more cleanup
This commit is contained in:
@@ -1,67 +1,206 @@
|
||||
# Implementation Plan
|
||||
|
||||
## Enhanced Data Provider and COB Integration
|
||||
## Data Provider Backbone Enhancement
|
||||
|
||||
- [ ] 1. Enhance the existing DataProvider class with standardized model inputs
|
||||
- Extend the current implementation in core/data_provider.py
|
||||
- Implement standardized COB+OHLCV data frame for all models
|
||||
- Create unified input format: 300 frames OHLCV (1s, 1m, 1h, 1d) ETH + 300s of 1s BTC
|
||||
- Integrate with existing multi_exchange_cob_provider.py for COB data
|
||||
- _Requirements: 1.1, 1.2, 1.3, 1.6_
|
||||
### Phase 1: Core Data Provider Enhancements
|
||||
|
||||
- [ ] 1.1. Implement standardized COB+OHLCV data frame for all models
|
||||
- Create BaseDataInput class with standardized format for all models
|
||||
- Implement OHLCV: 300 frames of (1s, 1m, 1h, 1d) ETH + 300s of 1s BTC
|
||||
- Add COB: ±20 buckets of COB amounts in USD for each 1s OHLCV
|
||||
- Include 1s, 5s, 15s, and 60s MA of COB imbalance counting ±5 COB buckets
|
||||
- Ensure all models receive identical input format for consistency
|
||||
- _Requirements: 1.2, 1.3, 8.1_
|
||||
- [ ] 1. Audit and validate existing DataProvider implementation
|
||||
- Review core/data_provider.py for completeness and correctness
|
||||
- Validate 1500-candle caching is working correctly
|
||||
- Verify automatic data maintenance worker is updating properly
|
||||
- Test fallback mechanisms between Binance and MEXC
|
||||
- Document any gaps or issues found
|
||||
- _Requirements: 1.1, 1.2, 1.6_
|
||||
|
||||
- [ ] 1.2. Implement extensible model output storage
|
||||
- Create standardized ModelOutput data structure
|
||||
- Support CNN, RL, LSTM, Transformer, and future model types
|
||||
- Include model-specific predictions and cross-model hidden states
|
||||
- Add metadata support for extensible model information
|
||||
- _Requirements: 1.10, 8.2_
|
||||
- [ ] 1.1. Enhance COB data collection robustness
|
||||
- Fix 'NoneType' object has no attribute 'append' errors in _cob_aggregation_worker
|
||||
- Add defensive checks before accessing deque structures
|
||||
- Implement proper initialization guards to prevent duplicate COB collection starts
|
||||
- Add comprehensive error logging for COB data processing failures
|
||||
- Test COB collection under various failure scenarios
|
||||
- _Requirements: 1.3, 1.6_
|
||||
|
||||
- [ ] 1.3. Enhance Williams Market Structure pivot point calculation
|
||||
- Extend existing williams_market_structure.py implementation
|
||||
- Improve recursive pivot point calculation accuracy
|
||||
- Add unit tests to verify pivot point detection
|
||||
- Integrate with COB data for enhanced pivot detection
|
||||
- [ ] 1.2. Implement configurable COB price ranges
|
||||
- Replace hardcoded price ranges ($5 ETH, $50 BTC) with configuration
|
||||
- Add _get_price_range_for_symbol() configuration support
|
||||
- Allow per-symbol price range customization via config.yaml
|
||||
- Update COB imbalance calculations to use configurable ranges
|
||||
- Document price range selection rationale
|
||||
- _Requirements: 1.4, 1.1_
|
||||
|
||||
- [ ] 1.3. Validate and enhance Williams Market Structure pivot calculation
|
||||
- Review williams_market_structure.py implementation
|
||||
- Verify 5-level pivot detection is working correctly
|
||||
- Test monthly 1s data analysis for comprehensive context
|
||||
|
||||
- Add unit tests for pivot point detection accuracy
|
||||
- Optimize pivot calculation performance if needed
|
||||
- _Requirements: 1.5, 2.7_
|
||||
|
||||
- [x] 1.4. Optimize real-time data streaming with COB integration
|
||||
- [ ] 1.4. Implement COB heatmap matrix generation
|
||||
- Create get_cob_heatmap_matrix() method in DataProvider
|
||||
- Generate time x price matrix for visualization and model input
|
||||
- Support configurable time windows (default 300 seconds)
|
||||
- Support configurable price bucket radius (default ±10 buckets)
|
||||
- Support multiple metrics (imbalance, volume, spread)
|
||||
- Cache heatmap data for performance
|
||||
- _Requirements: 1.4, 1.1_
|
||||
|
||||
- Enhance existing WebSocket connections in enhanced_cob_websocket.py
|
||||
- Implement 10Hz COB data streaming alongside OHLCV data
|
||||
- Add data synchronization across different refresh rates
|
||||
- Ensure thread-safe access to multi-rate data streams
|
||||
- [x] 1.5. Enhance EnhancedCOBWebSocket reliability
|
||||
- Review enhanced_cob_websocket.py for stability issues
|
||||
- Verify proper order book synchronization with REST snapshots
|
||||
- Test reconnection logic with exponential backoff
|
||||
- Ensure 24-hour connection limit compliance
|
||||
- Add comprehensive error handling for all WebSocket streams
|
||||
- _Requirements: 1.3, 1.6_
|
||||
|
||||
### Phase 2: StandardizedDataProvider Enhancements
|
||||
|
||||
- [ ] 2. Implement comprehensive BaseDataInput validation
|
||||
- Enhance validate() method in BaseDataInput dataclass
|
||||
- Add minimum frame count validation (100 frames per timeframe)
|
||||
- Implement data completeness scoring (0.0 to 1.0)
|
||||
- Add COB data validation (non-null, valid buckets)
|
||||
- Create detailed validation error messages
|
||||
- Prevent model inference on incomplete data (completeness < 0.8)
|
||||
- _Requirements: 1.1.2, 1.1.6_
|
||||
|
||||
- [ ] 2.1. Integrate COB heatmap into BaseDataInput
|
||||
- Add cob_heatmap_times, cob_heatmap_prices, cob_heatmap_values fields
|
||||
- Call get_cob_heatmap_matrix() in get_base_data_input()
|
||||
- Handle heatmap generation failures gracefully
|
||||
- Store heatmap mid_prices in market_microstructure
|
||||
- Document heatmap usage for models
|
||||
- _Requirements: 1.1.1, 1.4_
|
||||
|
||||
- [ ] 2.2. Enhance COB moving average calculation
|
||||
- Review _calculate_cob_moving_averages() for correctness
|
||||
- Fix bucket quantization to match COB snapshot buckets
|
||||
- Implement nearest-key matching for historical imbalance lookup
|
||||
- Add thread-safe access to cob_imbalance_history
|
||||
- Optimize MA calculation performance
|
||||
- _Requirements: 1.1.3, 1.4_
|
||||
|
||||
- [ ] 2.3. Implement data quality scoring system
|
||||
- Create data_quality_score() method
|
||||
- Score based on: data completeness, freshness, consistency
|
||||
- Add quality thresholds for model inference
|
||||
- Log quality metrics for monitoring
|
||||
- Provide quality breakdown in BaseDataInput
|
||||
- _Requirements: 1.1.2, 1.1.6_
|
||||
|
||||
- [ ] 2.4. Enhance live price fetching robustness
|
||||
- Review get_live_price_from_api() fallback chain
|
||||
- Add retry logic with exponential backoff
|
||||
- Implement circuit breaker for repeated API failures
|
||||
- Cache prices with configurable TTL (default 500ms)
|
||||
- Log price source for debugging
|
||||
- _Requirements: 1.6, 1.7_
|
||||
|
||||
### Phase 3: COBY Integration
|
||||
|
||||
- [ ] 3. Design unified interface between COBY and core DataProvider
|
||||
- Define clear boundaries between COBY and core systems
|
||||
- Create adapter layer for accessing COBY data from core
|
||||
- Design data flow for multi-exchange aggregation
|
||||
- Plan migration path for existing code
|
||||
- Document integration architecture
|
||||
- _Requirements: 1.10, 8.1_
|
||||
|
||||
- [ ] 3.1. Implement COBY data access adapter
|
||||
- Create COBYDataAdapter class in core/
|
||||
- Implement methods to query COBY TimescaleDB
|
||||
- Add Redis cache integration for performance
|
||||
- Support historical data retrieval from COBY
|
||||
- Handle COBY unavailability gracefully
|
||||
- _Requirements: 1.10, 8.1_
|
||||
|
||||
- [ ] 3.2. Integrate COBY heatmap data
|
||||
- Query COBY for multi-exchange heatmap data
|
||||
- Merge COBY heatmaps with core COB heatmaps
|
||||
- Provide unified heatmap interface to models
|
||||
- Support exchange-specific heatmap filtering
|
||||
- Cache merged heatmaps for performance
|
||||
- _Requirements: 1.4, 3.1_
|
||||
|
||||
- [ ] 3.3. Implement COBY health monitoring
|
||||
- Add COBY connection status to DataProvider
|
||||
- Monitor COBY API availability
|
||||
- Track COBY data freshness
|
||||
- Alert on COBY failures
|
||||
- Provide COBY status in dashboard
|
||||
- _Requirements: 1.6, 8.5_
|
||||
|
||||
- [ ] 1.5. Fix WebSocket COB data processing errors
|
||||
- Fix 'NoneType' object has no attribute 'append' errors in COB data processing
|
||||
- Ensure proper initialization of data structures in MultiExchangeCOBProvider
|
||||
- Add validation and defensive checks before accessing data structures
|
||||
- Implement proper error handling for WebSocket data processing
|
||||
- _Requirements: 1.1, 1.6, 8.5_
|
||||
### Phase 4: Model Output Management
|
||||
|
||||
- [ ] 1.6. Enhance error handling in COB data processing
|
||||
- Add validation for incoming WebSocket data
|
||||
- Implement reconnection logic with exponential backoff
|
||||
- Add detailed logging for debugging COB data issues
|
||||
- Ensure system continues operation with last valid data during failures
|
||||
- _Requirements: 1.6, 8.5_
|
||||
- [ ] 4. Enhance ModelOutputManager functionality
|
||||
- Review model_output_manager.py implementation
|
||||
- Verify extensible ModelOutput format is working
|
||||
- Test cross-model feeding with hidden states
|
||||
- Validate historical output storage (1000 entries)
|
||||
- Optimize query performance by model_name, symbol, timestamp
|
||||
- _Requirements: 1.10, 8.2_
|
||||
|
||||
- [ ] 4.1. Implement model output persistence
|
||||
- Add disk-based storage for model outputs
|
||||
- Support configurable retention policies
|
||||
- Implement efficient serialization (pickle/msgpack)
|
||||
- Add compression for storage optimization
|
||||
- Support output replay for backtesting
|
||||
- _Requirements: 1.10, 5.7_
|
||||
|
||||
- [ ] 4.2. Create model output analytics
|
||||
- Track prediction accuracy over time
|
||||
- Calculate model agreement/disagreement metrics
|
||||
- Identify model performance patterns
|
||||
- Generate model comparison reports
|
||||
- Visualize model outputs in dashboard
|
||||
- _Requirements: 5.8, 10.7_
|
||||
|
||||
### Phase 5: Testing and Validation
|
||||
|
||||
- [ ] 5. Create comprehensive data provider tests
|
||||
- Write unit tests for DataProvider core functionality
|
||||
- Test automatic data maintenance worker
|
||||
- Test COB aggregation and imbalance calculations
|
||||
- Test Williams pivot point detection
|
||||
- Test StandardizedDataProvider validation
|
||||
- _Requirements: 8.1, 8.2_
|
||||
|
||||
- [ ] 5.1. Implement integration tests
|
||||
- Test end-to-end data flow from WebSocket to models
|
||||
- Test COBY integration (when implemented)
|
||||
- Test model output storage and retrieval
|
||||
- Test data provider under load
|
||||
- Test failure scenarios and recovery
|
||||
- _Requirements: 8.2, 8.3_
|
||||
|
||||
- [ ] 5.2. Create data provider performance benchmarks
|
||||
- Measure data collection latency
|
||||
- Measure COB aggregation performance
|
||||
- Measure BaseDataInput creation time
|
||||
- Identify performance bottlenecks
|
||||
- Optimize critical paths
|
||||
- _Requirements: 8.4_
|
||||
|
||||
- [ ] 5.3. Document data provider architecture
|
||||
- Create comprehensive architecture documentation
|
||||
- Document data flow diagrams
|
||||
- Document configuration options
|
||||
- Create troubleshooting guide
|
||||
- Add code examples for common use cases
|
||||
- _Requirements: 8.1, 8.2_
|
||||
|
||||
## Enhanced CNN Model Implementation
|
||||
|
||||
- [ ] 2. Enhance the existing CNN model with standardized inputs/outputs
|
||||
- [ ] 6. Enhance the existing CNN model with standardized inputs/outputs
|
||||
- Extend the current implementation in NN/models/enhanced_cnn.py
|
||||
- Accept standardized COB+OHLCV data frame: 300 frames (1s,1m,1h,1d) ETH + 300s 1s BTC
|
||||
- Include COB ±20 buckets and MA (1s,5s,15s,60s) of COB imbalance ±5 buckets
|
||||
- Output BUY/SELL trading action with confidence scores - _Requirements: 2.1, 2.2, 2.8, 1.10_
|
||||
- Output BUY/SELL trading action with confidence scores
|
||||
- _Requirements: 2.1, 2.2, 2.8, 1.10_
|
||||
|
||||
- [x] 2.1. Implement CNN inference with standardized input format
|
||||
- [x] 6.1. Implement CNN inference with standardized input format
|
||||
- Accept BaseDataInput with standardized COB+OHLCV format
|
||||
- Process 300 frames of multi-timeframe data with COB buckets
|
||||
- Output BUY/SELL recommendations with confidence scores
|
||||
@@ -69,7 +208,7 @@
|
||||
- Optimize inference performance for real-time processing
|
||||
- _Requirements: 2.2, 2.6, 2.8, 4.3_
|
||||
|
||||
- [x] 2.2. Enhance CNN training pipeline with checkpoint management
|
||||
- [x] 6.2. Enhance CNN training pipeline with checkpoint management
|
||||
- Integrate with checkpoint manager for training progress persistence
|
||||
- Store top 5-10 best checkpoints based on performance metrics
|
||||
- Automatically load best checkpoint at startup
|
||||
@@ -77,7 +216,7 @@
|
||||
- Store metadata with checkpoints for performance tracking
|
||||
- _Requirements: 2.4, 2.5, 5.2, 5.3, 5.7_
|
||||
|
||||
- [ ] 2.3. Implement CNN model evaluation and checkpoint optimization
|
||||
- [ ] 6.3. Implement CNN model evaluation and checkpoint optimization
|
||||
- Create evaluation methods using standardized input/output format
|
||||
- Implement performance metrics for checkpoint ranking
|
||||
- Add validation against historical trading outcomes
|
||||
@@ -87,14 +226,14 @@
|
||||
|
||||
## Enhanced RL Model Implementation
|
||||
|
||||
- [ ] 3. Enhance the existing RL model with standardized inputs/outputs
|
||||
- [ ] 7. Enhance the existing RL model with standardized inputs/outputs
|
||||
- Extend the current implementation in NN/models/dqn_agent.py
|
||||
- Accept standardized COB+OHLCV data frame: 300 frames (1s,1m,1h,1d) ETH + 300s 1s BTC
|
||||
- Include COB ±20 buckets and MA (1s,5s,15s,60s) of COB imbalance ±5 buckets
|
||||
- Output BUY/SELL trading action with confidence scores
|
||||
- _Requirements: 3.1, 3.2, 3.7, 1.10_
|
||||
|
||||
- [ ] 3.1. Implement RL inference with standardized input format
|
||||
- [ ] 7.1. Implement RL inference with standardized input format
|
||||
- Accept BaseDataInput with standardized COB+OHLCV format
|
||||
- Process CNN hidden states and predictions as part of state input
|
||||
- Output BUY/SELL recommendations with confidence scores
|
||||
@@ -102,7 +241,7 @@
|
||||
- Optimize inference performance for real-time processing
|
||||
- _Requirements: 3.2, 3.7, 4.3_
|
||||
|
||||
- [ ] 3.2. Enhance RL training pipeline with checkpoint management
|
||||
- [ ] 7.2. Enhance RL training pipeline with checkpoint management
|
||||
- Integrate with checkpoint manager for training progress persistence
|
||||
- Store top 5-10 best checkpoints based on trading performance metrics
|
||||
- Automatically load best checkpoint at startup
|
||||
@@ -110,7 +249,7 @@
|
||||
- Store metadata with checkpoints for performance tracking
|
||||
- _Requirements: 3.3, 3.5, 5.4, 5.7, 4.4_
|
||||
|
||||
- [ ] 3.3. Implement RL model evaluation and checkpoint optimization
|
||||
- [ ] 7.3. Implement RL model evaluation and checkpoint optimization
|
||||
- Create evaluation methods using standardized input/output format
|
||||
- Implement trading performance metrics for checkpoint ranking
|
||||
- Add validation against historical trading opportunities
|
||||
@@ -120,7 +259,7 @@
|
||||
|
||||
## Enhanced Orchestrator Implementation
|
||||
|
||||
- [ ] 4. Enhance the existing orchestrator with centralized coordination
|
||||
- [ ] 8. Enhance the existing orchestrator with centralized coordination
|
||||
- Extend the current implementation in core/orchestrator.py
|
||||
- Implement DataSubscriptionManager for multi-rate data streams
|
||||
- Add ModelInferenceCoordinator for cross-model coordination
|
||||
@@ -128,7 +267,7 @@
|
||||
- Add TrainingPipelineManager for continuous learning coordination
|
||||
- _Requirements: 4.1, 4.2, 4.5, 8.1_
|
||||
|
||||
- [ ] 4.1. Implement data subscription and management system
|
||||
- [ ] 8.1. Implement data subscription and management system
|
||||
- Create DataSubscriptionManager class
|
||||
- Subscribe to 10Hz COB data, OHLCV, market ticks, and technical indicators
|
||||
- Implement intelligent caching for "last updated" data serving
|
||||
@@ -136,10 +275,7 @@
|
||||
- Add thread-safe access to multi-rate data streams
|
||||
- _Requirements: 4.1, 1.6, 8.5_
|
||||
|
||||
|
||||
|
||||
|
||||
- [ ] 4.2. Implement model inference coordination
|
||||
- [ ] 8.2. Implement model inference coordination
|
||||
- Create ModelInferenceCoordinator class
|
||||
- Trigger model inference based on data availability and requirements
|
||||
- Coordinate parallel inference execution for independent models
|
||||
@@ -147,7 +283,7 @@
|
||||
- Assemble appropriate input data for each model type
|
||||
- _Requirements: 4.2, 3.1, 2.1_
|
||||
|
||||
- [ ] 4.3. Implement model output storage and cross-feeding
|
||||
- [ ] 8.3. Implement model output storage and cross-feeding
|
||||
- Create ModelOutputStore class using standardized ModelOutput format
|
||||
- Store CNN predictions, confidence scores, and hidden layer states
|
||||
- Store RL action recommendations and value estimates
|
||||
@@ -156,7 +292,7 @@
|
||||
- Include "last predictions" from all models in base data input
|
||||
- _Requirements: 4.3, 1.10, 8.2_
|
||||
|
||||
- [ ] 4.4. Implement training pipeline management
|
||||
- [ ] 8.4. Implement training pipeline management
|
||||
- Create TrainingPipelineManager class
|
||||
- Call each model's training pipeline with prediction-result pairs
|
||||
- Manage training data collection and labeling
|
||||
@@ -164,7 +300,7 @@
|
||||
- Track prediction accuracy and trigger retraining when needed
|
||||
- _Requirements: 4.4, 5.2, 5.4, 5.7_
|
||||
|
||||
- [ ] 4.5. Implement enhanced decision-making with MoE
|
||||
- [ ] 8.5. Implement enhanced decision-making with MoE
|
||||
- Create enhanced DecisionMaker class
|
||||
- Implement Mixture of Experts approach for model integration
|
||||
- Apply confidence-based filtering to avoid uncertain trades
|
||||
@@ -172,7 +308,7 @@
|
||||
- Consider market conditions and risk parameters in decisions
|
||||
- _Requirements: 4.5, 4.8, 6.7_
|
||||
|
||||
- [ ] 4.6. Implement extensible model integration architecture
|
||||
- [ ] 8.6. Implement extensible model integration architecture
|
||||
- Create MoEGateway class supporting dynamic model addition
|
||||
- Support CNN, RL, LSTM, Transformer model types without architecture changes
|
||||
- Implement model versioning and rollback capabilities
|
||||
@@ -182,15 +318,14 @@
|
||||
|
||||
## Model Inference Data Validation and Storage
|
||||
|
||||
- [x] 5. Implement comprehensive inference data validation system
|
||||
|
||||
- [x] 9. Implement comprehensive inference data validation system
|
||||
- Create InferenceDataValidator class for input validation
|
||||
- Validate complete OHLCV dataframes for all required timeframes
|
||||
- Check input data dimensions against model requirements
|
||||
- Log missing components and prevent prediction on incomplete data
|
||||
- _Requirements: 9.1, 9.2, 9.3, 9.4_
|
||||
|
||||
- [ ] 5.1. Implement input data validation for all models
|
||||
- [ ] 9.1. Implement input data validation for all models
|
||||
- Create validation methods for CNN, RL, and future model inputs
|
||||
- Validate OHLCV data completeness (300 frames for 1s, 1m, 1h, 1d)
|
||||
- Validate COB data structure (±20 buckets, MA calculations)
|
||||
@@ -198,9 +333,7 @@
|
||||
- Ensure validation occurs before any model inference
|
||||
- _Requirements: 9.1, 9.4_
|
||||
|
||||
- [x] 5.2. Implement persistent inference history storage
|
||||
|
||||
|
||||
- [x] 9.2. Implement persistent inference history storage
|
||||
- Create InferenceHistoryStore class for persistent storage
|
||||
- Store complete input data packages with each prediction
|
||||
- Include timestamp, symbol, input features, prediction outputs, confidence scores
|
||||
@@ -208,12 +341,7 @@
|
||||
- Implement compressed storage to minimize footprint
|
||||
- _Requirements: 9.5, 9.6_
|
||||
|
||||
- [x] 5.3. Implement inference history query and retrieval system
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
- [x] 9.3. Implement inference history query and retrieval system
|
||||
- Create efficient query mechanisms by symbol, timeframe, and date range
|
||||
- Implement data retrieval for training pipeline consumption
|
||||
- Add data completeness metrics and validation results in storage
|
||||
@@ -222,21 +350,21 @@
|
||||
|
||||
## Inference-Training Feedback Loop Implementation
|
||||
|
||||
- [ ] 6. Implement prediction outcome evaluation system
|
||||
- [ ] 10. Implement prediction outcome evaluation system
|
||||
- Create PredictionOutcomeEvaluator class
|
||||
- Evaluate prediction accuracy against actual price movements
|
||||
- Create training examples using stored inference data and actual outcomes
|
||||
- Feed prediction-result pairs back to respective models
|
||||
- _Requirements: 10.1, 10.2, 10.3_
|
||||
|
||||
- [ ] 6.1. Implement adaptive learning signal generation
|
||||
- [ ] 10.1. Implement adaptive learning signal generation
|
||||
- Create positive reinforcement signals for accurate predictions
|
||||
- Generate corrective training signals for inaccurate predictions
|
||||
- Retrieve last inference data for each model for outcome comparison
|
||||
- Implement model-specific learning signal formats
|
||||
- _Requirements: 10.4, 10.5, 10.6_
|
||||
|
||||
- [ ] 6.2. Implement continuous improvement tracking
|
||||
- [ ] 10.2. Implement continuous improvement tracking
|
||||
- Track and report accuracy improvements/degradations over time
|
||||
- Monitor model learning progress through feedback loop
|
||||
- Create performance metrics for inference-training effectiveness
|
||||
@@ -245,21 +373,21 @@
|
||||
|
||||
## Inference History Management and Monitoring
|
||||
|
||||
- [ ] 7. Implement comprehensive inference logging and monitoring
|
||||
- [ ] 11. Implement comprehensive inference logging and monitoring
|
||||
- Create InferenceMonitor class for logging and alerting
|
||||
- Log inference data storage operations with completeness metrics
|
||||
- Log training outcomes and model performance changes
|
||||
- Alert administrators on data flow issues with specific error details
|
||||
- _Requirements: 11.1, 11.2, 11.3_
|
||||
|
||||
- [ ] 7.1. Implement configurable retention policies
|
||||
- [ ] 11.1. Implement configurable retention policies
|
||||
- Create RetentionPolicyManager class
|
||||
- Archive or remove oldest entries when limits are reached
|
||||
- Prioritize keeping most recent and valuable training examples
|
||||
- Implement storage space monitoring and alerts
|
||||
- _Requirements: 11.4, 11.7_
|
||||
|
||||
- [ ] 7.2. Implement efficient historical data management
|
||||
- [ ] 11.2. Implement efficient historical data management
|
||||
- Compress inference data to minimize storage footprint
|
||||
- Maintain accessibility for training and analysis
|
||||
- Implement efficient query mechanisms for historical analysis
|
||||
@@ -268,25 +396,25 @@
|
||||
|
||||
## Trading Executor Implementation
|
||||
|
||||
- [ ] 5. Design and implement the trading executor
|
||||
- [ ] 12. Design and implement the trading executor
|
||||
- Create a TradingExecutor class that accepts trading actions from the orchestrator
|
||||
- Implement order execution through brokerage APIs
|
||||
- Add order lifecycle management
|
||||
- _Requirements: 7.1, 7.2, 8.6_
|
||||
|
||||
- [ ] 5.1. Implement brokerage API integrations
|
||||
- [ ] 12.1. Implement brokerage API integrations
|
||||
- Create a BrokerageAPI interface
|
||||
- Implement concrete classes for MEXC and Binance
|
||||
- Add error handling and retry mechanisms
|
||||
- _Requirements: 7.1, 7.2, 8.6_
|
||||
|
||||
- [ ] 5.2. Implement order management
|
||||
- [ ] 12.2. Implement order management
|
||||
- Create an OrderManager class
|
||||
- Implement methods for creating, updating, and canceling orders
|
||||
- Add order tracking and status updates
|
||||
- _Requirements: 7.1, 7.2, 8.6_
|
||||
|
||||
- [ ] 5.3. Implement error handling
|
||||
- [ ] 12.3. Implement error handling
|
||||
- Add comprehensive error handling for API failures
|
||||
- Implement circuit breakers for extreme market conditions
|
||||
- Add logging and notification mechanisms
|
||||
@@ -294,25 +422,25 @@
|
||||
|
||||
## Risk Manager Implementation
|
||||
|
||||
- [ ] 6. Design and implement the risk manager
|
||||
- [ ] 13. Design and implement the risk manager
|
||||
- Create a RiskManager class
|
||||
- Implement risk parameter management
|
||||
- Add risk metric calculation
|
||||
- _Requirements: 7.1, 7.3, 7.4_
|
||||
|
||||
- [ ] 6.1. Implement stop-loss functionality
|
||||
- [ ] 13.1. Implement stop-loss functionality
|
||||
- Create a StopLossManager class
|
||||
- Implement methods for creating and managing stop-loss orders
|
||||
- Add mechanisms to automatically close positions when stop-loss is triggered
|
||||
- _Requirements: 7.1, 7.2_
|
||||
|
||||
- [ ] 6.2. Implement position sizing
|
||||
- [ ] 13.2. Implement position sizing
|
||||
- Create a PositionSizer class
|
||||
- Implement methods for calculating position sizes based on risk parameters
|
||||
- Add validation to ensure position sizes are within limits
|
||||
- _Requirements: 7.3, 7.7_
|
||||
|
||||
- [ ] 6.3. Implement risk metrics
|
||||
- [ ] 13.3. Implement risk metrics
|
||||
- Add methods to calculate risk metrics (drawdown, VaR, etc.)
|
||||
- Implement real-time risk monitoring
|
||||
- Add alerts for high-risk situations
|
||||
@@ -320,31 +448,31 @@
|
||||
|
||||
## Dashboard Implementation
|
||||
|
||||
- [ ] 7. Design and implement the dashboard UI
|
||||
- [ ] 14. Design and implement the dashboard UI
|
||||
- Create a Dashboard class
|
||||
- Implement the web-based UI using Flask/Dash
|
||||
- Add real-time updates using WebSockets
|
||||
- _Requirements: 6.1, 6.8_
|
||||
|
||||
- [ ] 7.1. Implement chart management
|
||||
- [ ] 14.1. Implement chart management
|
||||
- Create a ChartManager class
|
||||
- Implement methods for creating and updating charts
|
||||
- Add interactive features (zoom, pan, etc.)
|
||||
- _Requirements: 6.1, 6.2_
|
||||
|
||||
- [ ] 7.2. Implement control panel
|
||||
- [ ] 14.2. Implement control panel
|
||||
- Create a ControlPanel class
|
||||
- Implement start/stop toggles for system processes
|
||||
- Add sliders for adjusting buy/sell thresholds
|
||||
- _Requirements: 6.6, 6.7_
|
||||
|
||||
- [ ] 7.3. Implement system status display
|
||||
- [ ] 14.3. Implement system status display
|
||||
- Add methods to display training progress
|
||||
- Implement model performance metrics visualization
|
||||
- Add real-time system status updates
|
||||
- _Requirements: 6.5, 5.6_
|
||||
|
||||
- [ ] 7.4. Implement server-side processing
|
||||
- [ ] 14.4. Implement server-side processing
|
||||
- Ensure all processes run on the server without requiring the dashboard to be open
|
||||
- Implement background tasks for model training and inference
|
||||
- Add mechanisms to persist system state
|
||||
@@ -352,32 +480,32 @@
|
||||
|
||||
## Integration and Testing
|
||||
|
||||
- [ ] 8. Integrate all components
|
||||
- [ ] 15. Integrate all components
|
||||
- Connect the data provider to the CNN and RL models
|
||||
- Connect the CNN and RL models to the orchestrator
|
||||
- Connect the orchestrator to the trading executor
|
||||
- _Requirements: 8.1, 8.2, 8.3_
|
||||
|
||||
- [ ] 8.1. Implement comprehensive unit tests
|
||||
- [ ] 15.1. Implement comprehensive unit tests
|
||||
- Create unit tests for each component
|
||||
- Implement test fixtures and mocks
|
||||
- Add test coverage reporting
|
||||
- _Requirements: 8.1, 8.2, 8.3_
|
||||
|
||||
- [ ] 8.2. Implement integration tests
|
||||
- [ ] 15.2. Implement integration tests
|
||||
- Create tests for component interactions
|
||||
- Implement end-to-end tests
|
||||
- Add performance benchmarks
|
||||
- _Requirements: 8.1, 8.2, 8.3_
|
||||
|
||||
- [ ] 8.3. Implement backtesting framework
|
||||
- [ ] 15.3. Implement backtesting framework
|
||||
- Create a backtesting environment
|
||||
- Implement methods to replay historical data
|
||||
- Add performance metrics calculation
|
||||
- _Requirements: 5.8, 8.1_
|
||||
|
||||
- [ ] 8.4. Optimize performance
|
||||
- [ ] 15.4. Optimize performance
|
||||
- Profile the system to identify bottlenecks
|
||||
- Implement optimizations for critical paths
|
||||
- Add caching and parallelization where appropriate
|
||||
- _Requirements: 8.1, 8.2, 8.3_
|
||||
- _Requirements: 8.1, 8.2, 8.3_
|
||||
|
||||
Reference in New Issue
Block a user