more cleanup

This commit is contained in:
Dobromir Popov
2025-10-13 16:11:06 +03:00
parent 6cf4d902df
commit 0c28a0997c
17 changed files with 1030 additions and 2301 deletions

View File

@@ -0,0 +1,333 @@
# Multi-Modal Trading System - Audit Summary
**Date**: January 9, 2025
**Focus**: Data Collection/Provider Backbone
## Executive Summary
Comprehensive audit of the multi-modal trading system revealed a **strong, well-architected data provider backbone** with robust implementations across multiple layers. The system demonstrates excellent separation of concerns with COBY (standalone multi-exchange aggregation), Core DataProvider (real-time operations), and StandardizedDataProvider (unified model interface).
## Architecture Overview
```
┌─────────────────────────────────────────────────────────────┐
│ COBY System (Standalone) │
│ Multi-Exchange Aggregation │ TimescaleDB │ Redis Cache │
│ Status: ✅ Fully Operational │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Core DataProvider (core/data_provider.py) │
│ Automatic Maintenance │ Williams Pivots │ COB Integration │
│ Status: ✅ Implemented, Needs Enhancement │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ StandardizedDataProvider (core/standardized_data_provider.py) │
│ BaseDataInput │ ModelOutputManager │ Unified Interface │
│ Status: ✅ Implemented, Needs Heatmap Integration │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Models (CNN, RL, etc.) │
└─────────────────────────────────────────────────────────────┘
```
## Key Findings
### ✅ Strengths (Fully Implemented)
1. **COBY System**
- Standalone multi-exchange data aggregation
- TimescaleDB for time-series storage
- Redis caching layer
- REST API and WebSocket server
- Performance monitoring and health checks
- **Status**: Production-ready
2. **Core DataProvider**
- Automatic data maintenance with background workers
- 1500 candles cached per symbol/timeframe (1s, 1m, 1h, 1d)
- Automatic fallback between Binance and MEXC
- Thread-safe data access with locks
- Centralized subscriber management
- **Status**: Robust and operational
3. **Williams Market Structure**
- Recursive pivot point detection with 5 levels
- Monthly 1s data analysis for comprehensive context
- Pivot-based normalization bounds (PivotBounds)
- Support/resistance level tracking
- **Status**: Advanced implementation
4. **EnhancedCOBWebSocket**
- Multiple Binance streams (depth@100ms, ticker, aggTrade)
- Proper order book synchronization with REST snapshots
- Automatic reconnection with exponential backoff
- 24-hour connection limit compliance
- Comprehensive error handling
- **Status**: Production-grade
5. **COB Integration**
- 1s aggregation with price buckets ($1 ETH, $10 BTC)
- Multi-timeframe imbalance MA (1s, 5s, 15s, 60s)
- 30-minute raw tick buffer (180,000 ticks)
- Bid/ask volumes and imbalances per bucket
- **Status**: Functional, needs robustness improvements
6. **StandardizedDataProvider**
- BaseDataInput with comprehensive fields
- ModelOutputManager for cross-model feeding
- COB moving average calculation
- Live price fetching with multiple fallbacks
- **Status**: Core functionality complete
### ⚠️ Partial Implementations (Needs Validation)
1. **COB Raw Tick Storage**
- Structure exists (30 min buffer)
- Needs validation under load
- Potential NoneType errors in aggregation worker
2. **Training Data Collection**
- Callback structure exists
- Needs integration with training pipelines
- Validation of data flow required
3. **Cross-Exchange COB Consolidation**
- COBY system separate from core
- No unified interface yet
- Needs adapter layer
### ❌ Areas Needing Enhancement
1. **COB Data Collection Robustness**
- **Issue**: NoneType errors in `_cob_aggregation_worker`
- **Impact**: Potential data loss during aggregation
- **Priority**: HIGH
- **Solution**: Add defensive checks, proper initialization guards
2. **Configurable COB Price Ranges**
- **Issue**: Hardcoded ranges ($5 ETH, $50 BTC)
- **Impact**: Inflexible for different market conditions
- **Priority**: MEDIUM
- **Solution**: Move to config.yaml, add per-symbol customization
3. **COB Heatmap Generation**
- **Issue**: Not implemented
- **Impact**: Missing visualization and model input feature
- **Priority**: MEDIUM
- **Solution**: Implement `get_cob_heatmap_matrix()` method
4. **Data Quality Scoring**
- **Issue**: No comprehensive validation
- **Impact**: Models may receive incomplete data
- **Priority**: HIGH
- **Solution**: Implement data completeness scoring (0.0-1.0)
5. **COBY-Core Integration**
- **Issue**: Systems operate independently
- **Impact**: Cannot leverage multi-exchange data in real-time trading
- **Priority**: MEDIUM
- **Solution**: Create COBYDataAdapter for unified access
6. **BaseDataInput Validation**
- **Issue**: Basic validation only
- **Impact**: Insufficient data quality checks
- **Priority**: HIGH
- **Solution**: Enhanced validate() with detailed error messages
## Data Flow Analysis
### Current Data Flow
```
Exchange APIs (Binance, MEXC)
EnhancedCOBWebSocket (depth@100ms, ticker, aggTrade)
DataProvider (automatic maintenance, caching)
COB Aggregation (1s buckets, MA calculations)
StandardizedDataProvider (BaseDataInput creation)
Models (CNN, RL) via get_base_data_input()
ModelOutputManager (cross-model feeding)
```
### Parallel COBY Flow
```
Multiple Exchanges (Binance, Coinbase, Kraken, etc.)
COBY Connectors (WebSocket streams)
TimescaleDB (persistent storage)
Redis Cache (high-performance access)
REST API / WebSocket Server
Dashboard / External Consumers
```
## Performance Characteristics
### Core DataProvider
- **Cache Size**: 1500 candles × 4 timeframes × 2 symbols = 12,000 candles
- **Update Frequency**: Every half-candle period (0.5s for 1s, 30s for 1m, etc.)
- **COB Buffer**: 180,000 raw ticks (30 min @ ~100 ticks/sec)
- **Thread Safety**: Lock-based synchronization
- **Memory Footprint**: Estimated 50-100 MB for cached data
### EnhancedCOBWebSocket
- **Streams**: 3 per symbol (depth, ticker, aggTrade)
- **Update Rate**: 100ms for depth, real-time for trades
- **Reconnection**: Exponential backoff (1s → 60s max)
- **Order Book Depth**: 1000 levels (maximum Binance allows)
### COBY System
- **Storage**: TimescaleDB with automatic compression
- **Cache**: Redis with configurable TTL
- **Throughput**: Handles multiple exchanges simultaneously
- **Latency**: Sub-second for cached data
## Code Quality Assessment
### Excellent
- ✅ Comprehensive error handling in EnhancedCOBWebSocket
- ✅ Thread-safe data access patterns
- ✅ Clear separation of concerns across layers
- ✅ Extensive logging for debugging
- ✅ Proper use of dataclasses for type safety
### Good
- ✅ Automatic data maintenance workers
- ✅ Fallback mechanisms for API failures
- ✅ Subscriber pattern for data distribution
- ✅ Pivot-based normalization system
### Needs Improvement
- ⚠️ Defensive programming in COB aggregation
- ⚠️ Configuration management (hardcoded values)
- ⚠️ Comprehensive input validation
- ⚠️ Data quality monitoring
## Recommendations
### Immediate Actions (High Priority)
1. **Fix COB Aggregation Robustness** (Task 1.1)
- Add defensive checks in `_cob_aggregation_worker`
- Implement proper initialization guards
- Test under failure scenarios
- **Estimated Effort**: 2-4 hours
2. **Implement Data Quality Scoring** (Task 2.3)
- Create `data_quality_score()` method
- Add completeness, freshness, consistency checks
- Prevent inference on low-quality data (< 0.8)
- **Estimated Effort**: 4-6 hours
3. **Enhance BaseDataInput Validation** (Task 2)
- Minimum frame count validation
- COB data structure validation
- Detailed error messages
- **Estimated Effort**: 3-5 hours
### Short-Term Enhancements (Medium Priority)
4. **Implement COB Heatmap Generation** (Task 1.4)
- Create `get_cob_heatmap_matrix()` method
- Support configurable time windows and price ranges
- Cache for performance
- **Estimated Effort**: 6-8 hours
5. **Configurable COB Price Ranges** (Task 1.2)
- Move to config.yaml
- Per-symbol customization
- Update imbalance calculations
- **Estimated Effort**: 2-3 hours
6. **Integrate COB Heatmap into BaseDataInput** (Task 2.1)
- Add heatmap fields to BaseDataInput
- Call heatmap generation in `get_base_data_input()`
- Handle failures gracefully
- **Estimated Effort**: 2-3 hours
### Long-Term Improvements (Lower Priority)
7. **COBY-Core Integration** (Tasks 3, 3.1, 3.2, 3.3)
- Design unified interface
- Implement COBYDataAdapter
- Merge heatmap data
- Health monitoring
- **Estimated Effort**: 16-24 hours
8. **Model Output Persistence** (Task 4.1)
- Disk-based storage
- Configurable retention
- Compression
- **Estimated Effort**: 8-12 hours
9. **Comprehensive Testing** (Tasks 5, 5.1, 5.2)
- Unit tests for all components
- Integration tests
- Performance benchmarks
- **Estimated Effort**: 20-30 hours
## Risk Assessment
### Low Risk
- Core DataProvider stability
- EnhancedCOBWebSocket reliability
- Williams Market Structure accuracy
- COBY system operation
### Medium Risk
- COB aggregation under high load
- Data quality during API failures
- Memory usage with extended caching
- Integration complexity with COBY
### High Risk
- Model inference on incomplete data (mitigated by validation)
- Data loss during COB aggregation errors (needs immediate fix)
- Performance degradation with multiple models (needs monitoring)
## Conclusion
The multi-modal trading system has a **solid, well-architected data provider backbone** with excellent separation of concerns and robust implementations. The three-layer architecture (COBY Core Standardized) provides flexibility and scalability.
**Key Strengths**:
- Production-ready COBY system
- Robust automatic data maintenance
- Advanced Williams Market Structure pivots
- Comprehensive COB integration
- Extensible model output management
**Priority Improvements**:
1. COB aggregation robustness (HIGH)
2. Data quality scoring (HIGH)
3. BaseDataInput validation (HIGH)
4. COB heatmap generation (MEDIUM)
5. COBY-Core integration (MEDIUM)
**Overall Assessment**: The system is **production-ready for core functionality** with identified enhancements that will improve robustness, data quality, and feature completeness. The updated spec provides a clear roadmap for systematic improvements.
## Next Steps
1. Review and approve updated spec documents
2. Prioritize tasks based on business needs
3. Begin with high-priority robustness improvements
4. Implement data quality scoring and validation
5. Add COB heatmap generation for enhanced model inputs
6. Plan COBY-Core integration for multi-exchange capabilities
---
**Audit Completed By**: Kiro AI Assistant
**Date**: January 9, 2025
**Spec Version**: 1.1 (Updated)

View File

@@ -0,0 +1,470 @@
# Data Provider Quick Reference Guide
## Overview
Quick reference for using the multi-layered data provider system in the multi-modal trading system.
## Architecture Layers
```
COBY System → Core DataProvider → StandardizedDataProvider → Models
```
## Getting Started
### Basic Usage
```python
from core.standardized_data_provider import StandardizedDataProvider
# Initialize provider
provider = StandardizedDataProvider(
symbols=['ETH/USDT', 'BTC/USDT'],
timeframes=['1s', '1m', '1h', '1d']
)
# Start real-time processing
provider.start_real_time_processing()
# Get standardized input for models
base_input = provider.get_base_data_input('ETH/USDT')
# Validate data quality
if base_input and base_input.validate():
# Use data for model inference
pass
```
## BaseDataInput Structure
```python
@dataclass
class BaseDataInput:
symbol: str # 'ETH/USDT'
timestamp: datetime # Current time
# OHLCV Data (300 frames each)
ohlcv_1s: List[OHLCVBar] # 1-second bars
ohlcv_1m: List[OHLCVBar] # 1-minute bars
ohlcv_1h: List[OHLCVBar] # 1-hour bars
ohlcv_1d: List[OHLCVBar] # 1-day bars
btc_ohlcv_1s: List[OHLCVBar] # BTC reference
# COB Data
cob_data: Optional[COBData] # Order book data
# Technical Analysis
technical_indicators: Dict[str, float] # RSI, MACD, etc.
pivot_points: List[PivotPoint] # Williams pivots
# Cross-Model Feeding
last_predictions: Dict[str, ModelOutput] # Other model outputs
# Market Microstructure
market_microstructure: Dict[str, Any] # Order flow, etc.
```
## Common Operations
### Get Current Price
```python
# Multiple fallback methods
price = provider.get_current_price('ETH/USDT')
# Direct API call with cache
price = provider.get_live_price_from_api('ETH/USDT')
```
### Get Historical Data
```python
# Get OHLCV data
df = provider.get_historical_data(
symbol='ETH/USDT',
timeframe='1h',
limit=300
)
```
### Get COB Data
```python
# Get latest COB snapshot
cob_data = provider.get_latest_cob_data('ETH/USDT')
# Get COB imbalance metrics
imbalance = provider.get_current_cob_imbalance('ETH/USDT')
```
### Get Pivot Points
```python
# Get Williams Market Structure pivots
pivots = provider.calculate_williams_pivot_points('ETH/USDT')
```
### Store Model Output
```python
from core.data_models import ModelOutput
# Create model output
output = ModelOutput(
model_type='cnn',
model_name='williams_cnn_v2',
symbol='ETH/USDT',
timestamp=datetime.now(),
confidence=0.85,
predictions={
'action': 'BUY',
'action_confidence': 0.85,
'direction_vector': 0.7
},
hidden_states={'conv_features': tensor(...)},
metadata={'version': '2.1'}
)
# Store for cross-model feeding
provider.store_model_output(output)
```
### Get Model Outputs
```python
# Get all model outputs for a symbol
outputs = provider.get_model_outputs('ETH/USDT')
# Access specific model output
cnn_output = outputs.get('williams_cnn_v2')
```
## Data Validation
### Validate BaseDataInput
```python
base_input = provider.get_base_data_input('ETH/USDT')
if base_input:
# Check validation
is_valid = base_input.validate()
# Check data completeness
if len(base_input.ohlcv_1s) >= 100:
# Sufficient data for inference
pass
```
### Check Data Quality
```python
# Get data completeness metrics
if base_input:
ohlcv_complete = all([
len(base_input.ohlcv_1s) >= 100,
len(base_input.ohlcv_1m) >= 100,
len(base_input.ohlcv_1h) >= 100,
len(base_input.ohlcv_1d) >= 100
])
cob_complete = base_input.cob_data is not None
# Overall quality score (implement in Task 2.3)
# quality_score = base_input.data_quality_score()
```
## COB Data Access
### COB Data Structure
```python
@dataclass
class COBData:
symbol: str
timestamp: datetime
current_price: float
bucket_size: float # $1 ETH, $10 BTC
# Price Buckets (±20 around current price)
price_buckets: Dict[float, Dict[str, float]] # {price: {bid_vol, ask_vol}}
bid_ask_imbalance: Dict[float, float] # {price: imbalance}
# Moving Averages (±5 buckets)
ma_1s_imbalance: Dict[float, float]
ma_5s_imbalance: Dict[float, float]
ma_15s_imbalance: Dict[float, float]
ma_60s_imbalance: Dict[float, float]
# Order Flow
order_flow_metrics: Dict[str, float]
```
### Access COB Buckets
```python
if base_input.cob_data:
cob = base_input.cob_data
# Get current price
current_price = cob.current_price
# Get bid/ask volumes for specific price
price_level = current_price + cob.bucket_size # One bucket up
if price_level in cob.price_buckets:
bucket = cob.price_buckets[price_level]
bid_volume = bucket.get('bid_volume', 0)
ask_volume = bucket.get('ask_volume', 0)
# Get imbalance for price level
imbalance = cob.bid_ask_imbalance.get(price_level, 0)
# Get moving averages
ma_1s = cob.ma_1s_imbalance.get(price_level, 0)
ma_5s = cob.ma_5s_imbalance.get(price_level, 0)
```
## Subscriber Pattern
### Subscribe to Data Updates
```python
def my_data_callback(tick):
"""Handle real-time tick data"""
print(f"Received tick: {tick.symbol} @ {tick.price}")
# Subscribe to data updates
subscriber_id = provider.subscribe_to_data(
callback=my_data_callback,
symbols=['ETH/USDT'],
subscriber_name='my_model'
)
# Unsubscribe when done
provider.unsubscribe_from_data(subscriber_id)
```
## Configuration
### Key Configuration Options
```yaml
# config.yaml
data_provider:
symbols:
- ETH/USDT
- BTC/USDT
timeframes:
- 1s
- 1m
- 1h
- 1d
cache:
enabled: true
candles_per_timeframe: 1500
cob:
enabled: true
bucket_sizes:
ETH/USDT: 1.0 # $1 buckets
BTC/USDT: 10.0 # $10 buckets
price_ranges:
ETH/USDT: 5.0 # ±$5 for imbalance
BTC/USDT: 50.0 # ±$50 for imbalance
websocket:
update_speed: 100ms
max_depth: 1000
reconnect_delay: 1.0
max_reconnect_delay: 60.0
```
## Performance Tips
### Optimize Data Access
```python
# Cache BaseDataInput for multiple models
base_input = provider.get_base_data_input('ETH/USDT')
# Use cached data for all models
cnn_input = base_input # CNN uses full data
rl_input = base_input # RL uses full data + CNN outputs
# Avoid repeated calls
# BAD: base_input = provider.get_base_data_input('ETH/USDT') # Called multiple times
# GOOD: Cache and reuse
```
### Monitor Performance
```python
# Check subscriber statistics
stats = provider.distribution_stats
print(f"Total ticks received: {stats['total_ticks_received']}")
print(f"Total ticks distributed: {stats['total_ticks_distributed']}")
print(f"Distribution errors: {stats['distribution_errors']}")
```
## Troubleshooting
### Common Issues
#### 1. No Data Available
```python
base_input = provider.get_base_data_input('ETH/USDT')
if base_input is None:
# Check if data provider is started
if not provider.data_maintenance_active:
provider.start_automatic_data_maintenance()
# Check if COB collection is started
if not provider.cob_collection_active:
provider.start_cob_collection()
```
#### 2. Incomplete Data
```python
if base_input:
# Check frame counts
print(f"1s frames: {len(base_input.ohlcv_1s)}")
print(f"1m frames: {len(base_input.ohlcv_1m)}")
print(f"1h frames: {len(base_input.ohlcv_1h)}")
print(f"1d frames: {len(base_input.ohlcv_1d)}")
# Wait for data to accumulate
if len(base_input.ohlcv_1s) < 100:
print("Waiting for more data...")
time.sleep(60) # Wait 1 minute
```
#### 3. COB Data Missing
```python
if base_input and base_input.cob_data is None:
# Check COB collection status
if not provider.cob_collection_active:
provider.start_cob_collection()
# Check WebSocket status
if hasattr(provider, 'enhanced_cob_websocket'):
ws = provider.enhanced_cob_websocket
status = ws.status.get('ETH/USDT')
print(f"WebSocket connected: {status.connected}")
print(f"Last message: {status.last_message_time}")
```
#### 4. Price Data Stale
```python
# Force refresh price
price = provider.get_live_price_from_api('ETH/USDT')
# Check cache freshness
if 'ETH/USDT' in provider.live_price_cache:
cached_price, timestamp = provider.live_price_cache['ETH/USDT']
age = datetime.now() - timestamp
print(f"Price cache age: {age.total_seconds()}s")
```
## Best Practices
### 1. Always Validate Data
```python
base_input = provider.get_base_data_input('ETH/USDT')
if base_input and base_input.validate():
# Safe to use for inference
model_output = model.predict(base_input)
else:
# Log and skip inference
logger.warning("Invalid or incomplete data, skipping inference")
```
### 2. Handle Missing Data Gracefully
```python
# Never use synthetic data
if base_input is None:
logger.error("No data available")
return None # Don't proceed with inference
# Check specific components
if base_input.cob_data is None:
logger.warning("COB data unavailable, using OHLCV only")
# Proceed with reduced features or skip
```
### 3. Store Model Outputs
```python
# Always store outputs for cross-model feeding
output = model.predict(base_input)
provider.store_model_output(output)
# Other models can now access this output
```
### 4. Monitor Data Quality
```python
# Implement quality checks
def check_data_quality(base_input):
if not base_input:
return 0.0
score = 0.0
# OHLCV completeness (40%)
ohlcv_score = min(1.0, len(base_input.ohlcv_1s) / 300) * 0.4
score += ohlcv_score
# COB availability (30%)
cob_score = 0.3 if base_input.cob_data else 0.0
score += cob_score
# Pivot points (20%)
pivot_score = 0.2 if base_input.pivot_points else 0.0
score += pivot_score
# Freshness (10%)
age = (datetime.now() - base_input.timestamp).total_seconds()
freshness_score = max(0, 1.0 - age / 60) * 0.1 # Decay over 1 minute
score += freshness_score
return score
# Use quality score
quality = check_data_quality(base_input)
if quality < 0.8:
logger.warning(f"Low data quality: {quality:.2f}")
```
## File Locations
- **Core DataProvider**: `core/data_provider.py`
- **Standardized Provider**: `core/standardized_data_provider.py`
- **Enhanced COB WebSocket**: `core/enhanced_cob_websocket.py`
- **Williams Market Structure**: `core/williams_market_structure.py`
- **Data Models**: `core/data_models.py`
- **Model Output Manager**: `core/model_output_manager.py`
- **COBY System**: `COBY/` directory
## Additional Resources
- **Requirements**: `.kiro/specs/1.multi-modal-trading-system/requirements.md`
- **Design**: `.kiro/specs/1.multi-modal-trading-system/design.md`
- **Tasks**: `.kiro/specs/1.multi-modal-trading-system/tasks.md`
- **Audit Summary**: `.kiro/specs/1.multi-modal-trading-system/AUDIT_SUMMARY.md`
---
**Last Updated**: January 9, 2025
**Version**: 1.0

View File

@@ -1,67 +1,206 @@
# Implementation Plan
## Enhanced Data Provider and COB Integration
## Data Provider Backbone Enhancement
- [ ] 1. Enhance the existing DataProvider class with standardized model inputs
- Extend the current implementation in core/data_provider.py
- Implement standardized COB+OHLCV data frame for all models
- Create unified input format: 300 frames OHLCV (1s, 1m, 1h, 1d) ETH + 300s of 1s BTC
- Integrate with existing multi_exchange_cob_provider.py for COB data
- _Requirements: 1.1, 1.2, 1.3, 1.6_
### Phase 1: Core Data Provider Enhancements
- [ ] 1.1. Implement standardized COB+OHLCV data frame for all models
- Create BaseDataInput class with standardized format for all models
- Implement OHLCV: 300 frames of (1s, 1m, 1h, 1d) ETH + 300s of 1s BTC
- Add COB: ±20 buckets of COB amounts in USD for each 1s OHLCV
- Include 1s, 5s, 15s, and 60s MA of COB imbalance counting ±5 COB buckets
- Ensure all models receive identical input format for consistency
- _Requirements: 1.2, 1.3, 8.1_
- [ ] 1. Audit and validate existing DataProvider implementation
- Review core/data_provider.py for completeness and correctness
- Validate 1500-candle caching is working correctly
- Verify automatic data maintenance worker is updating properly
- Test fallback mechanisms between Binance and MEXC
- Document any gaps or issues found
- _Requirements: 1.1, 1.2, 1.6_
- [ ] 1.2. Implement extensible model output storage
- Create standardized ModelOutput data structure
- Support CNN, RL, LSTM, Transformer, and future model types
- Include model-specific predictions and cross-model hidden states
- Add metadata support for extensible model information
- _Requirements: 1.10, 8.2_
- [ ] 1.1. Enhance COB data collection robustness
- Fix 'NoneType' object has no attribute 'append' errors in _cob_aggregation_worker
- Add defensive checks before accessing deque structures
- Implement proper initialization guards to prevent duplicate COB collection starts
- Add comprehensive error logging for COB data processing failures
- Test COB collection under various failure scenarios
- _Requirements: 1.3, 1.6_
- [ ] 1.3. Enhance Williams Market Structure pivot point calculation
- Extend existing williams_market_structure.py implementation
- Improve recursive pivot point calculation accuracy
- Add unit tests to verify pivot point detection
- Integrate with COB data for enhanced pivot detection
- [ ] 1.2. Implement configurable COB price ranges
- Replace hardcoded price ranges ($5 ETH, $50 BTC) with configuration
- Add _get_price_range_for_symbol() configuration support
- Allow per-symbol price range customization via config.yaml
- Update COB imbalance calculations to use configurable ranges
- Document price range selection rationale
- _Requirements: 1.4, 1.1_
- [ ] 1.3. Validate and enhance Williams Market Structure pivot calculation
- Review williams_market_structure.py implementation
- Verify 5-level pivot detection is working correctly
- Test monthly 1s data analysis for comprehensive context
- Add unit tests for pivot point detection accuracy
- Optimize pivot calculation performance if needed
- _Requirements: 1.5, 2.7_
- [x] 1.4. Optimize real-time data streaming with COB integration
- [ ] 1.4. Implement COB heatmap matrix generation
- Create get_cob_heatmap_matrix() method in DataProvider
- Generate time x price matrix for visualization and model input
- Support configurable time windows (default 300 seconds)
- Support configurable price bucket radius (default ±10 buckets)
- Support multiple metrics (imbalance, volume, spread)
- Cache heatmap data for performance
- _Requirements: 1.4, 1.1_
- Enhance existing WebSocket connections in enhanced_cob_websocket.py
- Implement 10Hz COB data streaming alongside OHLCV data
- Add data synchronization across different refresh rates
- Ensure thread-safe access to multi-rate data streams
- [x] 1.5. Enhance EnhancedCOBWebSocket reliability
- Review enhanced_cob_websocket.py for stability issues
- Verify proper order book synchronization with REST snapshots
- Test reconnection logic with exponential backoff
- Ensure 24-hour connection limit compliance
- Add comprehensive error handling for all WebSocket streams
- _Requirements: 1.3, 1.6_
### Phase 2: StandardizedDataProvider Enhancements
- [ ] 2. Implement comprehensive BaseDataInput validation
- Enhance validate() method in BaseDataInput dataclass
- Add minimum frame count validation (100 frames per timeframe)
- Implement data completeness scoring (0.0 to 1.0)
- Add COB data validation (non-null, valid buckets)
- Create detailed validation error messages
- Prevent model inference on incomplete data (completeness < 0.8)
- _Requirements: 1.1.2, 1.1.6_
- [ ] 2.1. Integrate COB heatmap into BaseDataInput
- Add cob_heatmap_times, cob_heatmap_prices, cob_heatmap_values fields
- Call get_cob_heatmap_matrix() in get_base_data_input()
- Handle heatmap generation failures gracefully
- Store heatmap mid_prices in market_microstructure
- Document heatmap usage for models
- _Requirements: 1.1.1, 1.4_
- [ ] 2.2. Enhance COB moving average calculation
- Review _calculate_cob_moving_averages() for correctness
- Fix bucket quantization to match COB snapshot buckets
- Implement nearest-key matching for historical imbalance lookup
- Add thread-safe access to cob_imbalance_history
- Optimize MA calculation performance
- _Requirements: 1.1.3, 1.4_
- [ ] 2.3. Implement data quality scoring system
- Create data_quality_score() method
- Score based on: data completeness, freshness, consistency
- Add quality thresholds for model inference
- Log quality metrics for monitoring
- Provide quality breakdown in BaseDataInput
- _Requirements: 1.1.2, 1.1.6_
- [ ] 2.4. Enhance live price fetching robustness
- Review get_live_price_from_api() fallback chain
- Add retry logic with exponential backoff
- Implement circuit breaker for repeated API failures
- Cache prices with configurable TTL (default 500ms)
- Log price source for debugging
- _Requirements: 1.6, 1.7_
### Phase 3: COBY Integration
- [ ] 3. Design unified interface between COBY and core DataProvider
- Define clear boundaries between COBY and core systems
- Create adapter layer for accessing COBY data from core
- Design data flow for multi-exchange aggregation
- Plan migration path for existing code
- Document integration architecture
- _Requirements: 1.10, 8.1_
- [ ] 3.1. Implement COBY data access adapter
- Create COBYDataAdapter class in core/
- Implement methods to query COBY TimescaleDB
- Add Redis cache integration for performance
- Support historical data retrieval from COBY
- Handle COBY unavailability gracefully
- _Requirements: 1.10, 8.1_
- [ ] 3.2. Integrate COBY heatmap data
- Query COBY for multi-exchange heatmap data
- Merge COBY heatmaps with core COB heatmaps
- Provide unified heatmap interface to models
- Support exchange-specific heatmap filtering
- Cache merged heatmaps for performance
- _Requirements: 1.4, 3.1_
- [ ] 3.3. Implement COBY health monitoring
- Add COBY connection status to DataProvider
- Monitor COBY API availability
- Track COBY data freshness
- Alert on COBY failures
- Provide COBY status in dashboard
- _Requirements: 1.6, 8.5_
- [ ] 1.5. Fix WebSocket COB data processing errors
- Fix 'NoneType' object has no attribute 'append' errors in COB data processing
- Ensure proper initialization of data structures in MultiExchangeCOBProvider
- Add validation and defensive checks before accessing data structures
- Implement proper error handling for WebSocket data processing
- _Requirements: 1.1, 1.6, 8.5_
### Phase 4: Model Output Management
- [ ] 1.6. Enhance error handling in COB data processing
- Add validation for incoming WebSocket data
- Implement reconnection logic with exponential backoff
- Add detailed logging for debugging COB data issues
- Ensure system continues operation with last valid data during failures
- _Requirements: 1.6, 8.5_
- [ ] 4. Enhance ModelOutputManager functionality
- Review model_output_manager.py implementation
- Verify extensible ModelOutput format is working
- Test cross-model feeding with hidden states
- Validate historical output storage (1000 entries)
- Optimize query performance by model_name, symbol, timestamp
- _Requirements: 1.10, 8.2_
- [ ] 4.1. Implement model output persistence
- Add disk-based storage for model outputs
- Support configurable retention policies
- Implement efficient serialization (pickle/msgpack)
- Add compression for storage optimization
- Support output replay for backtesting
- _Requirements: 1.10, 5.7_
- [ ] 4.2. Create model output analytics
- Track prediction accuracy over time
- Calculate model agreement/disagreement metrics
- Identify model performance patterns
- Generate model comparison reports
- Visualize model outputs in dashboard
- _Requirements: 5.8, 10.7_
### Phase 5: Testing and Validation
- [ ] 5. Create comprehensive data provider tests
- Write unit tests for DataProvider core functionality
- Test automatic data maintenance worker
- Test COB aggregation and imbalance calculations
- Test Williams pivot point detection
- Test StandardizedDataProvider validation
- _Requirements: 8.1, 8.2_
- [ ] 5.1. Implement integration tests
- Test end-to-end data flow from WebSocket to models
- Test COBY integration (when implemented)
- Test model output storage and retrieval
- Test data provider under load
- Test failure scenarios and recovery
- _Requirements: 8.2, 8.3_
- [ ] 5.2. Create data provider performance benchmarks
- Measure data collection latency
- Measure COB aggregation performance
- Measure BaseDataInput creation time
- Identify performance bottlenecks
- Optimize critical paths
- _Requirements: 8.4_
- [ ] 5.3. Document data provider architecture
- Create comprehensive architecture documentation
- Document data flow diagrams
- Document configuration options
- Create troubleshooting guide
- Add code examples for common use cases
- _Requirements: 8.1, 8.2_
## Enhanced CNN Model Implementation
- [ ] 2. Enhance the existing CNN model with standardized inputs/outputs
- [ ] 6. Enhance the existing CNN model with standardized inputs/outputs
- Extend the current implementation in NN/models/enhanced_cnn.py
- Accept standardized COB+OHLCV data frame: 300 frames (1s,1m,1h,1d) ETH + 300s 1s BTC
- Include COB ±20 buckets and MA (1s,5s,15s,60s) of COB imbalance ±5 buckets
- Output BUY/SELL trading action with confidence scores - _Requirements: 2.1, 2.2, 2.8, 1.10_
- Output BUY/SELL trading action with confidence scores
- _Requirements: 2.1, 2.2, 2.8, 1.10_
- [x] 2.1. Implement CNN inference with standardized input format
- [x] 6.1. Implement CNN inference with standardized input format
- Accept BaseDataInput with standardized COB+OHLCV format
- Process 300 frames of multi-timeframe data with COB buckets
- Output BUY/SELL recommendations with confidence scores
@@ -69,7 +208,7 @@
- Optimize inference performance for real-time processing
- _Requirements: 2.2, 2.6, 2.8, 4.3_
- [x] 2.2. Enhance CNN training pipeline with checkpoint management
- [x] 6.2. Enhance CNN training pipeline with checkpoint management
- Integrate with checkpoint manager for training progress persistence
- Store top 5-10 best checkpoints based on performance metrics
- Automatically load best checkpoint at startup
@@ -77,7 +216,7 @@
- Store metadata with checkpoints for performance tracking
- _Requirements: 2.4, 2.5, 5.2, 5.3, 5.7_
- [ ] 2.3. Implement CNN model evaluation and checkpoint optimization
- [ ] 6.3. Implement CNN model evaluation and checkpoint optimization
- Create evaluation methods using standardized input/output format
- Implement performance metrics for checkpoint ranking
- Add validation against historical trading outcomes
@@ -87,14 +226,14 @@
## Enhanced RL Model Implementation
- [ ] 3. Enhance the existing RL model with standardized inputs/outputs
- [ ] 7. Enhance the existing RL model with standardized inputs/outputs
- Extend the current implementation in NN/models/dqn_agent.py
- Accept standardized COB+OHLCV data frame: 300 frames (1s,1m,1h,1d) ETH + 300s 1s BTC
- Include COB ±20 buckets and MA (1s,5s,15s,60s) of COB imbalance ±5 buckets
- Output BUY/SELL trading action with confidence scores
- _Requirements: 3.1, 3.2, 3.7, 1.10_
- [ ] 3.1. Implement RL inference with standardized input format
- [ ] 7.1. Implement RL inference with standardized input format
- Accept BaseDataInput with standardized COB+OHLCV format
- Process CNN hidden states and predictions as part of state input
- Output BUY/SELL recommendations with confidence scores
@@ -102,7 +241,7 @@
- Optimize inference performance for real-time processing
- _Requirements: 3.2, 3.7, 4.3_
- [ ] 3.2. Enhance RL training pipeline with checkpoint management
- [ ] 7.2. Enhance RL training pipeline with checkpoint management
- Integrate with checkpoint manager for training progress persistence
- Store top 5-10 best checkpoints based on trading performance metrics
- Automatically load best checkpoint at startup
@@ -110,7 +249,7 @@
- Store metadata with checkpoints for performance tracking
- _Requirements: 3.3, 3.5, 5.4, 5.7, 4.4_
- [ ] 3.3. Implement RL model evaluation and checkpoint optimization
- [ ] 7.3. Implement RL model evaluation and checkpoint optimization
- Create evaluation methods using standardized input/output format
- Implement trading performance metrics for checkpoint ranking
- Add validation against historical trading opportunities
@@ -120,7 +259,7 @@
## Enhanced Orchestrator Implementation
- [ ] 4. Enhance the existing orchestrator with centralized coordination
- [ ] 8. Enhance the existing orchestrator with centralized coordination
- Extend the current implementation in core/orchestrator.py
- Implement DataSubscriptionManager for multi-rate data streams
- Add ModelInferenceCoordinator for cross-model coordination
@@ -128,7 +267,7 @@
- Add TrainingPipelineManager for continuous learning coordination
- _Requirements: 4.1, 4.2, 4.5, 8.1_
- [ ] 4.1. Implement data subscription and management system
- [ ] 8.1. Implement data subscription and management system
- Create DataSubscriptionManager class
- Subscribe to 10Hz COB data, OHLCV, market ticks, and technical indicators
- Implement intelligent caching for "last updated" data serving
@@ -136,10 +275,7 @@
- Add thread-safe access to multi-rate data streams
- _Requirements: 4.1, 1.6, 8.5_
- [ ] 4.2. Implement model inference coordination
- [ ] 8.2. Implement model inference coordination
- Create ModelInferenceCoordinator class
- Trigger model inference based on data availability and requirements
- Coordinate parallel inference execution for independent models
@@ -147,7 +283,7 @@
- Assemble appropriate input data for each model type
- _Requirements: 4.2, 3.1, 2.1_
- [ ] 4.3. Implement model output storage and cross-feeding
- [ ] 8.3. Implement model output storage and cross-feeding
- Create ModelOutputStore class using standardized ModelOutput format
- Store CNN predictions, confidence scores, and hidden layer states
- Store RL action recommendations and value estimates
@@ -156,7 +292,7 @@
- Include "last predictions" from all models in base data input
- _Requirements: 4.3, 1.10, 8.2_
- [ ] 4.4. Implement training pipeline management
- [ ] 8.4. Implement training pipeline management
- Create TrainingPipelineManager class
- Call each model's training pipeline with prediction-result pairs
- Manage training data collection and labeling
@@ -164,7 +300,7 @@
- Track prediction accuracy and trigger retraining when needed
- _Requirements: 4.4, 5.2, 5.4, 5.7_
- [ ] 4.5. Implement enhanced decision-making with MoE
- [ ] 8.5. Implement enhanced decision-making with MoE
- Create enhanced DecisionMaker class
- Implement Mixture of Experts approach for model integration
- Apply confidence-based filtering to avoid uncertain trades
@@ -172,7 +308,7 @@
- Consider market conditions and risk parameters in decisions
- _Requirements: 4.5, 4.8, 6.7_
- [ ] 4.6. Implement extensible model integration architecture
- [ ] 8.6. Implement extensible model integration architecture
- Create MoEGateway class supporting dynamic model addition
- Support CNN, RL, LSTM, Transformer model types without architecture changes
- Implement model versioning and rollback capabilities
@@ -182,15 +318,14 @@
## Model Inference Data Validation and Storage
- [x] 5. Implement comprehensive inference data validation system
- [x] 9. Implement comprehensive inference data validation system
- Create InferenceDataValidator class for input validation
- Validate complete OHLCV dataframes for all required timeframes
- Check input data dimensions against model requirements
- Log missing components and prevent prediction on incomplete data
- _Requirements: 9.1, 9.2, 9.3, 9.4_
- [ ] 5.1. Implement input data validation for all models
- [ ] 9.1. Implement input data validation for all models
- Create validation methods for CNN, RL, and future model inputs
- Validate OHLCV data completeness (300 frames for 1s, 1m, 1h, 1d)
- Validate COB data structure 20 buckets, MA calculations)
@@ -198,9 +333,7 @@
- Ensure validation occurs before any model inference
- _Requirements: 9.1, 9.4_
- [x] 5.2. Implement persistent inference history storage
- [x] 9.2. Implement persistent inference history storage
- Create InferenceHistoryStore class for persistent storage
- Store complete input data packages with each prediction
- Include timestamp, symbol, input features, prediction outputs, confidence scores
@@ -208,12 +341,7 @@
- Implement compressed storage to minimize footprint
- _Requirements: 9.5, 9.6_
- [x] 5.3. Implement inference history query and retrieval system
- [x] 9.3. Implement inference history query and retrieval system
- Create efficient query mechanisms by symbol, timeframe, and date range
- Implement data retrieval for training pipeline consumption
- Add data completeness metrics and validation results in storage
@@ -222,21 +350,21 @@
## Inference-Training Feedback Loop Implementation
- [ ] 6. Implement prediction outcome evaluation system
- [ ] 10. Implement prediction outcome evaluation system
- Create PredictionOutcomeEvaluator class
- Evaluate prediction accuracy against actual price movements
- Create training examples using stored inference data and actual outcomes
- Feed prediction-result pairs back to respective models
- _Requirements: 10.1, 10.2, 10.3_
- [ ] 6.1. Implement adaptive learning signal generation
- [ ] 10.1. Implement adaptive learning signal generation
- Create positive reinforcement signals for accurate predictions
- Generate corrective training signals for inaccurate predictions
- Retrieve last inference data for each model for outcome comparison
- Implement model-specific learning signal formats
- _Requirements: 10.4, 10.5, 10.6_
- [ ] 6.2. Implement continuous improvement tracking
- [ ] 10.2. Implement continuous improvement tracking
- Track and report accuracy improvements/degradations over time
- Monitor model learning progress through feedback loop
- Create performance metrics for inference-training effectiveness
@@ -245,21 +373,21 @@
## Inference History Management and Monitoring
- [ ] 7. Implement comprehensive inference logging and monitoring
- [ ] 11. Implement comprehensive inference logging and monitoring
- Create InferenceMonitor class for logging and alerting
- Log inference data storage operations with completeness metrics
- Log training outcomes and model performance changes
- Alert administrators on data flow issues with specific error details
- _Requirements: 11.1, 11.2, 11.3_
- [ ] 7.1. Implement configurable retention policies
- [ ] 11.1. Implement configurable retention policies
- Create RetentionPolicyManager class
- Archive or remove oldest entries when limits are reached
- Prioritize keeping most recent and valuable training examples
- Implement storage space monitoring and alerts
- _Requirements: 11.4, 11.7_
- [ ] 7.2. Implement efficient historical data management
- [ ] 11.2. Implement efficient historical data management
- Compress inference data to minimize storage footprint
- Maintain accessibility for training and analysis
- Implement efficient query mechanisms for historical analysis
@@ -268,25 +396,25 @@
## Trading Executor Implementation
- [ ] 5. Design and implement the trading executor
- [ ] 12. Design and implement the trading executor
- Create a TradingExecutor class that accepts trading actions from the orchestrator
- Implement order execution through brokerage APIs
- Add order lifecycle management
- _Requirements: 7.1, 7.2, 8.6_
- [ ] 5.1. Implement brokerage API integrations
- [ ] 12.1. Implement brokerage API integrations
- Create a BrokerageAPI interface
- Implement concrete classes for MEXC and Binance
- Add error handling and retry mechanisms
- _Requirements: 7.1, 7.2, 8.6_
- [ ] 5.2. Implement order management
- [ ] 12.2. Implement order management
- Create an OrderManager class
- Implement methods for creating, updating, and canceling orders
- Add order tracking and status updates
- _Requirements: 7.1, 7.2, 8.6_
- [ ] 5.3. Implement error handling
- [ ] 12.3. Implement error handling
- Add comprehensive error handling for API failures
- Implement circuit breakers for extreme market conditions
- Add logging and notification mechanisms
@@ -294,25 +422,25 @@
## Risk Manager Implementation
- [ ] 6. Design and implement the risk manager
- [ ] 13. Design and implement the risk manager
- Create a RiskManager class
- Implement risk parameter management
- Add risk metric calculation
- _Requirements: 7.1, 7.3, 7.4_
- [ ] 6.1. Implement stop-loss functionality
- [ ] 13.1. Implement stop-loss functionality
- Create a StopLossManager class
- Implement methods for creating and managing stop-loss orders
- Add mechanisms to automatically close positions when stop-loss is triggered
- _Requirements: 7.1, 7.2_
- [ ] 6.2. Implement position sizing
- [ ] 13.2. Implement position sizing
- Create a PositionSizer class
- Implement methods for calculating position sizes based on risk parameters
- Add validation to ensure position sizes are within limits
- _Requirements: 7.3, 7.7_
- [ ] 6.3. Implement risk metrics
- [ ] 13.3. Implement risk metrics
- Add methods to calculate risk metrics (drawdown, VaR, etc.)
- Implement real-time risk monitoring
- Add alerts for high-risk situations
@@ -320,31 +448,31 @@
## Dashboard Implementation
- [ ] 7. Design and implement the dashboard UI
- [ ] 14. Design and implement the dashboard UI
- Create a Dashboard class
- Implement the web-based UI using Flask/Dash
- Add real-time updates using WebSockets
- _Requirements: 6.1, 6.8_
- [ ] 7.1. Implement chart management
- [ ] 14.1. Implement chart management
- Create a ChartManager class
- Implement methods for creating and updating charts
- Add interactive features (zoom, pan, etc.)
- _Requirements: 6.1, 6.2_
- [ ] 7.2. Implement control panel
- [ ] 14.2. Implement control panel
- Create a ControlPanel class
- Implement start/stop toggles for system processes
- Add sliders for adjusting buy/sell thresholds
- _Requirements: 6.6, 6.7_
- [ ] 7.3. Implement system status display
- [ ] 14.3. Implement system status display
- Add methods to display training progress
- Implement model performance metrics visualization
- Add real-time system status updates
- _Requirements: 6.5, 5.6_
- [ ] 7.4. Implement server-side processing
- [ ] 14.4. Implement server-side processing
- Ensure all processes run on the server without requiring the dashboard to be open
- Implement background tasks for model training and inference
- Add mechanisms to persist system state
@@ -352,32 +480,32 @@
## Integration and Testing
- [ ] 8. Integrate all components
- [ ] 15. Integrate all components
- Connect the data provider to the CNN and RL models
- Connect the CNN and RL models to the orchestrator
- Connect the orchestrator to the trading executor
- _Requirements: 8.1, 8.2, 8.3_
- [ ] 8.1. Implement comprehensive unit tests
- [ ] 15.1. Implement comprehensive unit tests
- Create unit tests for each component
- Implement test fixtures and mocks
- Add test coverage reporting
- _Requirements: 8.1, 8.2, 8.3_
- [ ] 8.2. Implement integration tests
- [ ] 15.2. Implement integration tests
- Create tests for component interactions
- Implement end-to-end tests
- Add performance benchmarks
- _Requirements: 8.1, 8.2, 8.3_
- [ ] 8.3. Implement backtesting framework
- [ ] 15.3. Implement backtesting framework
- Create a backtesting environment
- Implement methods to replay historical data
- Add performance metrics calculation
- _Requirements: 5.8, 8.1_
- [ ] 8.4. Optimize performance
- [ ] 15.4. Optimize performance
- Profile the system to identify bottlenecks
- Implement optimizations for critical paths
- Add caching and parallelization where appropriate
- _Requirements: 8.1, 8.2, 8.3_
- _Requirements: 8.1, 8.2, 8.3_