folder stricture reorganize

This commit is contained in:
Dobromir Popov
2025-06-25 11:42:12 +03:00
parent 61b31a3089
commit 03fa28a12d
127 changed files with 3108 additions and 1774 deletions

View File

@ -0,0 +1,183 @@
# Williams CNN Pivot Integration - CORRECTED ARCHITECTURE
## 🎯 Overview
The Williams Market Structure has been enhanced with CNN-based pivot prediction capabilities, enabling real-time training and prediction at each detected pivot point using multi-timeframe, multi-symbol data.
## 🔄 **CORRECTED: SINGLE TIMEFRAME RECURSIVE APPROACH**
The Williams Market Structure implementation has been corrected to use **ONLY 1s timeframe data** with recursive analysis, not multi-timeframe analysis.
### **RECURSIVE STRUCTURE (CORRECTED)**
```
Input: 1s OHLCV Data (from real-time data stream)
Level 0: 1s OHLCV → Swing Points (strength 2,3,5)
↓ (treat Level 0 swings as "price bars")
Level 1: Level 0 Swings → Higher-Level Swing Points
↓ (treat Level 1 swings as "price bars")
Level 2: Level 1 Swings → Even Higher-Level Swing Points
↓ (treat Level 2 swings as "price bars")
Level 3: Level 2 Swings → Top-Level Swing Points
↓ (treat Level 3 swings as "price bars")
Level 4: Level 3 Swings → Highest-Level Swing Points
```
### **HOW RECURSION WORKS**
1. **Level 0**: Apply swing detection (strength 2,3,5) to raw 1s OHLCV data
- Input: 1000 x 1s bars → Output: ~50 swing points
2. **Level 1**: Convert Level 0 swing points to "price bars" format
- Each swing point becomes: [timestamp, swing_price, swing_price, swing_price, swing_price, 0]
- Apply swing detection to these 50 "price bars" → Output: ~10 swing points
3. **Level 2**: Convert Level 1 swing points to "price bars" format
- Apply swing detection to these 10 "price bars" → Output: ~3 swing points
4. **Level 3**: Convert Level 2 swing points to "price bars" format
- Apply swing detection to these 3 "price bars" → Output: ~1 swing point
5. **Level 4**: Convert Level 3 swing points to "price bars" format
- Apply swing detection → Output: Final highest-level structure
### **KEY CLARIFICATIONS**
**NOT Multi-Timeframe**: Williams does NOT use 1m, 1h, 4h data
**Single Timeframe Recursive**: Uses ONLY 1s data, analyzed recursively
**NOT Cross-Timeframe**: Different levels ≠ different timeframes
**Fractal Analysis**: Different levels = different magnifications of same 1s data
**NOT Mixed Data Sources**: All levels use derivatives of original 1s data
**Pure Recursion**: Level N uses Level N-1 swing points as input
## 🧠 **CNN INTEGRATION (Multi-Timeframe Features)**
While Williams structure uses only 1s data recursively, the CNN features can still use multi-timeframe data for enhanced context:
### **CNN INPUT FEATURES (900 timesteps × 50 features)**
**ETH Features (40 features per timestep):**
- 1s bars with indicators (10 features)
- 1m bars with indicators (10 features)
- 1h bars with indicators (10 features)
- Tick-derived 1s features (10 features)
**BTC Reference (4 features per timestep):**
- Tick-derived correlation features
**Williams Pivot Features (3 features per timestep):**
- Current pivot characteristics from recursive analysis
- Level-specific trend information
- Structure break indicators
**Chart Labels (3 features per timestep):**
- Data source identification
### **CNN PREDICTION OUTPUT (10 values)**
For each newly detected pivot, predict next pivot for all 5 levels:
- Level 0: [type (0=LOW, 1=HIGH), normalized_price]
- Level 1: [type, normalized_price]
- Level 2: [type, normalized_price]
- Level 3: [type, normalized_price]
- Level 4: [type, normalized_price]
### **NORMALIZATION STRATEGY**
- Use 1h timeframe min/max range for price normalization
- Preserves cross-timeframe relationships in CNN features
- Williams structure calculations remain in actual values
## 📊 **IMPLEMENTATION STATUS**
**Williams Recursive Structure**: Correctly implemented using 1s data only
**Swing Detection**: Multi-strength detection (2,3,5) at each level
**Pivot Conversion**: Level N swings → Level N+1 "price bars"
**CNN Framework**: Ready for training (disabled without TensorFlow)
**Dashboard Integration**: Fixed configuration and error handling
**Online Learning**: Single epoch training at each new pivot
## 🚀 **USAGE EXAMPLE**
```python
from training.williams_market_structure import WilliamsMarketStructure
# Initialize Williams with simplified strengths
williams = WilliamsMarketStructure(
swing_strengths=[2, 3, 5], # Applied to ALL levels recursively
enable_cnn_feature=False, # Disable CNN (no TensorFlow)
training_data_provider=None
)
# Calculate recursive structure from 1s OHLCV data only
ohlcv_1s_data = get_1s_data() # Shape: (N, 6) [timestamp, O, H, L, C, V]
structure_levels = williams.calculate_recursive_pivot_points(ohlcv_1s_data)
# Extract features for RL training (250 features total)
rl_features = williams.extract_features_for_rl(structure_levels)
# Results: 5 levels of recursive swing analysis from single 1s timeframe
for level_key, level_data in structure_levels.items():
print(f"{level_key}: {len(level_data.swing_points)} swing points")
print(f" Trend: {level_data.trend_analysis.direction.value}")
print(f" Bias: {level_data.current_bias.value}")
```
## 🔧 **NEXT STEPS**
1. **Test Recursive Structure**: Verify each level builds correctly from previous level
2. **Enable CNN Training**: Install TensorFlow for enhanced pivot prediction
3. **Validate Features**: Ensure RL features maintain cross-level relationships
4. **Monitor Performance**: Check dashboard shows correct pivot detection across levels
This corrected architecture ensures Williams Market Structure follows Larry Williams' true methodology: recursive fractal analysis of market structure within a single timeframe, not cross-timeframe analysis.
## 📈 **Performance Characteristics**
### **Pivot Detection Performance** (from diagnostics):
- ✅ Clear test patterns: Successfully detects obvious pivot points
- ✅ Realistic data: Handles real market volatility and timing
- ✅ Multi-level recursion: Properly builds higher levels from lower levels
### **CNN Training Frequency**:
- **Level 0**: Most frequent (every raw price pivot)
- **Level 1-4**: Less frequent (requires sufficient lower-level pivots)
- **Online Learning**: Single epoch per pivot for real-time adaptation
## 🎓 **Usage Example**
```python
# Initialize Williams with CNN integration
williams = WilliamsMarketStructure(
swing_strengths=[2, 3, 5, 8, 13],
cnn_input_shape=(900, 50), # 900 timesteps, 50 features
cnn_output_size=10, # 5 levels × 2 outputs
enable_cnn_feature=True,
training_data_provider=data_stream # TrainingDataPacket provider
)
# Calculate pivots (automatically triggers CNN training/prediction)
structure_levels = williams.calculate_recursive_pivot_points(ohlcv_data)
# Extract RL features (250 features for reinforcement learning)
rl_features = williams.extract_features_for_rl(structure_levels)
```
## 🔮 **Next Steps**
1. **Install TensorFlow**: Enable CNN functionality
2. **Add Real Indicators**: Replace placeholder technical indicators
3. **Enhanced Ground Truth**: Implement proper multi-level pivot relationships
4. **Model Persistence**: Save/load trained CNN models
5. **Performance Metrics**: Track CNN prediction accuracy over time
## 📊 **Key Benefits**
- **Real-Time Learning**: CNN adapts to market conditions at each pivot
- **Multi-Scale Analysis**: Captures patterns across 5 recursive levels
- **Rich Context**: 50 features per timestep covering multiple timeframes and symbols
- **Consistent Data Flow**: Leverages existing TrainingDataPacket infrastructure
- **Market Structure Awareness**: Predictions based on Williams methodology
This implementation provides a robust foundation for CNN-enhanced pivot prediction while maintaining the proven Williams Market Structure methodology.