save/load data anotations

This commit is contained in:
Dobromir Popov
2025-10-18 23:44:02 +03:00
parent 7646137f11
commit 002d0f7858
7 changed files with 1563 additions and 69 deletions

View File

@@ -354,6 +354,31 @@ class AnnotationDashboard:
# Save annotation
self.annotation_manager.save_annotation(annotation)
# Automatically generate test case with ±5min data
try:
test_case = self.annotation_manager.generate_test_case(
annotation,
data_provider=self.data_provider,
auto_save=True
)
# Log test case details
market_state = test_case.get('market_state', {})
timeframes_with_data = [k for k in market_state.keys() if k.startswith('ohlcv_')]
logger.info(f"Auto-generated test case: {test_case['test_case_id']}")
logger.info(f" Timeframes: {timeframes_with_data}")
for tf_key in timeframes_with_data:
candle_count = len(market_state[tf_key].get('timestamps', []))
logger.info(f" {tf_key}: {candle_count} candles")
if 'training_labels' in market_state:
logger.info(f" Training labels: {len(market_state['training_labels'].get('labels_1m', []))} labels")
except Exception as e:
logger.error(f"Failed to auto-generate test case: {e}")
import traceback
traceback.print_exc()
return jsonify({
'success': True,
'annotation': annotation.__dict__ if hasattr(annotation, '__dict__') else annotation
@@ -477,17 +502,35 @@ class AnnotationDashboard:
data = request.get_json()
model_name = data['model_name']
annotation_ids = data['annotation_ids']
annotation_ids = data.get('annotation_ids', [])
# Get annotations
annotations = self.annotation_manager.get_annotations()
selected_annotations = [a for a in annotations
if (a.annotation_id if hasattr(a, 'annotation_id')
else a.get('annotation_id')) in annotation_ids]
# If no specific annotations provided, use all
if not annotation_ids:
annotations = self.annotation_manager.get_annotations()
annotation_ids = [
a.annotation_id if hasattr(a, 'annotation_id') else a.get('annotation_id')
for a in annotations
]
# Generate test cases
test_cases = [self.annotation_manager.generate_test_case(ann)
for ann in selected_annotations]
# Load test cases from disk (they were auto-generated when annotations were saved)
all_test_cases = self.annotation_manager.get_all_test_cases()
# Filter to selected annotations
test_cases = [
tc for tc in all_test_cases
if tc['test_case_id'].replace('annotation_', '') in annotation_ids
]
if not test_cases:
return jsonify({
'success': False,
'error': {
'code': 'NO_TEST_CASES',
'message': f'No test cases found for {len(annotation_ids)} annotations'
}
})
logger.info(f"Starting training with {len(test_cases)} test cases for model {model_name}")
# Start training
training_id = self.training_simulator.start_training(
@@ -497,7 +540,8 @@ class AnnotationDashboard:
return jsonify({
'success': True,
'training_id': training_id
'training_id': training_id,
'test_cases_count': len(test_cases)
})
except Exception as e:
@@ -572,6 +616,107 @@ class AnnotationDashboard:
'message': str(e)
}
})
@self.server.route('/api/realtime-inference/start', methods=['POST'])
def start_realtime_inference():
"""Start real-time inference mode"""
try:
data = request.get_json()
model_name = data.get('model_name')
symbol = data.get('symbol', 'ETH/USDT')
if not self.training_simulator:
return jsonify({
'success': False,
'error': {
'code': 'TRAINING_UNAVAILABLE',
'message': 'Training simulator not available'
}
})
# Start real-time inference
inference_id = self.training_simulator.start_realtime_inference(
model_name=model_name,
symbol=symbol,
data_provider=self.data_provider
)
return jsonify({
'success': True,
'inference_id': inference_id
})
except Exception as e:
logger.error(f"Error starting real-time inference: {e}")
return jsonify({
'success': False,
'error': {
'code': 'INFERENCE_START_ERROR',
'message': str(e)
}
})
@self.server.route('/api/realtime-inference/stop', methods=['POST'])
def stop_realtime_inference():
"""Stop real-time inference mode"""
try:
data = request.get_json()
inference_id = data.get('inference_id')
if not self.training_simulator:
return jsonify({
'success': False,
'error': {
'code': 'TRAINING_UNAVAILABLE',
'message': 'Training simulator not available'
}
})
self.training_simulator.stop_realtime_inference(inference_id)
return jsonify({
'success': True
})
except Exception as e:
logger.error(f"Error stopping real-time inference: {e}")
return jsonify({
'success': False,
'error': {
'code': 'INFERENCE_STOP_ERROR',
'message': str(e)
}
})
@self.server.route('/api/realtime-inference/signals', methods=['GET'])
def get_realtime_signals():
"""Get latest real-time inference signals"""
try:
if not self.training_simulator:
return jsonify({
'success': False,
'error': {
'code': 'TRAINING_UNAVAILABLE',
'message': 'Training simulator not available'
}
})
signals = self.training_simulator.get_latest_signals()
return jsonify({
'success': True,
'signals': signals
})
except Exception as e:
logger.error(f"Error getting signals: {e}")
return jsonify({
'success': False,
'error': {
'code': 'SIGNALS_ERROR',
'message': str(e)
}
})
def run(self, host='127.0.0.1', port=8051, debug=False):
"""Run the application"""