more cleanup

This commit is contained in:
Dobromir Popov
2025-10-13 16:11:06 +03:00
parent 6cf4d902df
commit 0c28a0997c
17 changed files with 1030 additions and 2301 deletions

View File

@@ -1,349 +0,0 @@
# Enhanced Reward System for Reinforcement Learning Training
## Overview
This document describes the implementation of an enhanced reward system for your reinforcement learning trading models. The system uses **mean squared error (MSE) between predictions and empirical outcomes** as the primary reward mechanism, with support for multiple timeframes and comprehensive accuracy tracking.
## Key Features
### ✅ MSE-Based Reward Calculation
- Uses mean squared difference between predicted and actual prices
- Exponential decay function heavily penalizes large prediction errors
- Direction accuracy bonus/penalty system
- Confidence-weighted final rewards
### ✅ Multi-Timeframe Support
- Separate tracking for **1s, 1m, 1h, 1d** timeframes
- Independent accuracy metrics for each timeframe
- Timeframe-specific evaluation timeouts
- Models know which timeframe they're predicting on
### ✅ Prediction History Tracking
- Maintains last **6 predictions per timeframe** per symbol
- Comprehensive prediction records with outcomes
- Historical accuracy analysis
- Memory-efficient with automatic cleanup
### ✅ Real-Time Training
- Training triggered at each inference when outcomes are available
- Separate training batches for each model and timeframe
- Automatic evaluation of predictions after appropriate timeouts
- Integration with existing RL training infrastructure
### ✅ Enhanced Inference Scheduling
- **Continuous inference** every 1-5 seconds on primary timeframe
- **Hourly multi-timeframe inference** (4 predictions per hour - one for each timeframe)
- Timeframe-aware inference context
- Proper scheduling and coordination
## Architecture
```mermaid
graph TD
A[Market Data] --> B[Timeframe Inference Coordinator]
B --> C[Model Inference]
C --> D[Enhanced Reward Calculator]
D --> E[Prediction Tracking]
E --> F[Outcome Evaluation]
F --> G[MSE Reward Calculation]
G --> H[Enhanced RL Training Adapter]
H --> I[Model Training]
I --> J[Performance Monitoring]
```
## Core Components
### 1. EnhancedRewardCalculator (`core/enhanced_reward_calculator.py`)
**Purpose**: Central reward calculation engine using MSE methodology
**Key Methods**:
- `add_prediction()` - Track new predictions
- `evaluate_predictions()` - Calculate rewards when outcomes available
- `get_accuracy_summary()` - Comprehensive accuracy metrics
- `get_training_data()` - Extract training samples for models
**Reward Formula**:
```python
# MSE calculation
price_error = actual_price - predicted_price
mse = price_error ** 2
# Normalize to reasonable scale
max_mse = (current_price * 0.1) ** 2 # 10% as max expected error
normalized_mse = min(mse / max_mse, 1.0)
# Exponential decay (heavily penalize large errors)
mse_reward = exp(-5 * normalized_mse) # Range: [exp(-5), 1]
# Direction bonus/penalty
direction_bonus = 0.5 if direction_correct else -0.5
# Final reward (confidence weighted)
final_reward = (mse_reward + direction_bonus) * confidence
```
### 2. TimeframeInferenceCoordinator (`core/timeframe_inference_coordinator.py`)
**Purpose**: Coordinates timeframe-aware model inference with proper scheduling
**Key Features**:
- **Continuous inference loop** for each symbol (every 5 seconds)
- **Hourly multi-timeframe scheduler** (4 predictions per hour)
- **Inference context management** (models know target timeframe)
- **Automatic reward evaluation** and training triggers
**Scheduling**:
- **Every 5 seconds**: Inference on primary timeframe (1s)
- **Every hour**: One inference for each timeframe (1s, 1m, 1h, 1d)
- **Evaluation timeouts**: 5s for 1s predictions, 60s for 1m, 300s for 1h, 900s for 1d
### 3. EnhancedRLTrainingAdapter (`core/enhanced_rl_training_adapter.py`)
**Purpose**: Bridge between new reward system and existing RL training infrastructure
**Key Features**:
- **Model inference wrappers** for DQN, COB RL, and CNN models
- **Training batch creation** from prediction records and rewards
- **Real-time training triggers** based on evaluation results
- **Backward compatibility** with existing training systems
### 4. EnhancedRewardSystemIntegration (`core/enhanced_reward_system_integration.py`)
**Purpose**: Simple integration point for existing systems
**Key Features**:
- **One-line integration** with existing TradingOrchestrator
- **Helper functions** for easy prediction tracking
- **Comprehensive monitoring** and statistics
- **Minimal code changes** required
## Integration Guide
### Step 1: Import Required Components
Add to your `orchestrator.py`:
```python
from core.enhanced_reward_system_integration import (
integrate_enhanced_rewards,
add_prediction_to_enhanced_rewards
)
```
### Step 2: Initialize in TradingOrchestrator
In your `TradingOrchestrator.__init__()`:
```python
# Add this line after existing initialization
integrate_enhanced_rewards(self, symbols=['ETH/USDT', 'BTC/USDT'])
```
### Step 3: Start the System
In your `TradingOrchestrator.run()` method:
```python
# Add this line after initialization
await self.enhanced_reward_system.start_integration()
```
### Step 4: Track Predictions
In your model inference methods (CNN, DQN, COB RL):
```python
# Example in CNN inference
prediction_id = add_prediction_to_enhanced_rewards(
self, # orchestrator instance
symbol, # 'ETH/USDT'
timeframe, # '1s', '1m', '1h', '1d'
predicted_price, # model's price prediction
direction, # -1 (down), 0 (neutral), 1 (up)
confidence, # 0.0 to 1.0
current_price, # current market price
'enhanced_cnn' # model name
)
```
### Step 5: Monitor Performance
```python
# Get comprehensive statistics
stats = self.enhanced_reward_system.get_integration_statistics()
accuracy = self.enhanced_reward_system.get_model_accuracy()
# Force evaluation for testing
self.enhanced_reward_system.force_evaluation_and_training('ETH/USDT', '1s')
```
## Usage Example
See `examples/enhanced_reward_system_example.py` for a complete demonstration.
```bash
python examples/enhanced_reward_system_example.py
```
## Performance Benefits
### 🎯 Better Accuracy Measurement
- **MSE rewards** provide nuanced feedback vs. simple directional accuracy
- **Price prediction accuracy** measured alongside direction accuracy
- **Confidence-weighted rewards** encourage well-calibrated predictions
### 📊 Multi-Timeframe Intelligence
- **Separate tracking** prevents timeframe confusion
- **Timeframe-specific evaluation** accounts for different market dynamics
- **Comprehensive accuracy picture** across all prediction horizons
### ⚡ Real-Time Learning
- **Immediate training** when prediction outcomes available
- **No batch delays** - models learn from every prediction
- **Adaptive training frequency** based on prediction evaluation
### 🔄 Enhanced Inference Scheduling
- **Optimal prediction frequency** balances real-time response with computational efficiency
- **Hourly multi-timeframe predictions** provide comprehensive market coverage
- **Context-aware models** make better predictions knowing their target timeframe
## Configuration
### Evaluation Timeouts (Configurable in EnhancedRewardCalculator)
```python
evaluation_timeouts = {
TimeFrame.SECONDS_1: 5, # Evaluate 1s predictions after 5 seconds
TimeFrame.MINUTES_1: 60, # Evaluate 1m predictions after 1 minute
TimeFrame.HOURS_1: 300, # Evaluate 1h predictions after 5 minutes
TimeFrame.DAYS_1: 900 # Evaluate 1d predictions after 15 minutes
}
```
### Inference Scheduling (Configurable in TimeframeInferenceCoordinator)
```python
schedule = InferenceSchedule(
continuous_interval_seconds=5.0, # Continuous inference every 5 seconds
hourly_timeframes=[TimeFrame.SECONDS_1, TimeFrame.MINUTES_1,
TimeFrame.HOURS_1, TimeFrame.DAYS_1]
)
```
### Training Configuration (Configurable in EnhancedRLTrainingAdapter)
```python
min_batch_size = 8 # Minimum samples for training
max_batch_size = 64 # Maximum samples per training batch
training_interval_seconds = 5.0 # Training check frequency
```
## Monitoring and Statistics
### Integration Statistics
```python
stats = enhanced_reward_system.get_integration_statistics()
```
Returns:
- System running status
- Total predictions tracked
- Component status
- Inference and training statistics
- Performance metrics
### Model Accuracy
```python
accuracy = enhanced_reward_system.get_model_accuracy()
```
Returns for each symbol and timeframe:
- Total predictions made
- Direction accuracy percentage
- Average MSE
- Recent prediction count
### Real-Time Monitoring
The system provides comprehensive logging at different levels:
- `INFO`: Major system events, training results
- `DEBUG`: Detailed prediction tracking, reward calculations
- `ERROR`: System errors and recovery actions
## Backward Compatibility
The enhanced reward system is designed to be **fully backward compatible**:
**Existing models continue to work** without modification
**Existing training systems** remain functional
**Existing reward calculations** can run in parallel
**Gradual migration** - enable for specific models incrementally
## Testing and Validation
### Force Evaluation for Testing
```python
# Force immediate evaluation of all predictions
enhanced_reward_system.force_evaluation_and_training()
# Force evaluation for specific symbol/timeframe
enhanced_reward_system.force_evaluation_and_training('ETH/USDT', '1s')
```
### Manual Prediction Addition
```python
# Add predictions manually for testing
prediction_id = enhanced_reward_system.add_prediction_manually(
symbol='ETH/USDT',
timeframe_str='1s',
predicted_price=3150.50,
predicted_direction=1,
confidence=0.85,
current_price=3150.00,
model_name='test_model'
)
```
## Memory Management
The system includes automatic memory management:
- **Automatic prediction cleanup** (configurable retention period)
- **Circular buffers** for prediction history (max 100 per timeframe)
- **Price cache management** (max 1000 price points per symbol)
- **Efficient storage** using deques and compressed data structures
## Future Enhancements
The architecture supports easy extension for:
1. **Additional timeframes** (30s, 5m, 15m, etc.)
2. **Custom reward functions** (Sharpe ratio, maximum drawdown, etc.)
3. **Multi-symbol correlation** rewards
4. **Advanced statistical metrics** (Sortino ratio, Calmar ratio)
5. **Model ensemble** reward aggregation
6. **A/B testing** framework for reward functions
## Conclusion
The Enhanced Reward System provides a comprehensive foundation for improving RL model training through:
- **Precise MSE-based rewards** that accurately measure prediction quality
- **Multi-timeframe intelligence** that prevents confusion between different prediction horizons
- **Real-time learning** that maximizes training opportunities
- **Easy integration** that requires minimal changes to existing code
- **Comprehensive monitoring** that provides insights into model performance
This system addresses the specific requirements you outlined:
✅ MSE-based accuracy calculation
✅ Training at each inference using last prediction vs. current outcome
✅ Separate accuracy tracking for up to 6 last predictions per timeframe
✅ Models know which timeframe they're predicting on
✅ Hourly multi-timeframe inference (4 predictions per hour)
✅ Integration with existing 1-5 second inference frequency

View File

@@ -1,494 +0,0 @@
# RL Training Pipeline Audit and Improvements
## Current State Analysis
### 1. Existing RL Training Components
**Current Architecture:**
- **EnhancedDQNAgent**: Main RL agent with dueling DQN architecture
- **EnhancedRLTrainer**: Training coordinator with prioritized experience replay
- **PrioritizedReplayBuffer**: Experience replay with priority sampling
- **RLTrainer**: Basic training pipeline for scalping scenarios
**Current Data Input Structure:**
```python
# Current MarketState in enhanced_orchestrator.py
@dataclass
class MarketState:
symbol: str
timestamp: datetime
prices: Dict[str, float] # {timeframe: current_price}
features: Dict[str, np.ndarray] # {timeframe: feature_matrix}
volatility: float
volume: float
trend_strength: float
market_regime: str # 'trending', 'ranging', 'volatile'
universal_data: UniversalDataStream
```
**Current State Conversion:**
- Limited to basic market metrics (volatility, volume, trend)
- Missing tick-level features
- No multi-symbol correlation data
- No CNN hidden layer integration
- Incomplete implementation of required data format
## Critical Issues Identified
### 1. **Insufficient Data Input (CRITICAL)**
**Current Problem:** RL model only receives basic market metrics, missing required data:
- ❌ 300s of raw tick data for momentum detection
- ❌ Multi-timeframe OHLCV (1s, 1m, 1h, 1d) for both ETH and BTC
- ❌ CNN hidden layer features
- ❌ CNN predictions from all timeframes
- ❌ Pivot point predictions
**Required Input per Specification:**
```
ETH:
- 300s max of raw ticks data (detecting single big moves and momentum)
- 300s of 1s OHLCV data (5 min)
- 300 OHLCV + indicators bars of each 1m 1h 1d and 1s BTC
RL model should have access to:
- Last hidden layers of the CNN model where patterns are learned
- CNN output (predictions) for each timeframe (1s 1m 1h 1d)
- Next expected pivot point predictions
```
### 2. **Inadequate State Representation**
**Current Issues:**
- State size fixed at 100 features (too small)
- No standardization/normalization
- Missing temporal sequence information
- No multi-symbol context
### 3. **Training Pipeline Limitations**
- No real-time tick processing integration
- Missing CNN feature integration
- Limited reward engineering
- No market regime-specific training
### 4. **Missing Pivot Point Integration**
- No pivot point calculation system
- No recursive trend analysis
- Missing Williams market structure implementation
## Comprehensive Improvement Plan
### Phase 1: Enhanced State Representation
#### 1.1 Create Comprehensive State Builder
```python
class EnhancedRLStateBuilder:
"""Build comprehensive RL state from all available data sources"""
def __init__(self, config):
self.tick_window = 300 # 300s of ticks
self.ohlcv_window = 300 # 300 1s bars
self.state_components = {
'eth_ticks': 300 * 10, # ~10 features per tick
'eth_1s_ohlcv': 300 * 8, # OHLCV + indicators
'eth_1m_ohlcv': 300 * 8, # 300 1m bars
'eth_1h_ohlcv': 300 * 8, # 300 1h bars
'eth_1d_ohlcv': 300 * 8, # 300 1d bars
'btc_reference': 300 * 8, # BTC reference data
'cnn_features': 512, # CNN hidden layer features
'cnn_predictions': 16, # CNN predictions (4 timeframes * 4 outputs)
'pivot_points': 50, # Recursive pivot points
'market_regime': 10 # Market regime features
}
self.total_state_size = sum(self.state_components.values()) # ~8000+ features
```
#### 1.2 Multi-Symbol Data Integration
```python
def build_rl_state(self, universal_stream: UniversalDataStream,
cnn_hidden_features: Dict = None,
cnn_predictions: Dict = None) -> np.ndarray:
"""Build comprehensive RL state vector"""
state_vector = []
# 1. ETH Tick Data (300s window)
eth_tick_features = self._process_tick_data(
universal_stream.eth_ticks, window_size=300
)
state_vector.extend(eth_tick_features)
# 2. ETH Multi-timeframe OHLCV
for timeframe in ['1s', '1m', '1h', '1d']:
ohlcv_features = self._process_ohlcv_data(
getattr(universal_stream, f'eth_{timeframe}'),
timeframe=timeframe,
window_size=300
)
state_vector.extend(ohlcv_features)
# 3. BTC Reference Data
btc_features = self._process_btc_reference(universal_stream.btc_ticks)
state_vector.extend(btc_features)
# 4. CNN Hidden Layer Features
if cnn_hidden_features:
cnn_hidden = self._process_cnn_hidden_features(cnn_hidden_features)
state_vector.extend(cnn_hidden)
else:
state_vector.extend([0.0] * self.state_components['cnn_features'])
# 5. CNN Predictions
if cnn_predictions:
cnn_pred = self._process_cnn_predictions(cnn_predictions)
state_vector.extend(cnn_pred)
else:
state_vector.extend([0.0] * self.state_components['cnn_predictions'])
# 6. Pivot Points
pivot_features = self._calculate_recursive_pivot_points(universal_stream)
state_vector.extend(pivot_features)
# 7. Market Regime Features
regime_features = self._extract_market_regime_features(universal_stream)
state_vector.extend(regime_features)
return np.array(state_vector, dtype=np.float32)
```
### Phase 2: Pivot Point System Implementation
#### 2.1 Williams Market Structure Pivot Points
```python
class WilliamsMarketStructure:
"""Implementation of Larry Williams market structure analysis"""
def calculate_recursive_pivot_points(self, ohlcv_data: np.ndarray) -> Dict:
"""Calculate 5 levels of recursive pivot points"""
levels = {}
current_data = ohlcv_data
for level in range(5):
# Find swing highs and lows
swing_points = self._find_swing_points(current_data)
# Determine trend direction
trend_direction = self._determine_trend_direction(swing_points)
levels[f'level_{level}'] = {
'swing_points': swing_points,
'trend_direction': trend_direction,
'trend_strength': self._calculate_trend_strength(swing_points)
}
# Use swing points as input for next level
if len(swing_points) >= 5:
current_data = self._convert_swings_to_ohlcv(swing_points)
else:
break
return levels
def _find_swing_points(self, ohlcv_data: np.ndarray) -> List[Dict]:
"""Find swing highs and lows (higher lows/lower highs on both sides)"""
swing_points = []
for i in range(2, len(ohlcv_data) - 2):
current_high = ohlcv_data[i, 2] # High price
current_low = ohlcv_data[i, 3] # Low price
# Check for swing high (lower highs on both sides)
if (current_high > ohlcv_data[i-1, 2] and
current_high > ohlcv_data[i-2, 2] and
current_high > ohlcv_data[i+1, 2] and
current_high > ohlcv_data[i+2, 2]):
swing_points.append({
'type': 'swing_high',
'timestamp': ohlcv_data[i, 0],
'price': current_high,
'index': i
})
# Check for swing low (higher lows on both sides)
if (current_low < ohlcv_data[i-1, 3] and
current_low < ohlcv_data[i-2, 3] and
current_low < ohlcv_data[i+1, 3] and
current_low < ohlcv_data[i+2, 3]):
swing_points.append({
'type': 'swing_low',
'timestamp': ohlcv_data[i, 0],
'price': current_low,
'index': i
})
return swing_points
```
### Phase 3: CNN Integration Layer
#### 3.1 CNN-RL Bridge
```python
class CNNRLBridge:
"""Bridge between CNN and RL models for feature sharing"""
def __init__(self, cnn_models: Dict, rl_agents: Dict):
self.cnn_models = cnn_models
self.rl_agents = rl_agents
self.feature_cache = {}
async def extract_cnn_features_for_rl(self, universal_stream: UniversalDataStream) -> Dict:
"""Extract CNN hidden layer features and predictions for RL"""
cnn_features = {
'hidden_features': {},
'predictions': {},
'confidences': {}
}
for timeframe in ['1s', '1m', '1h', '1d']:
if timeframe in self.cnn_models:
model = self.cnn_models[timeframe]
# Get input data for this timeframe
timeframe_data = getattr(universal_stream, f'eth_{timeframe}')
if len(timeframe_data) > 0:
# Extract hidden layer features
hidden_features = await self._extract_hidden_features(
model, timeframe_data
)
cnn_features['hidden_features'][timeframe] = hidden_features
# Get predictions
predictions, confidence = await model.predict(timeframe_data)
cnn_features['predictions'][timeframe] = predictions
cnn_features['confidences'][timeframe] = confidence
return cnn_features
async def _extract_hidden_features(self, model, data: np.ndarray) -> np.ndarray:
"""Extract hidden layer features from CNN model"""
try:
# Hook into the model's hidden layers
activation = {}
def get_activation(name):
def hook(model, input, output):
activation[name] = output.detach()
return hook
# Register hook on the last hidden layer before output
handle = model.fc_hidden.register_forward_hook(get_activation('hidden'))
# Forward pass
with torch.no_grad():
_ = model(torch.FloatTensor(data).unsqueeze(0))
# Remove hook
handle.remove()
# Return flattened hidden features
if 'hidden' in activation:
return activation['hidden'].cpu().numpy().flatten()
else:
return np.zeros(512) # Default size
except Exception as e:
logger.error(f"Error extracting CNN hidden features: {e}")
return np.zeros(512)
```
### Phase 4: Enhanced Training Pipeline
#### 4.1 Multi-Modal Training Loop
```python
class EnhancedRLTrainingPipeline:
"""Comprehensive RL training with all required data inputs"""
def __init__(self, config):
self.config = config
self.state_builder = EnhancedRLStateBuilder(config)
self.pivot_calculator = WilliamsMarketStructure()
self.cnn_rl_bridge = CNNRLBridge(config.cnn_models, config.rl_agents)
# Enhanced DQN with larger state space
self.agent = EnhancedDQNAgent({
'state_size': self.state_builder.total_state_size, # ~8000+ features
'action_space': 3,
'hidden_size': 1024, # Larger hidden layers
'learning_rate': 0.0001,
'gamma': 0.99,
'buffer_size': 50000, # Larger replay buffer
'batch_size': 128
})
async def training_step(self, universal_stream: UniversalDataStream):
"""Single training step with comprehensive data"""
# 1. Extract CNN features and predictions
cnn_data = await self.cnn_rl_bridge.extract_cnn_features_for_rl(universal_stream)
# 2. Build comprehensive RL state
current_state = self.state_builder.build_rl_state(
universal_stream=universal_stream,
cnn_hidden_features=cnn_data['hidden_features'],
cnn_predictions=cnn_data['predictions']
)
# 3. Agent action selection
action = self.agent.act(current_state)
# 4. Execute action and get reward
reward, next_universal_stream = await self._execute_action_and_get_reward(
action, universal_stream
)
# 5. Build next state
next_cnn_data = await self.cnn_rl_bridge.extract_cnn_features_for_rl(
next_universal_stream
)
next_state = self.state_builder.build_rl_state(
universal_stream=next_universal_stream,
cnn_hidden_features=next_cnn_data['hidden_features'],
cnn_predictions=next_cnn_data['predictions']
)
# 6. Store experience
self.agent.remember(
state=current_state,
action=action,
reward=reward,
next_state=next_state,
done=False
)
# 7. Train if enough experiences
if len(self.agent.replay_buffer) > self.agent.batch_size:
loss = self.agent.replay()
return {'loss': loss, 'reward': reward, 'action': action}
return {'reward': reward, 'action': action}
```
#### 4.2 Enhanced Reward Engineering
```python
class EnhancedRewardCalculator:
"""Sophisticated reward calculation considering multiple factors"""
def calculate_reward(self, action: int, market_data_before: Dict,
market_data_after: Dict, trade_outcome: float = None) -> float:
"""Calculate multi-factor reward"""
base_reward = 0.0
# 1. Price Movement Reward
if trade_outcome is not None:
# Direct trading outcome
base_reward += trade_outcome * 10 # Scale P&L
else:
# Prediction accuracy reward
price_change = self._calculate_price_change(market_data_before, market_data_after)
action_correctness = self._evaluate_action_correctness(action, price_change)
base_reward += action_correctness * 5
# 2. Market Regime Bonus
regime_bonus = self._calculate_regime_bonus(action, market_data_after)
base_reward += regime_bonus
# 3. Volatility Penalty/Bonus
volatility_factor = self._calculate_volatility_factor(market_data_after)
base_reward *= volatility_factor
# 4. CNN Confidence Alignment
cnn_alignment = self._calculate_cnn_alignment_bonus(action, market_data_after)
base_reward += cnn_alignment
# 5. Pivot Point Accuracy
pivot_accuracy = self._calculate_pivot_accuracy_bonus(action, market_data_after)
base_reward += pivot_accuracy
return base_reward
```
### Phase 5: Implementation Timeline
#### Week 1: State Representation Enhancement
- [ ] Implement EnhancedRLStateBuilder
- [ ] Add tick data processing
- [ ] Implement multi-timeframe OHLCV integration
- [ ] Add BTC reference data processing
#### Week 2: Pivot Point System
- [ ] Implement WilliamsMarketStructure class
- [ ] Add recursive pivot point calculation
- [ ] Integrate with state builder
- [ ] Test pivot point accuracy
#### Week 3: CNN-RL Integration
- [ ] Implement CNNRLBridge
- [ ] Add hidden feature extraction
- [ ] Integrate CNN predictions into RL state
- [ ] Test feature consistency
#### Week 4: Enhanced Training Pipeline
- [ ] Implement EnhancedRLTrainingPipeline
- [ ] Add enhanced reward calculator
- [ ] Integrate all components
- [ ] Performance testing and optimization
#### Week 5: Testing and Validation
- [ ] Comprehensive integration testing
- [ ] Performance validation
- [ ] Memory usage optimization
- [ ] Documentation and monitoring
## Expected Improvements
### 1. **State Representation Quality**
- **Current**: ~100 basic features
- **Enhanced**: ~8000+ comprehensive features
- **Improvement**: 80x more information density
### 2. **Decision Making Accuracy**
- **Current**: Limited to basic market metrics
- **Enhanced**: Multi-modal with CNN features + pivot points
- **Expected**: 40-60% improvement in prediction accuracy
### 3. **Market Adaptability**
- **Current**: Basic market regime detection
- **Enhanced**: Multi-timeframe analysis with recursive trends
- **Expected**: Better performance across different market conditions
### 4. **Learning Efficiency**
- **Current**: Simple experience replay
- **Enhanced**: Prioritized replay with sophisticated rewards
- **Expected**: 2-3x faster convergence
## Risk Mitigation
### 1. **Memory Usage**
- **Risk**: Large state vectors (~8000 features) may cause memory issues
- **Mitigation**: Implement state compression and efficient batching
### 2. **Training Stability**
- **Risk**: Complex state space may cause training instability
- **Mitigation**: Gradual state expansion, careful hyperparameter tuning
### 3. **Integration Complexity**
- **Risk**: CNN-RL integration may introduce bugs
- **Mitigation**: Extensive testing, fallback mechanisms
### 4. **Performance Impact**
- **Risk**: Real-time performance degradation
- **Mitigation**: Asynchronous processing, optimized data structures
## Success Metrics
1. **State Quality**: Feature coverage > 95% of required specification
2. **Training Performance**: Convergence time < 50% of current
3. **Decision Accuracy**: Prediction accuracy > 65% (vs current ~45%)
4. **Market Adaptability**: Consistent performance across 3+ market regimes
5. **Integration Stability**: Uptime > 99.5% with CNN integration
This comprehensive upgrade will transform the RL training pipeline from a basic implementation to a sophisticated multi-modal system that fully meets the specification requirements.

View File

@@ -1,280 +0,0 @@
# Trading System Logging Upgrade
## Overview
This upgrade implements a comprehensive logging and metadata management system that addresses the key issues:
1. **Eliminates scattered "No checkpoints found" logs** during runtime
2. **Fast checkpoint metadata access** without loading full models
3. **Centralized inference logging** with database and text file storage
4. **Structured tracking** of model performance and checkpoints
## Key Components
### 1. Database Manager (`utils/database_manager.py`)
**Purpose**: SQLite-based storage for structured data
**Features**:
- Inference records logging with deduplication
- Checkpoint metadata storage (separate from model weights)
- Model performance tracking
- Fast queries without loading model files
**Tables**:
- `inference_records`: All model predictions with metadata
- `checkpoint_metadata`: Checkpoint info without model weights
- `model_performance`: Daily aggregated statistics
### 2. Inference Logger (`utils/inference_logger.py`)
**Purpose**: Centralized logging for all model inferences
**Features**:
- Single function call replaces scattered `logger.info()` calls
- Automatic feature hashing for deduplication
- Memory usage tracking
- Processing time measurement
- Dual storage (database + text files)
**Usage**:
```python
from utils.inference_logger import log_model_inference
log_model_inference(
model_name="dqn_agent",
symbol="ETH/USDT",
action="BUY",
confidence=0.85,
probabilities={"BUY": 0.85, "SELL": 0.10, "HOLD": 0.05},
input_features=features_array,
processing_time_ms=12.5,
checkpoint_id="dqn_agent_20250725_143500"
)
```
### 3. Text Logger (`utils/text_logger.py`)
**Purpose**: Human-readable log files for tracking
**Features**:
- Separate files for different event types
- Clean, tabular format
- Automatic cleanup of old entries
- Easy to read and grep
**Files**:
- `logs/inference_records.txt`: All model predictions
- `logs/checkpoint_events.txt`: Save/load events
- `logs/system_events.txt`: General system events
### 4. Enhanced Checkpoint Manager (`utils/checkpoint_manager.py`)
**Purpose**: Improved checkpoint handling with metadata separation
**Features**:
- Database-backed metadata storage
- Fast metadata queries without loading models
- Eliminates "No checkpoints found" spam
- Backward compatibility with existing code
## Benefits
### 1. Performance Improvements
**Before**: Loading full checkpoint just to get metadata
```python
# Old way - loads entire model!
checkpoint_path, metadata = load_best_checkpoint("dqn_agent")
loss = metadata.loss # Expensive operation
```
**After**: Fast metadata access from database
```python
# New way - database query only
metadata = db_manager.get_best_checkpoint_metadata("dqn_agent")
loss = metadata.performance_metrics['loss'] # Fast!
```
### 2. Cleaner Runtime Logs
**Before**: Scattered logs everywhere
```
2025-07-25 14:34:39,749 - utils.checkpoint_manager - INFO - No checkpoints found for dqn_agent
2025-07-25 14:34:39,754 - utils.checkpoint_manager - INFO - No checkpoints found for enhanced_cnn
2025-07-25 14:34:39,756 - utils.checkpoint_manager - INFO - No checkpoints found for extrema_trainer
```
**After**: Clean, structured logging
```
2025-07-25 14:34:39 | dqn_agent | ETH/USDT | BUY | conf=0.850 | time= 12.5ms [checkpoint: dqn_agent_20250725_143500]
2025-07-25 14:34:40 | enhanced_cnn | ETH/USDT | HOLD | conf=0.720 | time= 8.2ms [checkpoint: enhanced_cnn_20250725_143501]
```
### 3. Structured Data Storage
**Database Schema**:
```sql
-- Fast metadata queries
SELECT * FROM checkpoint_metadata WHERE model_name = 'dqn_agent' AND is_active = TRUE;
-- Performance analysis
SELECT model_name, AVG(confidence), COUNT(*)
FROM inference_records
WHERE timestamp > datetime('now', '-24 hours')
GROUP BY model_name;
```
### 4. Easy Integration
**In Model Code**:
```python
# Replace scattered logging
# OLD: logger.info(f"DQN prediction: {action} confidence={conf}")
# NEW: Centralized logging
self.orchestrator.log_model_inference(
model_name="dqn_agent",
symbol=symbol,
action=action,
confidence=confidence,
probabilities=probs,
input_features=features,
processing_time_ms=processing_time
)
```
## Implementation Guide
### 1. Update Model Classes
Add inference logging to prediction methods:
```python
class DQNAgent:
def predict(self, state):
start_time = time.time()
# Your prediction logic here
action = self._predict_action(state)
confidence = self._calculate_confidence()
processing_time = (time.time() - start_time) * 1000
# Log the inference
self.orchestrator.log_model_inference(
model_name="dqn_agent",
symbol=self.symbol,
action=action,
confidence=confidence,
probabilities=self.action_probabilities,
input_features=state,
processing_time_ms=processing_time,
checkpoint_id=self.current_checkpoint_id
)
return action
```
### 2. Update Checkpoint Saving
Use the enhanced checkpoint manager:
```python
from utils.checkpoint_manager import save_checkpoint
# Save with metadata
checkpoint_metadata = save_checkpoint(
model=self.model,
model_name="dqn_agent",
model_type="rl",
performance_metrics={"loss": 0.0234, "accuracy": 0.87},
training_metadata={"epochs": 100, "lr": 0.001}
)
```
### 3. Fast Metadata Access
Get checkpoint info without loading models:
```python
# Fast metadata access
metadata = orchestrator.get_checkpoint_metadata_fast("dqn_agent")
if metadata:
current_loss = metadata.performance_metrics['loss']
checkpoint_id = metadata.checkpoint_id
```
## Migration Steps
1. **Install new dependencies** (if any)
2. **Update model classes** to use centralized logging
3. **Replace checkpoint loading** with database queries where possible
4. **Remove scattered logger.info()** calls for inferences
5. **Test with demo script**: `python demo_logging_system.py`
## File Structure
```
utils/
├── database_manager.py # SQLite database management
├── inference_logger.py # Centralized inference logging
├── text_logger.py # Human-readable text logs
└── checkpoint_manager.py # Enhanced checkpoint handling
logs/ # Text log files
├── inference_records.txt
├── checkpoint_events.txt
└── system_events.txt
data/
└── trading_system.db # SQLite database
demo_logging_system.py # Demonstration script
```
## Monitoring and Maintenance
### Daily Tasks
- Check `logs/inference_records.txt` for recent activity
- Monitor database size: `ls -lh data/trading_system.db`
### Weekly Tasks
- Run cleanup: `inference_logger.cleanup_old_logs(days_to_keep=30)`
- Check model performance trends in database
### Monthly Tasks
- Archive old log files
- Analyze model performance statistics
- Review checkpoint storage usage
## Troubleshooting
### Common Issues
1. **Database locked**: Multiple processes accessing SQLite
- Solution: Use connection timeout and proper context managers
2. **Log files growing too large**:
- Solution: Run `text_logger.cleanup_old_logs(max_lines=10000)`
3. **Missing checkpoint metadata**:
- Solution: System falls back to file-based approach automatically
### Debug Commands
```python
# Check database status
db_manager = get_database_manager()
checkpoints = db_manager.list_checkpoints("dqn_agent")
# Check recent inferences
inference_logger = get_inference_logger()
stats = inference_logger.get_model_stats("dqn_agent", hours=24)
# View text logs
text_logger = get_text_logger()
recent = text_logger.get_recent_inferences(lines=50)
```
This upgrade provides a solid foundation for tracking model performance, eliminating log spam, and enabling fast metadata access without the overhead of loading full model checkpoints.