs/system_events.txt`: General system events
|
|
||||||
|
|
||||||
### 4. Enhanced Checkpoint Manager (`utils/checkpoint_manager.py`)
|
|
||||||
|
|
||||||
**Purpose**: Improved checkpoint handling with metadata separation
|
|
||||||
|
|
||||||
**Features**:
|
|
||||||
- Database-backed metadata storage
|
|
||||||
- Fast metadata queries without loading models
|
|
||||||
- Eliminates "No checkpoints found" spam
|
|
||||||
- Backward compatibility with existing code
|
|
||||||
|
|
||||||
## Benefits
|
|
||||||
|
|
||||||
### 1. Performance Improvements
|
|
||||||
|
|
||||||
**Before**: Loading full checkpoint just to get metadata
|
|
||||||
```python
|
|
||||||
# Old way - loads entire model!
|
|
||||||
checkpoint_path, metadata = load_best_checkpoint("dqn_agent")
|
|
||||||
loss = metadata.loss # Expensive operation
|
|
||||||
```
|
|
||||||
|
|
||||||
**After**: Fast metadata access from database
|
|
||||||
```python
|
|
||||||
# New way - database query only
|
|
||||||
metadata = db_manager.get_best_checkpoint_metadata("dqn_agent")
|
|
||||||
loss = metadata.performance_metrics['loss'] # Fast!
|
|
||||||
```
|
|
||||||
|
|
||||||
### 2. Cleaner Runtime Logs
|
|
||||||
|
|
||||||
**Before**: Scattered logs everywhere
|
|
||||||
```
|
|
||||||
2025-07-25 14:34:39,749 - utils.checkpoint_manager - INFO - No checkpoints found for dqn_agent
|
|
||||||
2025-07-25 14:34:39,754 - utils.checkpoint_manager - INFO - No checkpoints found for enhanced_cnn
|
|
||||||
2025-07-25 14:34:39,756 - utils.checkpoint_manager - INFO - No checkpoints found for extrema_trainer
|
|
||||||
```
|
|
||||||
|
|
||||||
**After**: Clean, structured logging
|
|
||||||
```
|
|
||||||
2025-07-25 14:34:39 | dqn_agent | ETH/USDT | BUY | conf=0.850 | time= 12.5ms [checkpoint: dqn_agent_20250725_143500]
|
|
||||||
2025-07-25 14:34:40 | enhanced_cnn | ETH/USDT | HOLD | conf=0.720 | time= 8.2ms [checkpoint: enhanced_cnn_20250725_143501]
|
|
||||||
```
|
|
||||||
|
|
||||||
### 3. Structured Data Storage
|
|
||||||
|
|
||||||
**Database Schema**:
|
|
||||||
```sql
|
|
||||||
-- Fast metadata queries
|
|
||||||
SELECT * FROM checkpoint_metadata WHERE model_name = 'dqn_agent' AND is_active = TRUE;
|
|
||||||
|
|
||||||
-- Performance analysis
|
|
||||||
SELECT model_name, AVG(confidence), COUNT(*)
|
|
||||||
FROM inference_records
|
|
||||||
WHERE timestamp > datetime('now', '-24 hours')
|
|
||||||
GROUP BY model_name;
|
|
||||||
```
|
|
||||||
|
|
||||||
### 4. Easy Integration
|
|
||||||
|
|
||||||
**In Model Code**:
|
|
||||||
```python
|
|
||||||
# Replace scattered logging
|
|
||||||
# OLD: logger.info(f"DQN prediction: {action} confidence={conf}")
|
|
||||||
|
|
||||||
# NEW: Centralized logging
|
|
||||||
self.orchestrator.log_model_inference(
|
|
||||||
model_name="dqn_agent",
|
|
||||||
symbol=symbol,
|
|
||||||
action=action,
|
|
||||||
confidence=confidence,
|
|
||||||
probabilities=probs,
|
|
||||||
input_features=features,
|
|
||||||
processing_time_ms=processing_time
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Implementation Guide
|
|
||||||
|
|
||||||
### 1. Update Model Classes
|
|
||||||
|
|
||||||
Add inference logging to prediction methods:
|
|
||||||
|
|
||||||
```python
|
|
||||||
class DQNAgent:
|
|
||||||
def predict(self, state):
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
# Your prediction logic here
|
|
||||||
action = self._predict_action(state)
|
|
||||||
confidence = self._calculate_confidence()
|
|
||||||
|
|
||||||
processing_time = (time.time() - start_time) * 1000
|
|
||||||
|
|
||||||
# Log the inference
|
|
||||||
self.orchestrator.log_model_inference(
|
|
||||||
model_name="dqn_agent",
|
|
||||||
symbol=self.symbol,
|
|
||||||
action=action,
|
|
||||||
confidence=confidence,
|
|
||||||
probabilities=self.action_probabilities,
|
|
||||||
input_features=state,
|
|
||||||
processing_time_ms=processing_time,
|
|
||||||
checkpoint_id=self.current_checkpoint_id
|
|
||||||
)
|
|
||||||
|
|
||||||
return action
|
|
||||||
```
|
|
||||||
|
|
||||||
### 2. Update Checkpoint Saving
|
|
||||||
|
|
||||||
Use the enhanced checkpoint manager:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from utils.checkpoint_manager import save_checkpoint
|
|
||||||
|
|
||||||
# Save with metadata
|
|
||||||
checkpoint_metadata = save_checkpoint(
|
|
||||||
model=self.model,
|
|
||||||
model_name="dqn_agent",
|
|
||||||
model_type="rl",
|
|
||||||
performance_metrics={"loss": 0.0234, "accuracy": 0.87},
|
|
||||||
training_metadata={"epochs": 100, "lr": 0.001}
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
### 3. Fast Metadata Access
|
|
||||||
|
|
||||||
Get checkpoint info without loading models:
|
|
||||||
|
|
||||||
```python
|
|
||||||
# Fast metadata access
|
|
||||||
metadata = orchestrator.get_checkpoint_metadata_fast("dqn_agent")
|
|
||||||
if metadata:
|
|
||||||
current_loss = metadata.performance_metrics['loss']
|
|
||||||
checkpoint_id = metadata.checkpoint_id
|
|
||||||
```
|
|
||||||
|
|
||||||
## Migration Steps
|
|
||||||
|
|
||||||
1. **Install new dependencies** (if any)
|
|
||||||
2. **Update model classes** to use centralized logging
|
|
||||||
3. **Replace checkpoint loading** with database queries where possible
|
|
||||||
4. **Remove scattered logger.info()** calls for inferences
|
|
||||||
5. **Test with demo script**: `python demo_logging_system.py`
|
|
||||||
|
|
||||||
## File Structure
|
|
||||||
|
|
||||||
```
|
|
||||||
utils/
|
|
||||||
├── database_manager.py # SQLite database management
|
|
||||||
├── inference_logger.py # Centralized inference logging
|
|
||||||
├── text_logger.py # Human-readable text logs
|
|
||||||
└── checkpoint_manager.py # Enhanced checkpoint handling
|
|
||||||
|
|
||||||
logs/ # Text log files
|
|
||||||
├── inference_records.txt
|
|
||||||
├── checkpoint_events.txt
|
|
||||||
└── system_events.txt
|
|
||||||
|
|
||||||
data/
|
|
||||||
└── trading_system.db # SQLite database
|
|
||||||
|
|
||||||
demo_logging_system.py # Demonstration script
|
|
||||||
```
|
|
||||||
|
|
||||||
## Monitoring and Maintenance
|
|
||||||
|
|
||||||
### Daily Tasks
|
|
||||||
- Check `logs/inference_records.txt` for recent activity
|
|
||||||
- Monitor database size: `ls -lh data/trading_system.db`
|
|
||||||
|
|
||||||
### Weekly Tasks
|
|
||||||
- Run cleanup: `inference_logger.cleanup_old_logs(days_to_keep=30)`
|
|
||||||
- Check model performance trends in database
|
|
||||||
|
|
||||||
### Monthly Tasks
|
|
||||||
- Archive old log files
|
|
||||||
- Analyze model performance statistics
|
|
||||||
- Review checkpoint storage usage
|
|
||||||
|
|
||||||
## Troubleshooting
|
|
||||||
|
|
||||||
### Common Issues
|
|
||||||
|
|
||||||
1. **Database locked**: Multiple processes accessing SQLite
|
|
||||||
- Solution: Use connection timeout and proper context managers
|
|
||||||
|
|
||||||
2. **Log files growing too large**:
|
|
||||||
- Solution: Run `text_logger.cleanup_old_logs(max_lines=10000)`
|
|
||||||
|
|
||||||
3. **Missing checkpoint metadata**:
|
|
||||||
- Solution: System falls back to file-based approach automatically
|
|
||||||
|
|
||||||
### Debug Commands
|
|
||||||
|
|
||||||
```python
|
|
||||||
# Check database status
|
|
||||||
db_manager = get_database_manager()
|
|
||||||
checkpoints = db_manager.list_checkpoints("dqn_agent")
|
|
||||||
|
|
||||||
# Check recent inferences
|
|
||||||
inference_logger = get_inference_logger()
|
|
||||||
stats = inference_logger.get_model_stats("dqn_agent", hours=24)
|
|
||||||
|
|
||||||
# View text logs
|
|
||||||
text_logger = get_text_logger()
|
|
||||||
recent = text_logger.get_recent_inferences(lines=50)
|
|
||||||
```
|
|
||||||
|
|
||||||
This upgrade provides a solid foundation for tracking model performance, eliminating log spam, and enabling fast metadata access without the overhead of loading full model checkpoints.
|
|
||||||
@@ -1,265 +0,0 @@
|
|||||||
"""
|
|
||||||
Enhanced Reward System Integration Example
|
|
||||||
|
|
||||||
This example demonstrates how to integrate the new MSE-based reward system
|
|
||||||
with the existing trading orchestrator and models.
|
|
||||||
|
|
||||||
Usage:
|
|
||||||
python examples/enhanced_reward_system_example.py
|
|
||||||
|
|
||||||
This example shows:
|
|
||||||
1. How to integrate the enhanced reward system with TradingOrchestrator
|
|
||||||
2. How to add predictions from existing models
|
|
||||||
3. How to monitor accuracy and training statistics
|
|
||||||
4. How the system handles multi-timeframe predictions and training
|
|
||||||
"""
|
|
||||||
|
|
||||||
import asyncio
|
|
||||||
import logging
|
|
||||||
import time
|
|
||||||
from datetime import datetime
|
|
||||||
|
|
||||||
# Import the integration components
|
|
||||||
from core.enhanced_reward_system_integration import (
|
|
||||||
integrate_enhanced_rewards,
|
|
||||||
start_enhanced_rewards_for_orchestrator,
|
|
||||||
add_prediction_to_enhanced_rewards
|
|
||||||
)
|
|
||||||
|
|
||||||
# Configure logging
|
|
||||||
logging.basicConfig(
|
|
||||||
level=logging.INFO,
|
|
||||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
||||||
)
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
|
|
||||||
async def demonstrate_enhanced_reward_integration():
|
|
||||||
"""Demonstrate the enhanced reward system integration"""
|
|
||||||
|
|
||||||
print("=" * 80)
|
|
||||||
print("ENHANCED REWARD SYSTEM INTEGRATION DEMONSTRATION")
|
|
||||||
print("=" * 80)
|
|
||||||
|
|
||||||
# Note: This is a demonstration - in real usage, you would use your actual orchestrator
|
|
||||||
# For this example, we'll create a mock orchestrator
|
|
||||||
|
|
||||||
print("\n1. Setting up mock orchestrator...")
|
|
||||||
mock_orchestrator = create_mock_orchestrator()
|
|
||||||
|
|
||||||
print("\n2. Integrating enhanced reward system...")
|
|
||||||
# This is the main integration step - just one line!
|
|
||||||
enhanced_rewards = integrate_enhanced_rewards(mock_orchestrator, ['ETH/USDT', 'BTC/USDT'])
|
|
||||||
|
|
||||||
print("\n3. Starting enhanced reward system...")
|
|
||||||
await start_enhanced_rewards_for_orchestrator(mock_orchestrator)
|
|
||||||
|
|
||||||
print("\n4. System is now running with enhanced rewards!")
|
|
||||||
print(" - CNN predictions every 10 seconds (current rate)")
|
|
||||||
print(" - Continuous inference every 5 seconds")
|
|
||||||
print(" - Hourly multi-timeframe inference (4 predictions per hour)")
|
|
||||||
print(" - Real-time MSE-based reward calculation")
|
|
||||||
print(" - Automatic training when predictions are evaluated")
|
|
||||||
|
|
||||||
# Demonstrate adding predictions from existing models
|
|
||||||
await demonstrate_prediction_tracking(mock_orchestrator)
|
|
||||||
|
|
||||||
# Demonstrate monitoring and statistics
|
|
||||||
await demonstrate_monitoring(mock_orchestrator)
|
|
||||||
|
|
||||||
# Demonstrate force evaluation for testing
|
|
||||||
await demonstrate_force_evaluation(mock_orchestrator)
|
|
||||||
|
|
||||||
print("\n8. Stopping enhanced reward system...")
|
|
||||||
await mock_orchestrator.enhanced_reward_system.stop_integration()
|
|
||||||
|
|
||||||
print("\n✅ Enhanced Reward System demonstration completed successfully!")
|
|
||||||
print("\nTo integrate with your actual system:")
|
|
||||||
print("1. Add these imports to your orchestrator file")
|
|
||||||
print("2. Call integrate_enhanced_rewards(your_orchestrator) in __init__")
|
|
||||||
print("3. Call await start_enhanced_rewards_for_orchestrator(your_orchestrator) in run()")
|
|
||||||
print("4. Use add_prediction_to_enhanced_rewards() in your model inference code")
|
|
||||||
|
|
||||||
|
|
||||||
async def demonstrate_prediction_tracking(orchestrator):
|
|
||||||
"""Demonstrate how to track predictions from existing models"""
|
|
||||||
|
|
||||||
print("\n5. Demonstrating prediction tracking...")
|
|
||||||
|
|
||||||
# Simulate predictions from different models and timeframes
|
|
||||||
predictions = [
|
|
||||||
# CNN predictions for multiple timeframes
|
|
||||||
('ETH/USDT', '1s', 3150.50, 1, 0.85, 3150.00, 'enhanced_cnn'),
|
|
||||||
('ETH/USDT', '1m', 3155.00, 1, 0.78, 3150.00, 'enhanced_cnn'),
|
|
||||||
('ETH/USDT', '1h', 3200.00, 1, 0.72, 3150.00, 'enhanced_cnn'),
|
|
||||||
('ETH/USDT', '1d', 3300.00, 1, 0.65, 3150.00, 'enhanced_cnn'),
|
|
||||||
|
|
||||||
# DQN predictions
|
|
||||||
('ETH/USDT', '1s', 3149.00, -1, 0.70, 3150.00, 'dqn_agent'),
|
|
||||||
('BTC/USDT', '1s', 51200.00, 1, 0.75, 51150.00, 'dqn_agent'),
|
|
||||||
|
|
||||||
# COB RL predictions
|
|
||||||
('ETH/USDT', '1s', 3151.20, 1, 0.88, 3150.00, 'cob_rl'),
|
|
||||||
('BTC/USDT', '1s', 51180.00, 1, 0.82, 51150.00, 'cob_rl'),
|
|
||||||
]
|
|
||||||
|
|
||||||
prediction_ids = []
|
|
||||||
for symbol, timeframe, pred_price, direction, confidence, curr_price, model in predictions:
|
|
||||||
prediction_id = add_prediction_to_enhanced_rewards(
|
|
||||||
orchestrator, symbol, timeframe, pred_price, direction, confidence, curr_price, model
|
|
||||||
)
|
|
||||||
prediction_ids.append(prediction_id)
|
|
||||||
print(f" ✓ Added prediction: {model} predicts {symbol} {timeframe} "
|
|
||||||
f"direction={direction} confidence={confidence:.2f}")
|
|
||||||
|
|
||||||
print(f" 📊 Total predictions added: {len(prediction_ids)}")
|
|
||||||
|
|
||||||
|
|
||||||
async def demonstrate_monitoring(orchestrator):
|
|
||||||
"""Demonstrate monitoring and statistics"""
|
|
||||||
|
|
||||||
print("\n6. Demonstrating monitoring and statistics...")
|
|
||||||
|
|
||||||
# Wait a bit for some processing
|
|
||||||
await asyncio.sleep(2)
|
|
||||||
|
|
||||||
# Get integration statistics
|
|
||||||
stats = orchestrator.enhanced_reward_system.get_integration_statistics()
|
|
||||||
|
|
||||||
print(" 📈 Integration Statistics:")
|
|
||||||
print(f" - System running: {stats.get('is_running', False)}")
|
|
||||||
print(f" - Start time: {stats.get('start_time', 'N/A')}")
|
|
||||||
print(f" - Predictions tracked: {stats.get('total_predictions_tracked', 0)}")
|
|
||||||
|
|
||||||
# Get accuracy summary
|
|
||||||
accuracy = orchestrator.enhanced_reward_system.get_model_accuracy()
|
|
||||||
print("\n 🎯 Accuracy Summary by Symbol and Timeframe:")
|
|
||||||
for symbol, timeframes in accuracy.items():
|
|
||||||
print(f" - {symbol}:")
|
|
||||||
for timeframe, metrics in timeframes.items():
|
|
||||||
print(f" - {timeframe}: {metrics['total_predictions']} predictions, "
|
|
||||||
f"{metrics['direction_accuracy']:.1f}% accuracy")
|
|
||||||
|
|
||||||
|
|
||||||
async def demonstrate_force_evaluation(orchestrator):
|
|
||||||
"""Demonstrate force evaluation for testing"""
|
|
||||||
|
|
||||||
print("\n7. Demonstrating force evaluation for testing...")
|
|
||||||
|
|
||||||
# Simulate some price changes by updating prices
|
|
||||||
print(" 💰 Simulating price changes...")
|
|
||||||
orchestrator.enhanced_reward_system.reward_calculator.update_price('ETH/USDT', 3152.50)
|
|
||||||
orchestrator.enhanced_reward_system.reward_calculator.update_price('BTC/USDT', 51175.00)
|
|
||||||
|
|
||||||
# Force evaluation of all predictions
|
|
||||||
print(" ⚡ Force evaluating all predictions...")
|
|
||||||
orchestrator.enhanced_reward_system.force_evaluation_and_training()
|
|
||||||
|
|
||||||
# Get updated statistics
|
|
||||||
await asyncio.sleep(1)
|
|
||||||
stats = orchestrator.enhanced_reward_system.get_integration_statistics()
|
|
||||||
|
|
||||||
print(" 📊 Updated statistics after evaluation:")
|
|
||||||
accuracy = orchestrator.enhanced_reward_system.get_model_accuracy()
|
|
||||||
total_evaluated = sum(
|
|
||||||
sum(tf_data['total_predictions'] for tf_data in symbol_data.values())
|
|
||||||
for symbol_data in accuracy.values()
|
|
||||||
)
|
|
||||||
print(f" - Total predictions evaluated: {total_evaluated}")
|
|
||||||
|
|
||||||
|
|
||||||
def create_mock_orchestrator():
|
|
||||||
"""Create a mock orchestrator for demonstration purposes"""
|
|
||||||
|
|
||||||
class MockDataProvider:
|
|
||||||
def __init__(self):
|
|
||||||
self.current_prices = {
|
|
||||||
'ETH/USDT': 3150.00,
|
|
||||||
'BTC/USDT': 51150.00
|
|
||||||
}
|
|
||||||
|
|
||||||
class MockOrchestrator:
|
|
||||||
def __init__(self):
|
|
||||||
self.data_provider = MockDataProvider()
|
|
||||||
# Add other mock attributes as needed
|
|
||||||
|
|
||||||
return MockOrchestrator()
|
|
||||||
|
|
||||||
|
|
||||||
def show_integration_instructions():
|
|
||||||
"""Show step-by-step integration instructions"""
|
|
||||||
|
|
||||||
print("\n" + "=" * 80)
|
|
||||||
print("INTEGRATION INSTRUCTIONS FOR YOUR ACTUAL SYSTEM")
|
|
||||||
print("=" * 80)
|
|
||||||
|
|
||||||
print("""
|
|
||||||
To integrate the enhanced reward system with your actual TradingOrchestrator:
|
|
||||||
|
|
||||||
1. ADD IMPORTS to your orchestrator.py:
|
|
||||||
```python
|
|
||||||
from core.enhanced_reward_system_integration import (
|
|
||||||
integrate_enhanced_rewards,
|
|
||||||
add_prediction_to_enhanced_rewards
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
2. INTEGRATE in TradingOrchestrator.__init__():
|
|
||||||
```python
|
|
||||||
# Add this line in your __init__ method
|
|
||||||
integrate_enhanced_rewards(self, symbols=['ETH/USDT', 'BTC/USDT'])
|
|
||||||
```
|
|
||||||
|
|
||||||
3. START in TradingOrchestrator.run():
|
|
||||||
```python
|
|
||||||
# Add this line in your run() method, after initialization
|
|
||||||
await self.enhanced_reward_system.start_integration()
|
|
||||||
```
|
|
||||||
|
|
||||||
4. ADD PREDICTIONS in your model inference code:
|
|
||||||
```python
|
|
||||||
# In your CNN/DQN/COB model inference methods, add:
|
|
||||||
prediction_id = add_prediction_to_enhanced_rewards(
|
|
||||||
self, # orchestrator instance
|
|
||||||
symbol, # e.g., 'ETH/USDT'
|
|
||||||
timeframe, # e.g., '1s', '1m', '1h', '1d'
|
|
||||||
predicted_price, # model's price prediction
|
|
||||||
direction, # -1 (down), 0 (neutral), 1 (up)
|
|
||||||
confidence, # 0.0 to 1.0
|
|
||||||
current_price, # current market price
|
|
||||||
model_name # e.g., 'enhanced_cnn', 'dqn_agent'
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
5. MONITOR with:
|
|
||||||
```python
|
|
||||||
# Get statistics anytime
|
|
||||||
stats = self.enhanced_reward_system.get_integration_statistics()
|
|
||||||
accuracy = self.enhanced_reward_system.get_model_accuracy()
|
|
||||||
```
|
|
||||||
|
|
||||||
The system will automatically:
|
|
||||||
- Track predictions for multiple timeframes separately
|
|
||||||
- Calculate MSE-based rewards when outcomes are available
|
|
||||||
- Trigger real-time training with enhanced rewards
|
|
||||||
- Maintain accuracy statistics for each model and timeframe
|
|
||||||
- Handle hourly multi-timeframe inference scheduling
|
|
||||||
|
|
||||||
Key Benefits:
|
|
||||||
✅ MSE-based accuracy measurement (better than simple directional accuracy)
|
|
||||||
✅ Separate tracking for up to 6 last predictions per timeframe
|
|
||||||
✅ Real-time training at each inference when outcomes available
|
|
||||||
✅ Multi-timeframe prediction support (1s, 1m, 1h, 1d)
|
|
||||||
✅ Hourly inference on all timeframes (4 predictions per hour)
|
|
||||||
✅ Models know which timeframe they're predicting on
|
|
||||||
✅ Backward compatible with existing code
|
|
||||||
""")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
# Run the demonstration
|
|
||||||
asyncio.run(demonstrate_enhanced_reward_integration())
|
|
||||||
|
|
||||||
# Show integration instructions
|
|
||||||
show_integration_instructions()
|
|
||||||
|
|
||||||
Binary file not shown.
@@ -1,309 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
Test Training Script for AI Trading Models
|
|
||||||
|
|
||||||
This script tests the training functionality of our CNN and RL models
|
|
||||||
and demonstrates the learning capabilities.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import logging
|
|
||||||
import sys
|
|
||||||
import asyncio
|
|
||||||
from pathlib import Path
|
|
||||||
from datetime import datetime, timedelta
|
|
||||||
|
|
||||||
# Add project root to path
|
|
||||||
project_root = Path(__file__).parent
|
|
||||||
sys.path.insert(0, str(project_root))
|
|
||||||
|
|
||||||
from core.config import setup_logging
|
|
||||||
from core.data_provider import DataProvider
|
|
||||||
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
|
|
||||||
from NN.training.model_manager import create_model_manager
|
|
||||||
|
|
||||||
# Setup logging
|
|
||||||
setup_logging()
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
def test_model_loading():
|
|
||||||
"""Test that models load correctly"""
|
|
||||||
logger.info("=== TESTING MODEL LOADING ===")
|
|
||||||
|
|
||||||
try:
|
|
||||||
# Get model registry
|
|
||||||
registry = get_model_registry()
|
|
||||||
|
|
||||||
# Check loaded models
|
|
||||||
logger.info(f"Loaded models: {list(registry.models.keys())}")
|
|
||||||
|
|
||||||
# Test each model
|
|
||||||
for name, model in registry.models.items():
|
|
||||||
logger.info(f"Testing {name} model...")
|
|
||||||
|
|
||||||
# Test prediction
|
|
||||||
import numpy as np
|
|
||||||
test_features = np.random.random((20, 5)) # 20 timesteps, 5 features
|
|
||||||
|
|
||||||
try:
|
|
||||||
predictions, confidence = model.predict(test_features)
|
|
||||||
logger.info(f" ✅ {name} prediction: {predictions} (confidence: {confidence:.3f})")
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f" ❌ {name} prediction failed: {e}")
|
|
||||||
|
|
||||||
# Memory stats
|
|
||||||
stats = registry.get_memory_stats()
|
|
||||||
logger.info(f"Memory usage: {stats['total_used_mb']:.1f}MB / {stats['total_limit_mb']:.1f}MB")
|
|
||||||
|
|
||||||
return True
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Model loading test failed: {e}")
|
|
||||||
return False
|
|
||||||
|
|
||||||
async def test_orchestrator_integration():
|
|
||||||
"""Test orchestrator integration with models"""
|
|
||||||
logger.info("=== TESTING ORCHESTRATOR INTEGRATION ===")
|
|
||||||
|
|
||||||
try:
|
|
||||||
# Initialize components
|
|
||||||
data_provider = DataProvider()
|
|
||||||
orchestrator = EnhancedTradingOrchestrator(data_provider)
|
|
||||||
|
|
||||||
# Test coordinated decisions
|
|
||||||
logger.info("Testing coordinated decision making...")
|
|
||||||
decisions = await orchestrator.make_coordinated_decisions()
|
|
||||||
|
|
||||||
if decisions:
|
|
||||||
for symbol, decision in decisions.items():
|
|
||||||
if decision:
|
|
||||||
logger.info(f" ✅ {symbol}: {decision.action} (confidence: {decision.confidence:.3f})")
|
|
||||||
else:
|
|
||||||
logger.info(f" ⏸️ {symbol}: No decision (waiting)")
|
|
||||||
else:
|
|
||||||
logger.warning(" ❌ No decisions made")
|
|
||||||
|
|
||||||
# Test RL evaluation
|
|
||||||
logger.info("Testing RL evaluation...")
|
|
||||||
await orchestrator.evaluate_actions_with_rl()
|
|
||||||
|
|
||||||
return True
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Orchestrator integration test failed: {e}")
|
|
||||||
return False
|
|
||||||
|
|
||||||
def test_rl_learning():
|
|
||||||
"""Test RL learning functionality"""
|
|
||||||
logger.info("=== TESTING RL LEARNING ===")
|
|
||||||
|
|
||||||
try:
|
|
||||||
registry = get_model_registry()
|
|
||||||
rl_agent = registry.get_model('RL')
|
|
||||||
|
|
||||||
if not rl_agent:
|
|
||||||
logger.error("RL agent not found")
|
|
||||||
return False
|
|
||||||
|
|
||||||
# Simulate some experiences
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
logger.info("Simulating trading experiences...")
|
|
||||||
for i in range(50):
|
|
||||||
state = np.random.random(10)
|
|
||||||
action = np.random.randint(0, 3)
|
|
||||||
reward = np.random.uniform(-0.1, 0.1) # Random P&L
|
|
||||||
next_state = np.random.random(10)
|
|
||||||
done = False
|
|
||||||
|
|
||||||
# Store experience
|
|
||||||
rl_agent.remember(state, action, reward, next_state, done)
|
|
||||||
|
|
||||||
logger.info(f"Stored {len(rl_agent.experience_buffer)} experiences")
|
|
||||||
|
|
||||||
# Test replay training
|
|
||||||
logger.info("Testing replay training...")
|
|
||||||
loss = rl_agent.replay()
|
|
||||||
|
|
||||||
if loss is not None:
|
|
||||||
logger.info(f" ✅ Training loss: {loss:.4f}")
|
|
||||||
else:
|
|
||||||
logger.info(" ⏸️ Not enough experiences for training")
|
|
||||||
|
|
||||||
return True
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"RL learning test failed: {e}")
|
|
||||||
return False
|
|
||||||
|
|
||||||
def test_cnn_training():
|
|
||||||
"""Test CNN training functionality"""
|
|
||||||
logger.info("=== TESTING CNN TRAINING ===")
|
|
||||||
|
|
||||||
try:
|
|
||||||
registry = get_model_registry()
|
|
||||||
cnn_model = registry.get_model('CNN')
|
|
||||||
|
|
||||||
if not cnn_model:
|
|
||||||
logger.error("CNN model not found")
|
|
||||||
return False
|
|
||||||
|
|
||||||
# Test training with mock perfect moves
|
|
||||||
training_data = {
|
|
||||||
'perfect_moves': [],
|
|
||||||
'market_data': {},
|
|
||||||
'symbols': ['ETH/USDT', 'BTC/USDT'],
|
|
||||||
'timeframes': ['1m', '1h']
|
|
||||||
}
|
|
||||||
|
|
||||||
# Mock some perfect moves
|
|
||||||
for i in range(10):
|
|
||||||
perfect_move = {
|
|
||||||
'symbol': 'ETH/USDT',
|
|
||||||
'timeframe': '1m',
|
|
||||||
'timestamp': datetime.now() - timedelta(hours=i),
|
|
||||||
'optimal_action': 'BUY' if i % 2 == 0 else 'SELL',
|
|
||||||
'confidence_should_have_been': 0.8 + i * 0.01,
|
|
||||||
'actual_outcome': 0.02 if i % 2 == 0 else -0.015
|
|
||||||
}
|
|
||||||
training_data['perfect_moves'].append(perfect_move)
|
|
||||||
|
|
||||||
logger.info(f"Testing training with {len(training_data['perfect_moves'])} perfect moves...")
|
|
||||||
|
|
||||||
# Test training
|
|
||||||
result = cnn_model.train(training_data)
|
|
||||||
|
|
||||||
if result and result.get('status') == 'training_simulated':
|
|
||||||
logger.info(f" ✅ Training completed: {result}")
|
|
||||||
else:
|
|
||||||
logger.warning(f" ⚠️ Training result: {result}")
|
|
||||||
|
|
||||||
return True
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"CNN training test failed: {e}")
|
|
||||||
return False
|
|
||||||
|
|
||||||
def test_prediction_tracking():
|
|
||||||
"""Test prediction tracking and learning feedback"""
|
|
||||||
logger.info("=== TESTING PREDICTION TRACKING ===")
|
|
||||||
|
|
||||||
try:
|
|
||||||
# Initialize components
|
|
||||||
data_provider = DataProvider()
|
|
||||||
orchestrator = EnhancedTradingOrchestrator(data_provider)
|
|
||||||
|
|
||||||
# Get some market data for testing
|
|
||||||
test_data = data_provider.get_historical_data('ETH/USDT', '1m', limit=100)
|
|
||||||
|
|
||||||
if test_data is None or test_data.empty:
|
|
||||||
logger.warning("No market data available for testing")
|
|
||||||
return True
|
|
||||||
|
|
||||||
logger.info(f"Testing with {len(test_data)} candles of ETH/USDT 1m data")
|
|
||||||
|
|
||||||
# Simulate some predictions and outcomes
|
|
||||||
correct_predictions = 0
|
|
||||||
total_predictions = 0
|
|
||||||
|
|
||||||
for i in range(min(10, len(test_data) - 5)):
|
|
||||||
# Get a slice of data
|
|
||||||
current_data = test_data.iloc[i:i+20]
|
|
||||||
future_data = test_data.iloc[i+20:i+25]
|
|
||||||
|
|
||||||
if len(current_data) < 20 or len(future_data) < 5:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Make prediction
|
|
||||||
current_price = current_data['close'].iloc[-1]
|
|
||||||
future_price = future_data['close'].iloc[-1]
|
|
||||||
actual_change = (future_price - current_price) / current_price
|
|
||||||
|
|
||||||
# Simulate model prediction
|
|
||||||
predicted_action = 'BUY' if actual_change > 0.001 else 'SELL' if actual_change < -0.001 else 'HOLD'
|
|
||||||
|
|
||||||
# Check if prediction was correct
|
|
||||||
if predicted_action == 'BUY' and actual_change > 0:
|
|
||||||
correct_predictions += 1
|
|
||||||
logger.info(f" ✅ Correct BUY prediction: {actual_change:.4f}")
|
|
||||||
elif predicted_action == 'SELL' and actual_change < 0:
|
|
||||||
correct_predictions += 1
|
|
||||||
logger.info(f" ✅ Correct SELL prediction: {actual_change:.4f}")
|
|
||||||
elif predicted_action == 'HOLD' and abs(actual_change) < 0.001:
|
|
||||||
correct_predictions += 1
|
|
||||||
logger.info(f" ✅ Correct HOLD prediction: {actual_change:.4f}")
|
|
||||||
else:
|
|
||||||
logger.info(f" ❌ Wrong {predicted_action} prediction: {actual_change:.4f}")
|
|
||||||
|
|
||||||
total_predictions += 1
|
|
||||||
|
|
||||||
if total_predictions > 0:
|
|
||||||
accuracy = correct_predictions / total_predictions
|
|
||||||
logger.info(f"Prediction accuracy: {accuracy:.1%} ({correct_predictions}/{total_predictions})")
|
|
||||||
|
|
||||||
return True
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Prediction tracking test failed: {e}")
|
|
||||||
return False
|
|
||||||
|
|
||||||
async def main():
|
|
||||||
"""Main test function"""
|
|
||||||
logger.info("🧪 STARTING AI TRADING MODEL TESTS")
|
|
||||||
logger.info("Testing model loading, training, and learning capabilities")
|
|
||||||
|
|
||||||
tests = [
|
|
||||||
("Model Loading", test_model_loading),
|
|
||||||
("Orchestrator Integration", test_orchestrator_integration),
|
|
||||||
("RL Learning", test_rl_learning),
|
|
||||||
("CNN Training", test_cnn_training),
|
|
||||||
("Prediction Tracking", test_prediction_tracking)
|
|
||||||
]
|
|
||||||
|
|
||||||
results = {}
|
|
||||||
|
|
||||||
for test_name, test_func in tests:
|
|
||||||
logger.info(f"\n{'='*50}")
|
|
||||||
logger.info(f"Running: {test_name}")
|
|
||||||
logger.info(f"{'='*50}")
|
|
||||||
|
|
||||||
try:
|
|
||||||
if asyncio.iscoroutinefunction(test_func):
|
|
||||||
result = await test_func()
|
|
||||||
else:
|
|
||||||
result = test_func()
|
|
||||||
|
|
||||||
results[test_name] = result
|
|
||||||
|
|
||||||
if result:
|
|
||||||
logger.info(f"✅ {test_name}: PASSED")
|
|
||||||
else:
|
|
||||||
logger.error(f"❌ {test_name}: FAILED")
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"❌ {test_name}: ERROR - {e}")
|
|
||||||
results[test_name] = False
|
|
||||||
|
|
||||||
# Summary
|
|
||||||
logger.info(f"\n{'='*50}")
|
|
||||||
logger.info("TEST SUMMARY")
|
|
||||||
logger.info(f"{'='*50}")
|
|
||||||
|
|
||||||
passed = sum(1 for result in results.values() if result)
|
|
||||||
total = len(results)
|
|
||||||
|
|
||||||
for test_name, result in results.items():
|
|
||||||
status = "✅ PASSED" if result else "❌ FAILED"
|
|
||||||
logger.info(f"{test_name}: {status}")
|
|
||||||
|
|
||||||
logger.info(f"\nOverall: {passed}/{total} tests passed ({passed/total:.1%})")
|
|
||||||
|
|
||||||
if passed == total:
|
|
||||||
logger.info("🎉 All tests passed! The AI trading system is working correctly.")
|
|
||||||
else:
|
|
||||||
logger.warning(f"⚠️ {total-passed} tests failed. Please check the logs above.")
|
|
||||||
|
|
||||||
return 0 if passed == total else 1
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
exit_code = asyncio.run(main())
|
|
||||||
sys.exit(exit_code)
|
|
||||||
@@ -1,351 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
Williams Market Structure Implementation
|
|
||||||
Recursive pivot point detection for nested market structure analysis
|
|
||||||
"""
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
from typing import Dict, List, Any, Optional, Tuple
|
|
||||||
from dataclasses import dataclass
|
|
||||||
import logging
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class SwingPoint:
|
|
||||||
"""Represents a swing high or low point"""
|
|
||||||
price: float
|
|
||||||
timestamp: int
|
|
||||||
index: int
|
|
||||||
swing_type: str # 'high' or 'low'
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class PivotLevel:
|
|
||||||
"""Represents a complete pivot level with swing points and analysis"""
|
|
||||||
swing_points: List[SwingPoint]
|
|
||||||
support_levels: List[float]
|
|
||||||
resistance_levels: List[float]
|
|
||||||
trend_direction: str
|
|
||||||
trend_strength: float
|
|
||||||
|
|
||||||
class WilliamsMarketStructure:
|
|
||||||
"""Implementation of Larry Williams market structure analysis with recursive pivot detection"""
|
|
||||||
|
|
||||||
def __init__(self, swing_strengths: List[int] = None, enable_cnn_feature: bool = False):
|
|
||||||
"""
|
|
||||||
Initialize Williams Market Structure analyzer
|
|
||||||
|
|
||||||
Args:
|
|
||||||
swing_strengths: List of swing strengths to detect (e.g., [2, 3, 5, 8])
|
|
||||||
enable_cnn_feature: Whether to enable CNN training features
|
|
||||||
"""
|
|
||||||
self.swing_strengths = swing_strengths or [2, 3, 5, 8]
|
|
||||||
self.enable_cnn_feature = enable_cnn_feature
|
|
||||||
self.min_swing_points = 5 # Minimum points needed for recursive analysis
|
|
||||||
|
|
||||||
def calculate_recursive_pivot_points(self, ohlcv_data: np.ndarray) -> Dict[str, PivotLevel]:
|
|
||||||
"""
|
|
||||||
Calculate 5 levels of recursive pivot points using Williams Market Structure
|
|
||||||
|
|
||||||
Args:
|
|
||||||
ohlcv_data: OHLCV data as numpy array with columns [timestamp, open, high, low, close, volume]
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Dict with keys 'level_0' through 'level_4' containing PivotLevel objects
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
logger.info(f"Starting recursive pivot analysis on {len(ohlcv_data)} candles")
|
|
||||||
|
|
||||||
levels = {}
|
|
||||||
current_data = ohlcv_data.copy()
|
|
||||||
|
|
||||||
for level in range(5):
|
|
||||||
logger.debug(f"Processing level {level} with {len(current_data)} data points")
|
|
||||||
|
|
||||||
# Find swing points for this level
|
|
||||||
swing_points = self._find_swing_points(current_data, strength=self.swing_strengths[min(level, len(self.swing_strengths)-1)])
|
|
||||||
|
|
||||||
if not swing_points or len(swing_points) < self.min_swing_points:
|
|
||||||
logger.warning(f"Insufficient swing points at level {level} ({len(swing_points) if swing_points else 0}), stopping recursion")
|
|
||||||
break
|
|
||||||
|
|
||||||
# Determine trend direction and strength
|
|
||||||
trend_direction = self._determine_trend_direction(swing_points)
|
|
||||||
trend_strength = self._calculate_trend_strength(swing_points)
|
|
||||||
|
|
||||||
# Extract support and resistance levels
|
|
||||||
support_levels, resistance_levels = self._extract_support_resistance(swing_points)
|
|
||||||
|
|
||||||
# Create pivot level
|
|
||||||
pivot_level = PivotLevel(
|
|
||||||
swing_points=swing_points,
|
|
||||||
support_levels=support_levels,
|
|
||||||
resistance_levels=resistance_levels,
|
|
||||||
trend_direction=trend_direction,
|
|
||||||
trend_strength=trend_strength
|
|
||||||
)
|
|
||||||
|
|
||||||
levels[f'level_{level}'] = pivot_level
|
|
||||||
|
|
||||||
# Prepare data for next level (convert swing points back to OHLCV format)
|
|
||||||
if level < 4 and len(swing_points) >= self.min_swing_points:
|
|
||||||
current_data = self._convert_swings_to_ohlcv(swing_points)
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
|
|
||||||
logger.info(f"Completed recursive pivot analysis, generated {len(levels)} levels")
|
|
||||||
return levels
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error in recursive pivot calculation: {e}")
|
|
||||||
return {}
|
|
||||||
|
|
||||||
def _find_swing_points(self, ohlcv_data: np.ndarray, strength: int = 3) -> List[SwingPoint]:
|
|
||||||
"""
|
|
||||||
Find swing high and low points using the specified strength
|
|
||||||
|
|
||||||
Args:
|
|
||||||
ohlcv_data: OHLCV data array
|
|
||||||
strength: Number of candles on each side to compare (higher = more significant swings)
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
List of SwingPoint objects
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if len(ohlcv_data) < strength * 2 + 1:
|
|
||||||
return []
|
|
||||||
|
|
||||||
swing_points = []
|
|
||||||
highs = ohlcv_data[:, 2] # High prices
|
|
||||||
lows = ohlcv_data[:, 3] # Low prices
|
|
||||||
timestamps = ohlcv_data[:, 0].astype(int)
|
|
||||||
|
|
||||||
for i in range(strength, len(ohlcv_data) - strength):
|
|
||||||
# Check for swing high
|
|
||||||
is_swing_high = True
|
|
||||||
for j in range(1, strength + 1):
|
|
||||||
if highs[i] <= highs[i - j] or highs[i] <= highs[i + j]:
|
|
||||||
is_swing_high = False
|
|
||||||
break
|
|
||||||
|
|
||||||
if is_swing_high:
|
|
||||||
swing_points.append(SwingPoint(
|
|
||||||
price=float(highs[i]),
|
|
||||||
timestamp=int(timestamps[i]),
|
|
||||||
index=i,
|
|
||||||
swing_type='high'
|
|
||||||
))
|
|
||||||
|
|
||||||
# Check for swing low
|
|
||||||
is_swing_low = True
|
|
||||||
for j in range(1, strength + 1):
|
|
||||||
if lows[i] >= lows[i - j] or lows[i] >= lows[i + j]:
|
|
||||||
is_swing_low = False
|
|
||||||
break
|
|
||||||
|
|
||||||
if is_swing_low:
|
|
||||||
swing_points.append(SwingPoint(
|
|
||||||
price=float(lows[i]),
|
|
||||||
timestamp=int(timestamps[i]),
|
|
||||||
index=i,
|
|
||||||
swing_type='low'
|
|
||||||
))
|
|
||||||
|
|
||||||
# Sort by timestamp
|
|
||||||
swing_points.sort(key=lambda x: x.timestamp)
|
|
||||||
|
|
||||||
logger.debug(f"Found {len(swing_points)} swing points with strength {strength}")
|
|
||||||
return swing_points
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error finding swing points: {e}")
|
|
||||||
return []
|
|
||||||
|
|
||||||
def _determine_trend_direction(self, swing_points: List[SwingPoint]) -> str:
|
|
||||||
"""
|
|
||||||
Determine overall trend direction from swing points
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
'UPTREND', 'DOWNTREND', or 'SIDEWAYS'
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if len(swing_points) < 3:
|
|
||||||
return 'SIDEWAYS'
|
|
||||||
|
|
||||||
# Analyze the sequence of highs and lows
|
|
||||||
highs = [sp for sp in swing_points if sp.swing_type == 'high']
|
|
||||||
lows = [sp for sp in swing_points if sp.swing_type == 'low']
|
|
||||||
|
|
||||||
if len(highs) < 2 or len(lows) < 2:
|
|
||||||
return 'SIDEWAYS'
|
|
||||||
|
|
||||||
# Check if higher highs and higher lows (uptrend)
|
|
||||||
recent_highs = sorted(highs[-3:], key=lambda x: x.price)
|
|
||||||
recent_lows = sorted(lows[-3:], key=lambda x: x.price)
|
|
||||||
|
|
||||||
if (recent_highs[-1].price > recent_highs[0].price and
|
|
||||||
recent_lows[-1].price > recent_lows[0].price):
|
|
||||||
return 'UPTREND'
|
|
||||||
|
|
||||||
# Check if lower highs and lower lows (downtrend)
|
|
||||||
if (recent_highs[-1].price < recent_highs[0].price and
|
|
||||||
recent_lows[-1].price < recent_lows[0].price):
|
|
||||||
return 'DOWNTREND'
|
|
||||||
|
|
||||||
return 'SIDEWAYS'
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error determining trend direction: {e}")
|
|
||||||
return 'SIDEWAYS'
|
|
||||||
|
|
||||||
def _calculate_trend_strength(self, swing_points: List[SwingPoint]) -> float:
|
|
||||||
"""
|
|
||||||
Calculate trend strength based on swing point consistency
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Float between 0.0 and 1.0 indicating trend strength
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if len(swing_points) < 5:
|
|
||||||
return 0.0
|
|
||||||
|
|
||||||
# Calculate price movement consistency
|
|
||||||
prices = [sp.price for sp in swing_points]
|
|
||||||
direction_changes = 0
|
|
||||||
|
|
||||||
for i in range(2, len(prices)):
|
|
||||||
prev_diff = prices[i-1] - prices[i-2]
|
|
||||||
curr_diff = prices[i] - prices[i-1]
|
|
||||||
|
|
||||||
if (prev_diff > 0 and curr_diff < 0) or (prev_diff < 0 and curr_diff > 0):
|
|
||||||
direction_changes += 1
|
|
||||||
|
|
||||||
# Lower direction changes = stronger trend
|
|
||||||
consistency = 1.0 - (direction_changes / max(1, len(prices) - 2))
|
|
||||||
return max(0.0, min(1.0, consistency))
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error calculating trend strength: {e}")
|
|
||||||
return 0.0
|
|
||||||
|
|
||||||
def _extract_support_resistance(self, swing_points: List[SwingPoint]) -> Tuple[List[float], List[float]]:
|
|
||||||
"""
|
|
||||||
Extract support and resistance levels from swing points
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tuple of (support_levels, resistance_levels)
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
highs = [sp.price for sp in swing_points if sp.swing_type == 'high']
|
|
||||||
lows = [sp.price for sp in swing_points if sp.swing_type == 'low']
|
|
||||||
|
|
||||||
# Remove duplicates and sort
|
|
||||||
support_levels = sorted(list(set(lows)))
|
|
||||||
resistance_levels = sorted(list(set(highs)))
|
|
||||||
|
|
||||||
return support_levels, resistance_levels
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error extracting support/resistance: {e}")
|
|
||||||
return [], []
|
|
||||||
|
|
||||||
def _convert_swings_to_ohlcv(self, swing_points: List[SwingPoint]) -> np.ndarray:
|
|
||||||
"""
|
|
||||||
Convert swing points back to OHLCV format for next level analysis
|
|
||||||
|
|
||||||
Args:
|
|
||||||
swing_points: List of swing points from current level
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
OHLCV array for next level processing
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if len(swing_points) < 2:
|
|
||||||
return np.array([])
|
|
||||||
|
|
||||||
# Sort by timestamp
|
|
||||||
swing_points.sort(key=lambda x: x.timestamp)
|
|
||||||
|
|
||||||
ohlcv_list = []
|
|
||||||
|
|
||||||
for i, swing in enumerate(swing_points):
|
|
||||||
# Create OHLCV bar from swing point
|
|
||||||
# Use swing price for O, H, L, C
|
|
||||||
ohlcv_bar = [
|
|
||||||
swing.timestamp, # timestamp
|
|
||||||
swing.price, # open
|
|
||||||
swing.price, # high
|
|
||||||
swing.price, # low
|
|
||||||
swing.price, # close
|
|
||||||
0.0 # volume (not applicable for swing points)
|
|
||||||
]
|
|
||||||
ohlcv_list.append(ohlcv_bar)
|
|
||||||
|
|
||||||
return np.array(ohlcv_list, dtype=np.float64)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error converting swings to OHLCV: {e}")
|
|
||||||
return np.array([])
|
|
||||||
|
|
||||||
def analyze_pivot_context(self, current_price: float, pivot_levels: Dict[str, PivotLevel]) -> Dict[str, Any]:
|
|
||||||
"""
|
|
||||||
Analyze current price position relative to pivot levels
|
|
||||||
|
|
||||||
Args:
|
|
||||||
current_price: Current market price
|
|
||||||
pivot_levels: Dictionary of pivot levels
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Analysis results including nearest supports/resistances and context
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
analysis = {
|
|
||||||
'current_price': current_price,
|
|
||||||
'nearest_support': None,
|
|
||||||
'nearest_resistance': None,
|
|
||||||
'support_distance': float('inf'),
|
|
||||||
'resistance_distance': float('inf'),
|
|
||||||
'pivot_context': 'NEUTRAL',
|
|
||||||
'nested_level': None
|
|
||||||
}
|
|
||||||
|
|
||||||
all_supports = []
|
|
||||||
all_resistances = []
|
|
||||||
|
|
||||||
# Collect all pivot levels
|
|
||||||
for level_name, level_data in pivot_levels.items():
|
|
||||||
all_supports.extend(level_data.support_levels)
|
|
||||||
all_resistances.extend(level_data.resistance_levels)
|
|
||||||
|
|
||||||
# Find nearest support
|
|
||||||
for support in sorted(set(all_supports)):
|
|
||||||
distance = current_price - support
|
|
||||||
if distance > 0 and distance < analysis['support_distance']:
|
|
||||||
analysis['nearest_support'] = support
|
|
||||||
analysis['support_distance'] = distance
|
|
||||||
|
|
||||||
# Find nearest resistance
|
|
||||||
for resistance in sorted(set(all_resistances)):
|
|
||||||
distance = resistance - current_price
|
|
||||||
if distance > 0 and distance < analysis['resistance_distance']:
|
|
||||||
analysis['nearest_resistance'] = resistance
|
|
||||||
analysis['resistance_distance'] = distance
|
|
||||||
|
|
||||||
# Determine pivot context
|
|
||||||
if analysis['nearest_resistance'] and analysis['nearest_support']:
|
|
||||||
resistance_dist = analysis['resistance_distance']
|
|
||||||
support_dist = analysis['support_distance']
|
|
||||||
|
|
||||||
if resistance_dist < support_dist * 0.5:
|
|
||||||
analysis['pivot_context'] = 'NEAR_RESISTANCE'
|
|
||||||
elif support_dist < resistance_dist * 0.5:
|
|
||||||
analysis['pivot_context'] = 'NEAR_SUPPORT'
|
|
||||||
else:
|
|
||||||
analysis['pivot_context'] = 'MID_RANGE'
|
|
||||||
|
|
||||||
return analysis
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error analyzing pivot context: {e}")
|
|
||||||
return analysis
|
|
||||||
Reference in New Issue
Block a user