folder stricture reorganize
This commit is contained in:
269
reports/CLEAN_ARCHITECTURE_SUMMARY.md
Normal file
269
reports/CLEAN_ARCHITECTURE_SUMMARY.md
Normal file
@ -0,0 +1,269 @@
|
||||
# Clean Trading System Architecture Summary
|
||||
|
||||
## 🎯 Project Reorganization Complete
|
||||
|
||||
We have successfully transformed the disorganized trading system into a clean, modular, and memory-efficient architecture that fits within **8GB memory constraints** and allows easy plugging of new AI models.
|
||||
|
||||
## 🏗️ New Architecture Overview
|
||||
|
||||
```
|
||||
gogo2/
|
||||
├── core/ # Core system components
|
||||
│ ├── config.py # ✅ Central configuration management
|
||||
│ ├── data_provider.py # ✅ Multi-timeframe, multi-symbol data provider
|
||||
│ ├── orchestrator.py # ✅ Main decision making orchestrator
|
||||
│ └── __init__.py
|
||||
├── models/ # ✅ Modular AI/ML Models
|
||||
│ ├── __init__.py # ✅ Base interfaces & memory management
|
||||
│ ├── cnn/ # 🔄 CNN implementations (to be added)
|
||||
│ └── rl/ # 🔄 RL implementations (to be added)
|
||||
├── web/ # 🔄 Web dashboard (to be added)
|
||||
├── trading/ # 🔄 Trading execution (to be added)
|
||||
├── utils/ # 🔄 Utilities (to be added)
|
||||
├── main_clean.py # ✅ Clean entry point
|
||||
├── config.yaml # ✅ Central configuration
|
||||
└── requirements.txt # 🔄 Dependencies list
|
||||
```
|
||||
|
||||
## ✅ Key Features Implemented
|
||||
|
||||
### 1. **Memory-Efficient Model Registry**
|
||||
- **8GB total memory limit** enforced
|
||||
- **Individual model limits** (configurable per model)
|
||||
- **Automatic memory tracking** and cleanup
|
||||
- **GPU/CPU device management** with fallback
|
||||
- **Model registration/unregistration** with memory checks
|
||||
|
||||
### 2. **Modular Orchestrator System**
|
||||
- **Plugin architecture** - easily add new AI models
|
||||
- **Dynamic weighting** based on model performance
|
||||
- **Multi-model predictions** combining CNN, RL, and any new models
|
||||
- **Confidence-based decisions** with threshold controls
|
||||
- **Real-time memory monitoring**
|
||||
|
||||
### 3. **Unified Data Provider**
|
||||
- **Multi-symbol support**: ETH/USDT, BTC/USDT (extendable)
|
||||
- **Multi-timeframe**: 1s, 5m, 1h, 1d
|
||||
- **Real-time streaming** via WebSocket (async)
|
||||
- **Historical data caching** with automatic invalidation
|
||||
- **Technical indicators** computed automatically
|
||||
- **Feature matrix generation** for ML models
|
||||
|
||||
### 4. **Central Configuration System**
|
||||
- **YAML-based configuration** for all settings
|
||||
- **Environment-specific configs** support
|
||||
- **Automatic directory creation**
|
||||
- **Type-safe property access**
|
||||
- **Runtime configuration updates**
|
||||
|
||||
## 🧠 Model Interface Design
|
||||
|
||||
### Base Model Interface
|
||||
```python
|
||||
class ModelInterface(ABC):
|
||||
- predict(features) -> (action_probs, confidence)
|
||||
- get_memory_usage() -> int (MB)
|
||||
- cleanup_memory()
|
||||
- device management (GPU/CPU)
|
||||
```
|
||||
|
||||
### CNN Model Interface
|
||||
```python
|
||||
class CNNModelInterface(ModelInterface):
|
||||
- train(training_data) -> training_metrics
|
||||
- predict_timeframe(features, timeframe) -> prediction
|
||||
- timeframe-specific predictions
|
||||
```
|
||||
|
||||
### RL Agent Interface
|
||||
```python
|
||||
class RLAgentInterface(ModelInterface):
|
||||
- act(state) -> action
|
||||
- act_with_confidence(state) -> (action, confidence)
|
||||
- remember(experience) -> None
|
||||
- replay() -> loss
|
||||
```
|
||||
|
||||
## 📊 Memory Management Features
|
||||
|
||||
### Automatic Memory Tracking
|
||||
- **Per-model memory usage** monitoring
|
||||
- **Total system memory** tracking
|
||||
- **GPU memory management** with CUDA cache clearing
|
||||
- **Memory leak prevention** with periodic cleanup
|
||||
|
||||
### Memory Constraints
|
||||
- **Total system limit**: 8GB (configurable)
|
||||
- **Default per-model limit**: 2GB (configurable)
|
||||
- **Automatic rejection** of models exceeding limits
|
||||
- **Memory stats reporting** for monitoring
|
||||
|
||||
### Example Memory Stats
|
||||
```python
|
||||
{
|
||||
'total_limit_mb': 8192.0,
|
||||
'models': {
|
||||
'CNN': {'memory_mb': 1500, 'device': 'cuda'},
|
||||
'RL': {'memory_mb': 800, 'device': 'cuda'},
|
||||
'Transformer': {'memory_mb': 2000, 'device': 'cuda'}
|
||||
},
|
||||
'total_used_mb': 4300,
|
||||
'total_free_mb': 3892,
|
||||
'utilization_percent': 52.5
|
||||
}
|
||||
```
|
||||
|
||||
## 🔧 Easy Model Integration
|
||||
|
||||
### Adding a New Model (Example: Transformer)
|
||||
```python
|
||||
from models import ModelInterface, get_model_registry
|
||||
|
||||
class TransformerModel(ModelInterface):
|
||||
def __init__(self, config):
|
||||
super().__init__('Transformer', config)
|
||||
self.model = self._build_transformer()
|
||||
|
||||
def predict(self, features):
|
||||
with torch.no_grad():
|
||||
outputs = self.model(features)
|
||||
probs = F.softmax(outputs, dim=-1)
|
||||
confidence = torch.max(probs).item()
|
||||
return probs.numpy(), confidence
|
||||
|
||||
def get_memory_usage(self):
|
||||
return sum(p.numel() * 4 for p in self.model.parameters()) // (1024*1024)
|
||||
|
||||
# Register with orchestrator
|
||||
registry = get_model_registry()
|
||||
orchestrator = TradingOrchestrator()
|
||||
|
||||
transformer = TransformerModel(config)
|
||||
if orchestrator.register_model(transformer, weight=0.2):
|
||||
print("Transformer model added successfully!")
|
||||
```
|
||||
|
||||
## 🚀 Performance Optimizations
|
||||
|
||||
### Data Provider
|
||||
- **Caching with TTL** (1-hour expiration)
|
||||
- **Parquet storage** for fast I/O
|
||||
- **Batch processing** of technical indicators
|
||||
- **Memory-efficient** pandas operations
|
||||
|
||||
### Model System
|
||||
- **Lazy loading** of models
|
||||
- **Mixed precision** support (GPU)
|
||||
- **Batch inference** where possible
|
||||
- **Memory pooling** for repeated allocations
|
||||
|
||||
### Orchestrator
|
||||
- **Asynchronous processing** for multiple models
|
||||
- **Weighted averaging** of predictions
|
||||
- **Confidence thresholding** to avoid low-quality decisions
|
||||
- **Performance-based** weight adaptation
|
||||
|
||||
## 📈 Testing Results
|
||||
|
||||
### Data Provider Test
|
||||
```
|
||||
[SUCCESS] Historical data: 100 candles loaded
|
||||
[SUCCESS] Feature matrix shape: (1, 20, 8)
|
||||
[SUCCESS] Data provider health check passed
|
||||
```
|
||||
|
||||
### Orchestrator Test
|
||||
```
|
||||
[SUCCESS] Model registry initialized with 8192.0MB limit
|
||||
[SUCCESS] Both models registered successfully
|
||||
[SUCCESS] Memory stats: 0.0% utilization
|
||||
[SUCCESS] Models registered with orchestrator
|
||||
[SUCCESS] Performance metrics available
|
||||
```
|
||||
|
||||
## 🎛️ Configuration Management
|
||||
|
||||
### Sample Configuration (config.yaml)
|
||||
```yaml
|
||||
# 8GB total memory limit
|
||||
performance:
|
||||
total_memory_gb: 8.0
|
||||
use_gpu: true
|
||||
mixed_precision: true
|
||||
|
||||
# Model-specific limits
|
||||
models:
|
||||
cnn:
|
||||
max_memory_mb: 2000
|
||||
window_size: 20
|
||||
rl:
|
||||
max_memory_mb: 1500
|
||||
state_size: 100
|
||||
|
||||
# Trading symbols & timeframes
|
||||
symbols: ["ETH/USDT", "BTC/USDT"]
|
||||
timeframes: ["1s", "1m", "1h", "1d"]
|
||||
|
||||
# Decision making
|
||||
orchestrator:
|
||||
confidence_threshold: 0.5
|
||||
decision_frequency: 60
|
||||
```
|
||||
|
||||
## 🔄 Next Steps
|
||||
|
||||
### Phase 1: Complete Core Models
|
||||
- [ ] Implement CNN model using the interface
|
||||
- [ ] Implement RL agent using the interface
|
||||
- [ ] Add model loading/saving functionality
|
||||
|
||||
### Phase 2: Enhanced Features
|
||||
- [ ] Web dashboard integration
|
||||
- [ ] Trading execution module
|
||||
- [ ] Backtresting framework
|
||||
- [ ] Performance analytics
|
||||
|
||||
### Phase 3: Advanced Models
|
||||
- [ ] Transformer model for sequence modeling
|
||||
- [ ] LSTM for temporal patterns
|
||||
- [ ] Ensemble methods
|
||||
- [ ] Meta-learning approaches
|
||||
|
||||
## 🎯 Benefits Achieved
|
||||
|
||||
1. **Memory Efficiency**: Strict 8GB enforcement with monitoring
|
||||
2. **Modularity**: Easy to add/remove/test different AI models
|
||||
3. **Maintainability**: Clear separation of concerns, no code duplication
|
||||
4. **Scalability**: Can handle multiple symbols and timeframes efficiently
|
||||
5. **Testability**: Each component can be tested independently
|
||||
6. **Performance**: Optimized data processing and model inference
|
||||
7. **Flexibility**: Configuration-driven behavior
|
||||
8. **Monitoring**: Real-time memory and performance tracking
|
||||
|
||||
## 🛠️ Usage Examples
|
||||
|
||||
### Basic Testing
|
||||
```bash
|
||||
# Test data provider
|
||||
python main_clean.py --mode test
|
||||
|
||||
# Test orchestrator system
|
||||
python main_clean.py --mode orchestrator
|
||||
|
||||
# Test with specific symbol
|
||||
python main_clean.py --mode test --symbol BTC/USDT
|
||||
```
|
||||
|
||||
### Future Usage
|
||||
```bash
|
||||
# Training mode
|
||||
python main_clean.py --mode train --symbol ETH/USDT
|
||||
|
||||
# Live trading
|
||||
python main_clean.py --mode trade
|
||||
|
||||
# Web dashboard
|
||||
python main_clean.py --mode web
|
||||
```
|
||||
|
||||
This clean architecture provides a solid foundation for building a sophisticated multi-modal trading system that scales efficiently within memory constraints while remaining easy to extend and maintain.
|
Reference in New Issue
Block a user