save/load data anotations
This commit is contained in:
@@ -354,6 +354,31 @@ class AnnotationDashboard:
|
||||
# Save annotation
|
||||
self.annotation_manager.save_annotation(annotation)
|
||||
|
||||
# Automatically generate test case with ±5min data
|
||||
try:
|
||||
test_case = self.annotation_manager.generate_test_case(
|
||||
annotation,
|
||||
data_provider=self.data_provider,
|
||||
auto_save=True
|
||||
)
|
||||
|
||||
# Log test case details
|
||||
market_state = test_case.get('market_state', {})
|
||||
timeframes_with_data = [k for k in market_state.keys() if k.startswith('ohlcv_')]
|
||||
logger.info(f"Auto-generated test case: {test_case['test_case_id']}")
|
||||
logger.info(f" Timeframes: {timeframes_with_data}")
|
||||
for tf_key in timeframes_with_data:
|
||||
candle_count = len(market_state[tf_key].get('timestamps', []))
|
||||
logger.info(f" {tf_key}: {candle_count} candles")
|
||||
|
||||
if 'training_labels' in market_state:
|
||||
logger.info(f" Training labels: {len(market_state['training_labels'].get('labels_1m', []))} labels")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to auto-generate test case: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'annotation': annotation.__dict__ if hasattr(annotation, '__dict__') else annotation
|
||||
@@ -477,17 +502,35 @@ class AnnotationDashboard:
|
||||
|
||||
data = request.get_json()
|
||||
model_name = data['model_name']
|
||||
annotation_ids = data['annotation_ids']
|
||||
annotation_ids = data.get('annotation_ids', [])
|
||||
|
||||
# Get annotations
|
||||
annotations = self.annotation_manager.get_annotations()
|
||||
selected_annotations = [a for a in annotations
|
||||
if (a.annotation_id if hasattr(a, 'annotation_id')
|
||||
else a.get('annotation_id')) in annotation_ids]
|
||||
# If no specific annotations provided, use all
|
||||
if not annotation_ids:
|
||||
annotations = self.annotation_manager.get_annotations()
|
||||
annotation_ids = [
|
||||
a.annotation_id if hasattr(a, 'annotation_id') else a.get('annotation_id')
|
||||
for a in annotations
|
||||
]
|
||||
|
||||
# Generate test cases
|
||||
test_cases = [self.annotation_manager.generate_test_case(ann)
|
||||
for ann in selected_annotations]
|
||||
# Load test cases from disk (they were auto-generated when annotations were saved)
|
||||
all_test_cases = self.annotation_manager.get_all_test_cases()
|
||||
|
||||
# Filter to selected annotations
|
||||
test_cases = [
|
||||
tc for tc in all_test_cases
|
||||
if tc['test_case_id'].replace('annotation_', '') in annotation_ids
|
||||
]
|
||||
|
||||
if not test_cases:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'NO_TEST_CASES',
|
||||
'message': f'No test cases found for {len(annotation_ids)} annotations'
|
||||
}
|
||||
})
|
||||
|
||||
logger.info(f"Starting training with {len(test_cases)} test cases for model {model_name}")
|
||||
|
||||
# Start training
|
||||
training_id = self.training_simulator.start_training(
|
||||
@@ -497,7 +540,8 @@ class AnnotationDashboard:
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'training_id': training_id
|
||||
'training_id': training_id,
|
||||
'test_cases_count': len(test_cases)
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
@@ -572,6 +616,107 @@ class AnnotationDashboard:
|
||||
'message': str(e)
|
||||
}
|
||||
})
|
||||
|
||||
@self.server.route('/api/realtime-inference/start', methods=['POST'])
|
||||
def start_realtime_inference():
|
||||
"""Start real-time inference mode"""
|
||||
try:
|
||||
data = request.get_json()
|
||||
model_name = data.get('model_name')
|
||||
symbol = data.get('symbol', 'ETH/USDT')
|
||||
|
||||
if not self.training_simulator:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'TRAINING_UNAVAILABLE',
|
||||
'message': 'Training simulator not available'
|
||||
}
|
||||
})
|
||||
|
||||
# Start real-time inference
|
||||
inference_id = self.training_simulator.start_realtime_inference(
|
||||
model_name=model_name,
|
||||
symbol=symbol,
|
||||
data_provider=self.data_provider
|
||||
)
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'inference_id': inference_id
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error starting real-time inference: {e}")
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'INFERENCE_START_ERROR',
|
||||
'message': str(e)
|
||||
}
|
||||
})
|
||||
|
||||
@self.server.route('/api/realtime-inference/stop', methods=['POST'])
|
||||
def stop_realtime_inference():
|
||||
"""Stop real-time inference mode"""
|
||||
try:
|
||||
data = request.get_json()
|
||||
inference_id = data.get('inference_id')
|
||||
|
||||
if not self.training_simulator:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'TRAINING_UNAVAILABLE',
|
||||
'message': 'Training simulator not available'
|
||||
}
|
||||
})
|
||||
|
||||
self.training_simulator.stop_realtime_inference(inference_id)
|
||||
|
||||
return jsonify({
|
||||
'success': True
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error stopping real-time inference: {e}")
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'INFERENCE_STOP_ERROR',
|
||||
'message': str(e)
|
||||
}
|
||||
})
|
||||
|
||||
@self.server.route('/api/realtime-inference/signals', methods=['GET'])
|
||||
def get_realtime_signals():
|
||||
"""Get latest real-time inference signals"""
|
||||
try:
|
||||
if not self.training_simulator:
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'TRAINING_UNAVAILABLE',
|
||||
'message': 'Training simulator not available'
|
||||
}
|
||||
})
|
||||
|
||||
signals = self.training_simulator.get_latest_signals()
|
||||
|
||||
return jsonify({
|
||||
'success': True,
|
||||
'signals': signals
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting signals: {e}")
|
||||
return jsonify({
|
||||
'success': False,
|
||||
'error': {
|
||||
'code': 'SIGNALS_ERROR',
|
||||
'message': str(e)
|
||||
}
|
||||
})
|
||||
|
||||
def run(self, host='127.0.0.1', port=8051, debug=False):
|
||||
"""Run the application"""
|
||||
|
||||
@@ -3,6 +3,22 @@
|
||||
{% block title %}Trade Annotation Dashboard{% endblock %}
|
||||
|
||||
{% block content %}
|
||||
<!-- Live Mode Banner -->
|
||||
<div id="live-mode-banner" class="alert alert-success mb-0" style="display: none; border-radius: 0;">
|
||||
<div class="container-fluid">
|
||||
<div class="d-flex align-items-center justify-content-between">
|
||||
<div>
|
||||
<span class="badge bg-danger me-2">🔴 LIVE</span>
|
||||
<strong>Real-Time Inference Active</strong>
|
||||
<span class="ms-3 small">Charts updating with live data every second</span>
|
||||
</div>
|
||||
<div>
|
||||
<span class="badge bg-light text-dark" id="live-update-count">0 updates</span>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="row mt-3">
|
||||
<!-- Left Sidebar - Controls -->
|
||||
<div class="col-md-2">
|
||||
@@ -96,9 +112,15 @@
|
||||
window.appState.chartManager.initializeCharts(data.chart_data);
|
||||
|
||||
// Load existing annotations
|
||||
console.log('Loading', window.appState.annotations.length, 'existing annotations');
|
||||
window.appState.annotations.forEach(annotation => {
|
||||
window.appState.chartManager.addAnnotation(annotation);
|
||||
});
|
||||
|
||||
// Update annotation list
|
||||
if (typeof renderAnnotationsList === 'function') {
|
||||
renderAnnotationsList(window.appState.annotations);
|
||||
}
|
||||
} else {
|
||||
showError('Failed to load chart data: ' + data.error.message);
|
||||
}
|
||||
|
||||
@@ -59,12 +59,34 @@
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Inference Simulation -->
|
||||
<!-- Real-Time Inference -->
|
||||
<div class="mb-3">
|
||||
<button class="btn btn-secondary btn-sm w-100" id="simulate-inference-btn">
|
||||
<i class="fas fa-brain"></i>
|
||||
Simulate Inference
|
||||
<label class="form-label small">Real-Time Inference</label>
|
||||
<button class="btn btn-success btn-sm w-100" id="start-inference-btn">
|
||||
<i class="fas fa-play"></i>
|
||||
Start Live Inference
|
||||
</button>
|
||||
<button class="btn btn-danger btn-sm w-100 mt-1" id="stop-inference-btn" style="display: none;">
|
||||
<i class="fas fa-stop"></i>
|
||||
Stop Inference
|
||||
</button>
|
||||
</div>
|
||||
|
||||
<!-- Inference Status -->
|
||||
<div id="inference-status" style="display: none;">
|
||||
<div class="alert alert-success py-2 px-2 mb-2">
|
||||
<div class="d-flex align-items-center mb-1">
|
||||
<div class="spinner-border spinner-border-sm me-2" role="status">
|
||||
<span class="visually-hidden">Running...</span>
|
||||
</div>
|
||||
<strong class="small">🔴 LIVE</strong>
|
||||
</div>
|
||||
<div class="small">
|
||||
<div>Signal: <span id="latest-signal" class="fw-bold">--</span></div>
|
||||
<div>Confidence: <span id="latest-confidence">--</span></div>
|
||||
<div class="text-muted" style="font-size: 0.7rem;">Charts updating every 1s</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Test Case Stats -->
|
||||
@@ -231,22 +253,232 @@
|
||||
showSuccess('Training completed successfully');
|
||||
}
|
||||
|
||||
// Simulate inference button
|
||||
document.getElementById('simulate-inference-btn').addEventListener('click', function() {
|
||||
// Real-time inference controls
|
||||
let currentInferenceId = null;
|
||||
let signalPollInterval = null;
|
||||
|
||||
document.getElementById('start-inference-btn').addEventListener('click', function() {
|
||||
const modelName = document.getElementById('model-select').value;
|
||||
|
||||
if (appState.annotations.length === 0) {
|
||||
showError('No annotations available for inference simulation');
|
||||
if (!modelName) {
|
||||
showError('Please select a model first');
|
||||
return;
|
||||
}
|
||||
|
||||
// Open inference modal
|
||||
const modal = new bootstrap.Modal(document.getElementById('inferenceModal'));
|
||||
modal.show();
|
||||
|
||||
// Start inference simulation
|
||||
if (appState.trainingController) {
|
||||
appState.trainingController.simulateInference(modelName, appState.annotations);
|
||||
}
|
||||
// Start real-time inference
|
||||
fetch('/api/realtime-inference/start', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify({
|
||||
model_name: modelName,
|
||||
symbol: appState.currentSymbol
|
||||
})
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success) {
|
||||
currentInferenceId = data.inference_id;
|
||||
|
||||
// Update UI
|
||||
document.getElementById('start-inference-btn').style.display = 'none';
|
||||
document.getElementById('stop-inference-btn').style.display = 'block';
|
||||
document.getElementById('inference-status').style.display = 'block';
|
||||
|
||||
// Start polling for signals
|
||||
startSignalPolling();
|
||||
|
||||
showSuccess('Real-time inference started');
|
||||
} else {
|
||||
showError('Failed to start inference: ' + data.error.message);
|
||||
}
|
||||
})
|
||||
.catch(error => {
|
||||
showError('Network error: ' + error.message);
|
||||
});
|
||||
});
|
||||
|
||||
document.getElementById('stop-inference-btn').addEventListener('click', function() {
|
||||
if (!currentInferenceId) return;
|
||||
|
||||
// Stop real-time inference
|
||||
fetch('/api/realtime-inference/stop', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify({inference_id: currentInferenceId})
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success) {
|
||||
// Update UI
|
||||
document.getElementById('start-inference-btn').style.display = 'block';
|
||||
document.getElementById('stop-inference-btn').style.display = 'none';
|
||||
document.getElementById('inference-status').style.display = 'none';
|
||||
|
||||
// Stop polling
|
||||
stopSignalPolling();
|
||||
|
||||
currentInferenceId = null;
|
||||
showSuccess('Real-time inference stopped');
|
||||
}
|
||||
})
|
||||
.catch(error => {
|
||||
showError('Network error: ' + error.message);
|
||||
});
|
||||
});
|
||||
|
||||
function startSignalPolling() {
|
||||
signalPollInterval = setInterval(function() {
|
||||
// Poll for signals
|
||||
fetch('/api/realtime-inference/signals')
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success && data.signals.length > 0) {
|
||||
const latest = data.signals[0];
|
||||
document.getElementById('latest-signal').textContent = latest.action;
|
||||
document.getElementById('latest-confidence').textContent =
|
||||
(latest.confidence * 100).toFixed(1) + '%';
|
||||
|
||||
// Update chart with signal markers
|
||||
if (appState.chartManager) {
|
||||
displaySignalOnChart(latest);
|
||||
}
|
||||
}
|
||||
})
|
||||
.catch(error => {
|
||||
console.error('Error polling signals:', error);
|
||||
});
|
||||
|
||||
// Update charts with latest data
|
||||
updateChartsWithLiveData();
|
||||
}, 1000); // Poll every second
|
||||
}
|
||||
|
||||
function updateChartsWithLiveData() {
|
||||
// Fetch latest chart data
|
||||
fetch('/api/chart-data', {
|
||||
method: 'POST',
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
body: JSON.stringify({
|
||||
symbol: appState.currentSymbol,
|
||||
timeframes: appState.currentTimeframes,
|
||||
start_time: null,
|
||||
end_time: null
|
||||
})
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
if (data.success && appState.chartManager) {
|
||||
// Update each chart with new data
|
||||
Object.keys(data.chart_data).forEach(timeframe => {
|
||||
const chartData = data.chart_data[timeframe];
|
||||
if (appState.chartManager.charts[timeframe]) {
|
||||
updateSingleChart(timeframe, chartData);
|
||||
}
|
||||
});
|
||||
}
|
||||
})
|
||||
.catch(error => {
|
||||
console.error('Error updating charts:', error);
|
||||
});
|
||||
}
|
||||
|
||||
function updateSingleChart(timeframe, newData) {
|
||||
const chart = appState.chartManager.charts[timeframe];
|
||||
if (!chart) return;
|
||||
|
||||
// Update candlestick data
|
||||
Plotly.update(chart.plotId, {
|
||||
x: [newData.timestamps],
|
||||
open: [newData.open],
|
||||
high: [newData.high],
|
||||
low: [newData.low],
|
||||
close: [newData.close]
|
||||
}, {}, [0]);
|
||||
|
||||
// Update volume data
|
||||
const volumeColors = newData.close.map((close, i) => {
|
||||
if (i === 0) return '#3b82f6';
|
||||
return close >= newData.open[i] ? '#10b981' : '#ef4444';
|
||||
});
|
||||
|
||||
Plotly.update(chart.plotId, {
|
||||
x: [newData.timestamps],
|
||||
y: [newData.volume],
|
||||
'marker.color': [volumeColors]
|
||||
}, {}, [1]);
|
||||
}
|
||||
|
||||
function stopSignalPolling() {
|
||||
if (signalPollInterval) {
|
||||
clearInterval(signalPollInterval);
|
||||
signalPollInterval = null;
|
||||
}
|
||||
}
|
||||
|
||||
function displaySignalOnChart(signal) {
|
||||
// Add signal marker to chart
|
||||
if (!appState.chartManager || !appState.chartManager.charts) return;
|
||||
|
||||
// Add marker to all timeframe charts
|
||||
Object.keys(appState.chartManager.charts).forEach(timeframe => {
|
||||
const chart = appState.chartManager.charts[timeframe];
|
||||
if (!chart) return;
|
||||
|
||||
// Get current annotations
|
||||
const currentAnnotations = chart.element.layout.annotations || [];
|
||||
|
||||
// Determine marker based on signal
|
||||
let markerText = '';
|
||||
let markerColor = '#9ca3af';
|
||||
|
||||
if (signal.action === 'BUY') {
|
||||
markerText = '🔵 BUY';
|
||||
markerColor = '#10b981';
|
||||
} else if (signal.action === 'SELL') {
|
||||
markerText = '🔴 SELL';
|
||||
markerColor = '#ef4444';
|
||||
} else {
|
||||
return; // Don't show HOLD signals
|
||||
}
|
||||
|
||||
// Add new signal marker
|
||||
const newAnnotation = {
|
||||
x: signal.timestamp,
|
||||
y: signal.price,
|
||||
text: markerText,
|
||||
showarrow: true,
|
||||
arrowhead: 2,
|
||||
ax: 0,
|
||||
ay: -40,
|
||||
font: {
|
||||
size: 12,
|
||||
color: markerColor
|
||||
},
|
||||
bgcolor: '#1f2937',
|
||||
bordercolor: markerColor,
|
||||
borderwidth: 2,
|
||||
borderpad: 4,
|
||||
opacity: 0.8
|
||||
};
|
||||
|
||||
// Keep only last 10 signal markers
|
||||
const signalAnnotations = currentAnnotations.filter(ann =>
|
||||
ann.text && (ann.text.includes('BUY') || ann.text.includes('SELL'))
|
||||
).slice(-9);
|
||||
|
||||
// Combine with existing non-signal annotations
|
||||
const otherAnnotations = currentAnnotations.filter(ann =>
|
||||
!ann.text || (!ann.text.includes('BUY') && !ann.text.includes('SELL'))
|
||||
);
|
||||
|
||||
const allAnnotations = [...otherAnnotations, ...signalAnnotations, newAnnotation];
|
||||
|
||||
// Update chart
|
||||
Plotly.relayout(chart.plotId, {
|
||||
annotations: allAnnotations
|
||||
});
|
||||
});
|
||||
|
||||
console.log('Signal displayed:', signal.action, '@', signal.price);
|
||||
}
|
||||
</script>
|
||||
|
||||
Reference in New Issue
Block a user