NPU (wip); docker

This commit is contained in:
Dobromir Popov
2025-09-25 00:46:08 +03:00
parent d9a66026c6
commit 00ae5bd579
12 changed files with 1709 additions and 292 deletions

View File

@@ -99,7 +99,6 @@ except ImportError:
from core.realtime_rl_cob_trader import RealtimeRLCOBTrader, PredictionResult
# Import multi-timeframe prediction system
from NN.models.multi_timeframe_predictor import MultiTimeframePredictor, PredictionHorizon
# Single unified orchestrator with full ML capabilities
@@ -133,8 +132,10 @@ class CleanTradingDashboard:
self._initialize_enhanced_training_system()
# Initialize multi-timeframe prediction system
self.multi_timeframe_predictor = None
self._initialize_multi_timeframe_predictor()
# Initialize prediction tracking
self.current_10min_prediction = None
self.chained_predictions = [] # Store chained inference results
self.last_chained_inference_time = None
# Initialize 10-minute prediction storage
self.current_10min_prediction = None
@@ -1156,6 +1157,30 @@ class CleanTradingDashboard:
}
return "Error", "Error", "0.0%", "0.00", "❌ Error", "❌ Error", "❌ Error", "❌ Error", empty_fig, empty_fig
# Add callback for minute-based chained inference
@self.app.callback(
Output('chained-inference-status', 'children'),
[Input('minute-interval-component', 'n_intervals')]
)
def update_chained_inference(n):
"""Run chained inference every minute"""
try:
# Run chained inference every minute
success = self.run_chained_inference("ETH/USDT", n_steps=10)
if success:
status = f"✅ Chained inference completed ({len(self.chained_predictions)} predictions)"
if self.last_chained_inference_time:
status += f" at {self.last_chained_inference_time.strftime('%H:%M:%S')}"
else:
status = "❌ Chained inference failed"
return status
except Exception as e:
logger.error(f"Error in chained inference callback: {e}")
return f"❌ Error: {str(e)}"
def _get_real_model_performance_data(self) -> Dict[str, Any]:
"""Get real model performance data from orchestrator"""
try:
@@ -1932,155 +1957,11 @@ class CleanTradingDashboard:
self._add_dqn_predictions_to_chart(fig, symbol, df_main, row)
self._add_cnn_predictions_to_chart(fig, symbol, df_main, row)
self._add_cob_rl_predictions_to_chart(fig, symbol, df_main, row)
self._add_iterative_predictions_to_chart(fig, symbol, df_main, row)
self._add_prediction_accuracy_feedback(fig, symbol, df_main, row)
except Exception as e:
logger.warning(f"Error adding model predictions to chart: {e}")
def _add_iterative_predictions_to_chart(self, fig: go.Figure, symbol: str, df_main: pd.DataFrame, row: int = 1):
"""Add 10-minute iterative predictions to the main chart with fading opacity"""
try:
if not hasattr(self, 'multi_timeframe_predictor') or not self.multi_timeframe_predictor:
logger.debug("❌ Multi-timeframe predictor not available")
return
# Run iterative prediction every minute
current_time = datetime.now()
if not hasattr(self, '_last_prediction_time') or \
(current_time - self._last_prediction_time).total_seconds() >= 60:
try:
prediction_result = self.run_iterative_prediction_10min(symbol)
if prediction_result:
self._last_prediction_time = current_time
logger.info("✅ 10-minute iterative prediction completed")
else:
logger.warning("❌ 10-minute iterative prediction returned None")
except Exception as e:
logger.error(f"Error running iterative prediction: {e}")
# Get current predictions from stored result
if hasattr(self, 'current_10min_prediction') and self.current_10min_prediction:
predictions = self.current_10min_prediction.get('predictions', [])
logger.debug(f"🔍 Found {len(predictions)} predictions in current_10min_prediction")
if predictions:
logger.info(f"📊 Processing {len(predictions)} predictions for chart display")
# Group predictions by age for fading effect
prediction_groups = {}
current_time = datetime.now()
for pred in predictions[-50:]: # Last 50 predictions
prediction_time = pred.get('timestamp')
if not prediction_time:
logger.debug(f"❌ Prediction missing timestamp: {pred}")
continue
if isinstance(prediction_time, str):
try:
prediction_time = pd.to_datetime(prediction_time)
except Exception as e:
logger.debug(f"❌ Could not parse timestamp '{prediction_time}': {e}")
continue
# Calculate age in minutes (how long ago this prediction was made)
# For future predictions, use a small positive age to show them as current
if prediction_time > current_time:
age_minutes = 0.1 # Future predictions treated as very recent
else:
age_minutes = (current_time - prediction_time).total_seconds() / 60
logger.debug(f"🔍 Prediction age: {age_minutes:.2f} min, timestamp: {prediction_time}, current: {current_time}")
# Group by age ranges for fading
if age_minutes <= 1:
group = 'current' # Very recent, high opacity
elif age_minutes <= 3:
group = 'recent' # Recent, medium opacity
elif age_minutes <= 5:
group = 'old' # Older, low opacity
else:
continue # Too old, skip
if group not in prediction_groups:
prediction_groups[group] = []
prediction_groups[group].append({
'x': prediction_time,
'y': pred.get('close', 0),
'high': pred.get('high', 0),
'low': pred.get('low', 0),
'confidence': pred.get('confidence', 0),
'age': age_minutes
})
# Add predictions with fading opacity
opacity_levels = {
'current': 0.8, # Bright for very recent
'recent': 0.5, # Medium for recent
'old': 0.3 # Dim for older
}
logger.info(f"📊 Adding {len(prediction_groups)} prediction groups to chart")
for group, preds in prediction_groups.items():
if not preds:
continue
opacity = opacity_levels[group]
logger.info(f"📈 Adding {group} predictions: {len(preds)} points, opacity: {opacity}")
# Add prediction line
fig.add_trace(
go.Scatter(
x=[p['x'] for p in preds],
y=[p['y'] for p in preds],
mode='lines+markers',
line=dict(
color=f'rgba(255, 215, 0, {opacity})', # Gold color
width=2,
dash='dash'
),
marker=dict(
symbol='diamond',
size=6,
color=f'rgba(255, 215, 0, {opacity})',
line=dict(width=1, color='rgba(255, 140, 0, 0.8)')
),
name=f'🔮 10min Pred ({group})',
showlegend=True,
hovertemplate="<b>🔮 10-Minute Prediction</b><br>" +
"Predicted Close: $%{y:.2f}<br>" +
"Time: %{x}<br>" +
"Age: %{customdata:.1f} min<br>" +
"Confidence: %{text:.1%}<extra></extra>",
customdata=[p['age'] for p in preds],
text=[p['confidence'] for p in preds]
),
row=row, col=1
)
# Add confidence bands (high/low range)
if len(preds) > 1:
fig.add_trace(
go.Scatter(
x=[p['x'] for p in preds] + [p['x'] for p in reversed(preds)],
y=[p['high'] for p in preds] + [p['low'] for p in reversed(preds)],
fill='toself',
fillcolor=f'rgba(255, 215, 0, {opacity * 0.2})',
line=dict(width=0),
mode='lines',
name=f'Prediction Range ({group})',
showlegend=False,
hoverinfo='skip'
),
row=row, col=1
)
except Exception as e:
logger.debug(f"Error adding iterative predictions to chart: {e}")
def _add_dqn_predictions_to_chart(self, fig: go.Figure, symbol: str, df_main: pd.DataFrame, row: int = 1):
"""Add DQN action predictions as directional arrows"""
try:
@@ -5292,68 +5173,44 @@ class CleanTradingDashboard:
logger.error(f"Error exporting trade history: {e}")
return ""
def run_chained_inference(self, symbol: str = "ETH/USDT", n_steps: int = 10) -> bool:
"""Run chained inference using the orchestrator's real models"""
try:
if not self.orchestrator:
logger.warning("No orchestrator available for chained inference")
return False
logger.info(f"🔗 Running chained inference for {symbol} with {n_steps} steps")
# Run chained inference
predictions = self.orchestrator.chain_inference(symbol, n_steps)
if predictions:
# Store predictions
self.chained_predictions = predictions
self.last_chained_inference_time = datetime.now()
logger.info(f"✅ Chained inference completed: {len(predictions)} predictions generated")
# Log first few predictions for debugging
for i, pred in enumerate(predictions[:3]):
logger.info(f" Step {i}: {pred.get('model', 'Unknown')} - Confidence: {pred.get('confidence', 0):.3f}")
return True
else:
logger.warning("❌ Chained inference returned no predictions")
return False
except Exception as e:
logger.error(f"Error running chained inference: {e}")
return False
def export_trades_now(self) -> str:
"""Convenience method to export trades immediately with timestamp"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"trades_export_{timestamp}.csv"
return self.export_trade_history_csv(filename)
def run_iterative_prediction_10min(self, symbol: str = "ETH/USDT") -> Optional[Dict]:
"""Run 10-minute iterative prediction using the multi-timeframe predictor"""
try:
if not self.multi_timeframe_predictor:
logger.warning("Multi-timeframe predictor not available")
return None
logger.info(f"🔮 Running 10-minute iterative prediction for {symbol}")
# Get current price and market conditions
current_price = self._get_current_price(symbol)
if not current_price:
logger.warning(f"Could not get current price for {symbol}")
return None
# Run iterative prediction for 10 minutes
iterative_predictions = self.multi_timeframe_predictor._generate_iterative_predictions(
symbol=symbol,
base_data=self.multi_timeframe_predictor._get_sequence_data_for_horizon(
symbol, self.multi_timeframe_predictor.horizons[PredictionHorizon.TEN_MINUTES]['sequence_length']
),
num_steps=10, # 10 steps for 10-minute prediction
market_conditions={'confidence_multiplier': 1.0}
)
if iterative_predictions:
# Analyze the 10-minute prediction
config = self.multi_timeframe_predictor.horizons[PredictionHorizon.TEN_MINUTES]
market_conditions = self.multi_timeframe_predictor._assess_market_conditions(symbol)
horizon_prediction = self.multi_timeframe_predictor._analyze_horizon_prediction(
iterative_predictions, config, market_conditions
)
if horizon_prediction:
# Store the prediction for dashboard display
self.current_10min_prediction = {
'symbol': symbol,
'timestamp': datetime.now(),
'predictions': iterative_predictions,
'horizon_analysis': horizon_prediction,
'current_price': current_price
}
logger.info(f"✅ 10-minute iterative prediction completed for {symbol}")
logger.info(f"📊 Generated {len(iterative_predictions)} candle predictions")
return self.current_10min_prediction
logger.warning("Failed to generate 10-minute iterative prediction")
return None
except Exception as e:
logger.error(f"Error running 10-minute iterative prediction: {e}")
return None
def create_10min_prediction_chart(self, opacity: float = 0.4) -> Dict[str, Any]:
"""DEPRECATED: Create a chart visualizing the 10-minute iterative predictions with opacity
Note: Predictions are now integrated directly into the main 1-minute chart"""
@@ -6737,20 +6594,6 @@ class CleanTradingDashboard:
logger.error(f"Error initializing enhanced training system: {e}")
self.training_system = None
def _initialize_multi_timeframe_predictor(self):
"""Initialize multi-timeframe prediction system"""
try:
if self.orchestrator:
self.multi_timeframe_predictor = MultiTimeframePredictor(self.orchestrator)
logger.info("Multi-timeframe prediction system initialized")
else:
logger.warning("Cannot initialize multi-timeframe predictor - no orchestrator available")
self.multi_timeframe_predictor = None
except Exception as e:
logger.error(f"Error initializing multi-timeframe predictor: {e}")
self.multi_timeframe_predictor = None
def _initialize_cob_integration(self):
"""Initialize COB integration using orchestrator's COB system"""
try:
@@ -7070,69 +6913,24 @@ class CleanTradingDashboard:
logger.info(f"COB SIGNAL: {symbol} {signal['action']} signal generated - imbalance: {imbalance:.3f}, confidence: {signal['confidence']:.3f}")
# Enhance signal with multi-timeframe predictions if available
enhanced_signal = self._enhance_signal_with_multi_timeframe(signal)
if enhanced_signal:
signal = enhanced_signal
# Process the signal for potential execution
self._process_dashboard_signal(signal)
except Exception as e:
logger.debug(f"Error generating COB signal for {symbol}: {e}")
def _enhance_signal_with_multi_timeframe(self, signal: Dict) -> Optional[Dict]:
"""Enhance signal with multi-timeframe predictions for better accuracy and hold times"""
def _get_rl_state_for_training(self, symbol: str, current_price: float) -> Dict[str, Any]:
"""Get RL state for training purposes"""
try:
if not self.multi_timeframe_predictor:
return signal
symbol = signal.get('symbol', 'ETH/USDT')
# Generate multi-timeframe prediction
multi_prediction = self.multi_timeframe_predictor.generate_multi_timeframe_prediction(symbol)
if not multi_prediction:
return signal
# Check if we should execute the trade
should_execute, reason = self.multi_timeframe_predictor.should_execute_trade(multi_prediction)
if not should_execute:
logger.debug(f"Multi-timeframe analysis: Not executing - {reason}")
return None # Don't execute this signal
# Find the best prediction for enhanced signal
best_prediction = None
best_confidence = 0
for horizon, pred in multi_prediction.predictions.items():
if pred['confidence'] > best_confidence:
best_confidence = pred['confidence']
best_prediction = (horizon, pred)
if best_prediction:
horizon, pred = best_prediction
# Enhance original signal with multi-timeframe data
enhanced_signal = signal.copy()
enhanced_signal['confidence'] = pred['confidence'] # Use higher confidence
enhanced_signal['prediction_horizon'] = horizon.value # Store horizon
enhanced_signal['hold_time_minutes'] = horizon.value # Suggested hold time
enhanced_signal['multi_timeframe'] = True
enhanced_signal['models_used'] = pred.get('models_used', 1)
enhanced_signal['reasoning'] = f"{signal.get('reasoning', '')} | Multi-timeframe {horizon.value}min prediction"
logger.info(f"Enhanced signal: {symbol} {pred['action']} with {pred['confidence']:.2f} confidence "
f"for {horizon.value}-minute horizon")
return enhanced_signal
return signal
return {
'symbol': symbol,
'price': current_price,
'timestamp': datetime.now(),
'features': [current_price, 0, 0, 0, 0] # Placeholder features
}
except Exception as e:
logger.error(f"Error enhancing signal with multi-timeframe: {e}")
return signal
logger.error(f"Error getting RL state: {e}")
return {}
def _feed_cob_data_to_models(self, symbol: str, cob_snapshot: dict):
"""Feed COB data to ALL models for training and inference - Enhanced integration"""
@@ -7601,6 +7399,11 @@ class CleanTradingDashboard:
"""Start the Dash server"""
try:
logger.info(f"TRADING: Starting Clean Dashboard at http://{host}:{port}")
# Run initial chained inference when dashboard starts
logger.info("🔗 Running initial chained inference...")
self.run_chained_inference("ETH/USDT", n_steps=10)
# Run the Dash app normally; launch/activation is handled by the runner
if hasattr(self, 'app') and self.app is not None:
# Dash 3.x: use app.run