Files
cpuminer-opt-gpu/algo/lyra2/sponge.c
Jay D Dee 160608cce5 v23.5
2023-10-25 20:36:20 -04:00

876 lines
28 KiB
C

/**
* A simple implementation of Blake2b's internal permutation
* in the form of a sponge.
*
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
*
* This software is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdio.h>
#include <time.h>
#include "simd-utils.h"
#include "sponge.h"
#include "lyra2.h"
inline void initState( uint64_t State[/*16*/] )
{
/*
#if defined (__AVX2__)
__m256i* state = (__m256i*)State;
const __m256i zero = m256_zero;
state[0] = zero;
state[1] = zero;
state[2] = _mm256_set_epi64x( 0xa54ff53a5f1d36f1ULL, 0x3c6ef372fe94f82bULL,
0xbb67ae8584caa73bULL, 0x6a09e667f3bcc908ULL );
state[3] = _mm256_set_epi64x( 0x5be0cd19137e2179ULL, 0x1f83d9abfb41bd6bULL,
0x9b05688c2b3e6c1fULL, 0x510e527fade682d1ULL );
#elif defined (__SSE2__)
v128u64_t* state = (v128u64_t*)State;
const v128u64_t zero = v128_zero;
state[0] = zero;
state[1] = zero;
state[2] = zero;
state[3] = zero;
state[4] = v128_set64( 0xbb67ae8584caa73bULL, 0x6a09e667f3bcc908ULL );
state[5] = v128_set64( 0xa54ff53a5f1d36f1ULL, 0x3c6ef372fe94f82bULL );
state[6] = v128_set64( 0x9b05688c2b3e6c1fULL, 0x510e527fade682d1ULL );
state[7] = v128_set64( 0x5be0cd19137e2179ULL, 0x1f83d9abfb41bd6bULL );
#else
//First 512 bis are zeros
memset( State, 0, 64 );
//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
State[8] = blake2b_IV[0];
State[9] = blake2b_IV[1];
State[10] = blake2b_IV[2];
State[11] = blake2b_IV[3];
State[12] = blake2b_IV[4];
State[13] = blake2b_IV[5];
State[14] = blake2b_IV[6];
State[15] = blake2b_IV[7];
#endif
*/
}
//#if !defined(__AVX512F__) && !defined(__AVX2__) && !defined(__SSE2__)
inline static void blake2bLyra( uint64_t *v )
{
ROUND_LYRA( 0);
ROUND_LYRA( 1);
ROUND_LYRA( 2);
ROUND_LYRA( 3);
ROUND_LYRA( 4);
ROUND_LYRA( 5);
ROUND_LYRA( 6);
ROUND_LYRA( 7);
ROUND_LYRA( 8);
ROUND_LYRA( 9);
ROUND_LYRA(10);
ROUND_LYRA(11);
}
inline static void reducedBlake2bLyra( uint64_t *v )
{
ROUND_LYRA(0);
}
//#endif
inline void squeeze( uint64_t *State, byte *Out, unsigned int len )
{
#if defined (__AVX2__)
const int len_m256i = len / 32;
const int fullBlocks = len_m256i / BLOCK_LEN_256;
__m256i* state = (__m256i*)State;
__m256i* out = (__m256i*)Out;
int i;
for ( i = 0; i < fullBlocks; i++ )
{
memcpy_256( out, state, BLOCK_LEN_256 );
LYRA_ROUND_AVX2( state[0], state[1], state[2], state[3] );
out += BLOCK_LEN_256;
}
memcpy_256( out, state, ( len_m256i % BLOCK_LEN_256 ) );
#elif defined (__SSE2__) || defined(__ARM_NEON)
const int len_128 = len / 16;
const int fullBlocks = len_128 / BLOCK_LEN_128;
v128u64_t* state = (v128u64_t*)State;
v128u64_t* out = (v128u64_t*)Out;
int i;
for ( i = 0; i < fullBlocks; i++ )
{
v128_memcpy( out, state, BLOCK_LEN_128 );
LYRA_ROUND_AVX( state[0], state[1], state[2], state[3],
state[4], state[5], state[6], state[7] );
out += BLOCK_LEN_128;
}
v128_memcpy( out, state, ( len_128 % BLOCK_LEN_128 ) );
#else
int fullBlocks = len / BLOCK_LEN_BYTES;
byte *out = Out;
int i;
for ( i = 0; i < fullBlocks; i++ )
{
memcpy( out, State, BLOCK_LEN_BYTES );
blake2bLyra( State );
out += BLOCK_LEN_BYTES;
}
memcpy( out, State, (len % BLOCK_LEN_BYTES) );
#endif
}
inline void absorbBlock( uint64_t *State, const uint64_t *In )
{
#if defined (__AVX2__)
register __m256i state0, state1, state2, state3;
__m256i *in = (__m256i*)In;
state0 = _mm256_load_si256( (__m256i*)State );
state1 = _mm256_load_si256( (__m256i*)State + 1 );
state2 = _mm256_load_si256( (__m256i*)State + 2 );
state3 = _mm256_load_si256( (__m256i*)State + 3 );
state0 = _mm256_xor_si256( state0, in[0] );
state1 = _mm256_xor_si256( state1, in[1] );
state2 = _mm256_xor_si256( state2, in[2] );
LYRA_12_ROUNDS_AVX2( state0, state1, state2, state3 );
_mm256_store_si256( (__m256i*)State, state0 );
_mm256_store_si256( (__m256i*)State + 1, state1 );
_mm256_store_si256( (__m256i*)State + 2, state2 );
_mm256_store_si256( (__m256i*)State + 3, state3 );
#elif defined (__SSE2__) || defined(__ARM_NEON)
v128u64_t* state = (v128u64_t*)State;
v128u64_t* in = (v128u64_t*)In;
state[0] = v128_xor( state[0], in[0] );
state[1] = v128_xor( state[1], in[1] );
state[2] = v128_xor( state[2], in[2] );
state[3] = v128_xor( state[3], in[3] );
state[4] = v128_xor( state[4], in[4] );
state[5] = v128_xor( state[5], in[5] );
LYRA_12_ROUNDS_AVX( state[0], state[1], state[2], state[3],
state[4], state[5], state[6], state[7] );
#else
State[ 0] ^= In[ 0];
State[ 1] ^= In[ 1];
State[ 2] ^= In[ 2];
State[ 3] ^= In[ 3];
State[ 4] ^= In[ 4];
State[ 5] ^= In[ 5];
State[ 6] ^= In[ 6];
State[ 7] ^= In[ 7];
State[ 8] ^= In[ 8];
State[ 9] ^= In[ 9];
State[10] ^= In[10];
State[11] ^= In[11];
blake2bLyra(State);
#endif
}
inline void absorbBlockBlake2Safe( uint64_t *State, const uint64_t *In,
const uint64_t nBlocks, const uint64_t block_len )
{
#if defined (__AVX2__)
register __m256i state0, state1, state2, state3;
state0 =
state1 = m256_zero;
state2 = _mm256_set_epi64x( 0xa54ff53a5f1d36f1ULL, 0x3c6ef372fe94f82bULL,
0xbb67ae8584caa73bULL, 0x6a09e667f3bcc908ULL );
state3 = _mm256_set_epi64x( 0x5be0cd19137e2179ULL, 0x1f83d9abfb41bd6bULL,
0x9b05688c2b3e6c1fULL, 0x510e527fade682d1ULL );
for ( int i = 0; i < nBlocks; i++ )
{
__m256i *in = (__m256i*)In;
state0 = _mm256_xor_si256( state0, in[0] );
state1 = _mm256_xor_si256( state1, in[1] );
LYRA_12_ROUNDS_AVX2( state0, state1, state2, state3 );
In += block_len;
}
_mm256_store_si256( (__m256i*)State, state0 );
_mm256_store_si256( (__m256i*)State + 1, state1 );
_mm256_store_si256( (__m256i*)State + 2, state2 );
_mm256_store_si256( (__m256i*)State + 3, state3 );
#elif defined (__SSE2__) || defined(__ARM_NEON)
v128u64_t state0, state1, state2, state3, state4, state5, state6, state7;
state0 =
state1 =
state2 =
state3 = v128_zero;
state4 = v128_set64( 0xbb67ae8584caa73bULL, 0x6a09e667f3bcc908ULL );
state5 = v128_set64( 0xa54ff53a5f1d36f1ULL, 0x3c6ef372fe94f82bULL );
state6 = v128_set64( 0x9b05688c2b3e6c1fULL, 0x510e527fade682d1ULL );
state7 = v128_set64( 0x5be0cd19137e2179ULL, 0x1f83d9abfb41bd6bULL );
for ( int i = 0; i < nBlocks; i++ )
{
v128u64_t* in = (v128u64_t*)In;
state0 = v128_xor( state0, in[0] );
state1 = v128_xor( state1, in[1] );
state2 = v128_xor( state2, in[2] );
state3 = v128_xor( state3, in[3] );
LYRA_12_ROUNDS_AVX( state0, state1, state2, state3,
state4, state5, state6, state7 );
In += block_len;
}
v128_store( (v128u64_t*)State, state0 );
v128_store( (v128u64_t*)State + 1, state1 );
v128_store( (v128u64_t*)State + 2, state2 );
v128_store( (v128u64_t*)State + 3, state3 );
v128_store( (v128u64_t*)State + 4, state4 );
v128_store( (v128u64_t*)State + 5, state5 );
v128_store( (v128u64_t*)State + 6, state6 );
v128_store( (v128u64_t*)State + 7, state7 );
#else
memset( State, 0, 64 );
State[ 8] = blake2b_IV[0];
State[ 9] = blake2b_IV[1];
State[10] = blake2b_IV[2];
State[11] = blake2b_IV[3];
State[12] = blake2b_IV[4];
State[13] = blake2b_IV[5];
State[14] = blake2b_IV[6];
State[15] = blake2b_IV[7];
for ( int i = 0; i < nBlocks; i++ )
{
State[0] ^= In[0];
State[1] ^= In[1];
State[2] ^= In[2];
State[3] ^= In[3];
State[4] ^= In[4];
State[5] ^= In[5];
State[6] ^= In[6];
State[7] ^= In[7];
blake2bLyra( State );
In += block_len;
}
#endif
}
inline void reducedSqueezeRow0( uint64_t* State, uint64_t* rowOut,
uint64_t nCols )
{
int i;
#if defined (__AVX2__)
register __m256i state0, state1, state2, state3;
__m256i* out = (__m256i*)rowOut + ( (nCols-1) * BLOCK_LEN_256 );
state0 = _mm256_load_si256( (__m256i*)State );
state1 = _mm256_load_si256( (__m256i*)State + 1 );
state2 = _mm256_load_si256( (__m256i*)State + 2 );
state3 = _mm256_load_si256( (__m256i*)State + 3 );
for ( i = 0; i < 9; i += 3)
{
_mm_prefetch( out - i, _MM_HINT_T0 );
_mm_prefetch( out - i - 2, _MM_HINT_T0 );
}
for ( i = 0; i < nCols; i++ )
{
_mm_prefetch( out - 9, _MM_HINT_T0 );
_mm_prefetch( out - 11, _MM_HINT_T0 );
out[0] = state0;
out[1] = state1;
out[2] = state2;
out -= BLOCK_LEN_256;
LYRA_ROUND_AVX2( state0, state1, state2, state3 );
}
_mm256_store_si256( (__m256i*)State, state0 );
_mm256_store_si256( (__m256i*)State + 1, state1 );
_mm256_store_si256( (__m256i*)State + 2, state2 );
_mm256_store_si256( (__m256i*)State + 3, state3 );
#elif defined (__SSE2__) || defined(__ARM_NEON)
v128u64_t *state = (v128u64_t*)State;
v128u64_t state0 = v128_load( state );
v128u64_t state1 = v128_load( &state[1] );
v128u64_t state2 = v128_load( &state[2] );
v128u64_t state3 = v128_load( &state[3] );
v128u64_t state4 = v128_load( &state[4] );
v128u64_t state5 = v128_load( &state[5] );
v128u64_t state6 = v128_load( &state[6] );
v128u64_t state7 = v128_load( &state[7] );
v128u64_t* out = (v128u64_t*)rowOut + ( (nCols-1) * BLOCK_LEN_128 );
for ( i = 0; i < nCols; i++ )
{
out[0] = state0;
out[1] = state1;
out[2] = state2;
out[3] = state3;
out[4] = state4;
out[5] = state5;
out -= BLOCK_LEN_128;
LYRA_ROUND_AVX( state0, state1, state2, state3,
state4, state5, state6, state7 );
}
v128_store( state, state0 );
v128_store( &state[1], state1 );
v128_store( &state[2], state2 );
v128_store( &state[3], state3 );
v128_store( &state[4], state4 );
v128_store( &state[5], state5 );
v128_store( &state[6], state6 );
v128_store( &state[7], state7 );
#else
uint64_t* ptrWord = rowOut + (nCols-1)*BLOCK_LEN_INT64;
for ( i = 0; i < nCols; i++ )
{
ptrWord[ 0] = State[ 0];
ptrWord[ 1] = State[ 1];
ptrWord[ 2] = State[ 2];
ptrWord[ 3] = State[ 3];
ptrWord[ 4] = State[ 4];
ptrWord[ 5] = State[ 5];
ptrWord[ 6] = State[ 6];
ptrWord[ 7] = State[ 7];
ptrWord[ 8] = State[ 8];
ptrWord[ 9] = State[ 9];
ptrWord[10] = State[10];
ptrWord[11] = State[11];
ptrWord -= BLOCK_LEN_INT64;
reducedBlake2bLyra( State);
}
#endif
}
inline void reducedDuplexRow1( uint64_t *State, uint64_t *rowIn,
uint64_t *rowOut, uint64_t nCols )
{
int i;
#if defined (__AVX2__)
register __m256i state0, state1, state2, state3;
__m256i* in = (__m256i*)rowIn;
__m256i* out = (__m256i*)rowOut + ( (nCols-1) * BLOCK_LEN_256 );
state0 = _mm256_load_si256( (__m256i*)State );
state1 = _mm256_load_si256( (__m256i*)State + 1 );
state2 = _mm256_load_si256( (__m256i*)State + 2 );
state3 = _mm256_load_si256( (__m256i*)State + 3 );
for ( i = 0; i < 9; i += 3)
{
_mm_prefetch( in + i, _MM_HINT_T0 );
_mm_prefetch( in + i + 2, _MM_HINT_T0 );
_mm_prefetch( out - i, _MM_HINT_T0 );
_mm_prefetch( out - i - 2, _MM_HINT_T0 );
}
for ( i = 0; i < nCols; i++ )
{
_mm_prefetch( in + 9, _MM_HINT_T0 );
_mm_prefetch( in + 11, _MM_HINT_T0 );
_mm_prefetch( out - 9, _MM_HINT_T0 );
_mm_prefetch( out - 11, _MM_HINT_T0 );
state0 = _mm256_xor_si256( state0, in[0] );
state1 = _mm256_xor_si256( state1, in[1] );
state2 = _mm256_xor_si256( state2, in[2] );
LYRA_ROUND_AVX2( state0, state1, state2, state3 );
out[0] = _mm256_xor_si256( state0, in[0] );
out[1] = _mm256_xor_si256( state1, in[1] );
out[2] = _mm256_xor_si256( state2, in[2] );
in += BLOCK_LEN_256;
out -= BLOCK_LEN_256;
}
_mm256_store_si256( (__m256i*)State, state0 );
_mm256_store_si256( (__m256i*)State + 1, state1 );
_mm256_store_si256( (__m256i*)State + 2, state2 );
_mm256_store_si256( (__m256i*)State + 3, state3 );
#elif defined (__SSE2__) || defined(__ARM_NEON)
v128u64_t* state = (v128u64_t*)State;
v128u64_t state0 = v128_load( state );
v128u64_t state1 = v128_load( &state[1] );
v128u64_t state2 = v128_load( &state[2] );
v128u64_t state3 = v128_load( &state[3] );
v128u64_t state4 = v128_load( &state[4] );
v128u64_t state5 = v128_load( &state[5] );
v128u64_t state6 = v128_load( &state[6] );
v128u64_t state7 = v128_load( &state[7] );
v128u64_t* in = (v128u64_t*)rowIn;
v128u64_t* out = (v128u64_t*)rowOut + ( (nCols-1) * BLOCK_LEN_128 );
for ( i = 0; i < nCols; i++ )
{
state0 = v128_xor( state0, in[0] );
state1 = v128_xor( state1, in[1] );
state2 = v128_xor( state2, in[2] );
state3 = v128_xor( state3, in[3] );
state4 = v128_xor( state4, in[4] );
state5 = v128_xor( state5, in[5] );
LYRA_ROUND_AVX( state0, state1, state2, state3,
state4, state5, state6, state7 );
out[0] = v128_xor( state0, in[0] );
out[1] = v128_xor( state1, in[1] );
out[2] = v128_xor( state2, in[2] );
out[3] = v128_xor( state3, in[3] );
out[4] = v128_xor( state4, in[4] );
out[5] = v128_xor( state5, in[5] );
in += BLOCK_LEN_128;
out -= BLOCK_LEN_128;
}
v128_store( state, state0 );
v128_store( &state[1], state1 );
v128_store( &state[2], state2 );
v128_store( &state[3], state3 );
v128_store( &state[4], state4 );
v128_store( &state[5], state5 );
v128_store( &state[6], state6 );
v128_store( &state[7], state7 );
#else
uint64_t* ptrWordIn = rowIn;
uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64;
for ( i = 0; i < nCols; i++ )
{
State[ 0] ^= ptrWordIn[ 0];
State[ 1] ^= ptrWordIn[ 1];
State[ 2] ^= ptrWordIn[ 2];
State[ 3] ^= ptrWordIn[ 3];
State[ 4] ^= ptrWordIn[ 4];
State[ 5] ^= ptrWordIn[ 5];
State[ 6] ^= ptrWordIn[ 6];
State[ 7] ^= ptrWordIn[ 7];
State[ 8] ^= ptrWordIn[ 8];
State[ 9] ^= ptrWordIn[ 9];
State[10] ^= ptrWordIn[10];
State[11] ^= ptrWordIn[11];
reducedBlake2bLyra( State );
ptrWordOut[ 0] = ptrWordIn[ 0] ^ State[ 0];
ptrWordOut[ 1] = ptrWordIn[ 1] ^ State[ 1];
ptrWordOut[ 2] = ptrWordIn[ 2] ^ State[ 2];
ptrWordOut[ 3] = ptrWordIn[ 3] ^ State[ 3];
ptrWordOut[ 4] = ptrWordIn[ 4] ^ State[ 4];
ptrWordOut[ 5] = ptrWordIn[ 5] ^ State[ 5];
ptrWordOut[ 6] = ptrWordIn[ 6] ^ State[ 6];
ptrWordOut[ 7] = ptrWordIn[ 7] ^ State[ 7];
ptrWordOut[ 8] = ptrWordIn[ 8] ^ State[ 8];
ptrWordOut[ 9] = ptrWordIn[ 9] ^ State[ 9];
ptrWordOut[10] = ptrWordIn[10] ^ State[10];
ptrWordOut[11] = ptrWordIn[11] ^ State[11];
ptrWordIn += BLOCK_LEN_INT64;
ptrWordOut -= BLOCK_LEN_INT64;
}
#endif
}
inline void reducedDuplexRowSetup( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut, uint64_t *rowOut, uint64_t nCols )
{
int i;
#if defined (__AVX2__)
register __m256i state0, state1, state2, state3;
__m256i* in = (__m256i*)rowIn;
__m256i* inout = (__m256i*)rowInOut;
__m256i* out = (__m256i*)rowOut + ( (nCols-1) * BLOCK_LEN_256 );
__m256i t0, t1, t2;
state0 = _mm256_load_si256( (__m256i*)State );
state1 = _mm256_load_si256( (__m256i*)State + 1 );
state2 = _mm256_load_si256( (__m256i*)State + 2 );
state3 = _mm256_load_si256( (__m256i*)State + 3 );
for ( i = 0; i < 9; i += 3)
{
_mm_prefetch( in + i, _MM_HINT_T0 );
_mm_prefetch( in + i + 2, _MM_HINT_T0 );
_mm_prefetch( inout + i, _MM_HINT_T0 );
_mm_prefetch( inout + i + 2, _MM_HINT_T0 );
_mm_prefetch( out - i, _MM_HINT_T0 );
_mm_prefetch( out - i - 2, _MM_HINT_T0 );
}
for ( i = 0; i < nCols; i++ )
{
_mm_prefetch( in + 9, _MM_HINT_T0 );
_mm_prefetch( in + 11, _MM_HINT_T0 );
_mm_prefetch( inout + 9, _MM_HINT_T0 );
_mm_prefetch( inout + 11, _MM_HINT_T0 );
_mm_prefetch( out - 9, _MM_HINT_T0 );
_mm_prefetch( out - 11, _MM_HINT_T0 );
state0 = _mm256_xor_si256( state0,
_mm256_add_epi64( in[0], inout[0] ) );
state1 = _mm256_xor_si256( state1,
_mm256_add_epi64( in[1], inout[1] ) );
state2 = _mm256_xor_si256( state2,
_mm256_add_epi64( in[2], inout[2] ) );
LYRA_ROUND_AVX2( state0, state1, state2, state3 );
out[0] = _mm256_xor_si256( state0, in[0] );
out[1] = _mm256_xor_si256( state1, in[1] );
out[2] = _mm256_xor_si256( state2, in[2] );
t0 = _mm256_permute4x64_epi64( state0, 0x93 );
t1 = _mm256_permute4x64_epi64( state1, 0x93 );
t2 = _mm256_permute4x64_epi64( state2, 0x93 );
inout[0] = _mm256_xor_si256( inout[0],
_mm256_blend_epi32( t0, t2, 0x03 ) );
inout[1] = _mm256_xor_si256( inout[1],
_mm256_blend_epi32( t1, t0, 0x03 ) );
inout[2] = _mm256_xor_si256( inout[2],
_mm256_blend_epi32( t2, t1, 0x03 ) );
in += BLOCK_LEN_256;
inout += BLOCK_LEN_256;
out -= BLOCK_LEN_256;
}
_mm256_store_si256( (__m256i*)State, state0 );
_mm256_store_si256( (__m256i*)State + 1, state1 );
_mm256_store_si256( (__m256i*)State + 2, state2 );
_mm256_store_si256( (__m256i*)State + 3, state3 );
#elif defined (__SSE2__) || defined(__ARM_NEON)
v128u64_t* in = (v128u64_t*)rowIn;
v128u64_t* inout = (v128u64_t*)rowInOut;
v128u64_t* out = (v128u64_t*)rowOut + ( (nCols-1) * BLOCK_LEN_128 );
v128u64_t* state = (v128u64_t*)State;
for ( i = 0; i < nCols; i++ )
{
state[0] = v128_xor( state[0], v128_add64( in[0], inout[0] ) );
state[1] = v128_xor( state[1], v128_add64( in[1], inout[1] ) );
state[2] = v128_xor( state[2], v128_add64( in[2], inout[2] ) );
state[3] = v128_xor( state[3], v128_add64( in[3], inout[3] ) );
state[4] = v128_xor( state[4], v128_add64( in[4], inout[4] ) );
state[5] = v128_xor( state[5], v128_add64( in[5], inout[5] ) );
LYRA_ROUND_AVX( state[0], state[1], state[2], state[3],
state[4], state[5], state[6], state[7] );
out[0] = v128_xor( state[0], in[0] );
out[1] = v128_xor( state[1], in[1] );
out[2] = v128_xor( state[2], in[2] );
out[3] = v128_xor( state[3], in[3] );
out[4] = v128_xor( state[4], in[4] );
out[5] = v128_xor( state[5], in[5] );
inout[0] = v128_xor( inout[0], v128_alignr64( state[0], state[5], 1 ) );
inout[1] = v128_xor( inout[1], v128_alignr64( state[1], state[0], 1 ) );
inout[2] = v128_xor( inout[2], v128_alignr64( state[2], state[1], 1 ) );
inout[3] = v128_xor( inout[3], v128_alignr64( state[3], state[2], 1 ) );
inout[4] = v128_xor( inout[4], v128_alignr64( state[4], state[3], 1 ) );
inout[5] = v128_xor( inout[5], v128_alignr64( state[5], state[4], 1 ) );
inout += BLOCK_LEN_128;
in += BLOCK_LEN_128;
out -= BLOCK_LEN_128;
}
#else
uint64_t* ptrWordIn = rowIn;
uint64_t* ptrWordInOut = rowInOut;
uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64;
for ( i = 0; i < nCols; i++ )
{
State[ 0] ^= ( ptrWordIn[ 0] + ptrWordInOut[ 0] );
State[ 1] ^= ( ptrWordIn[ 1] + ptrWordInOut[ 1] );
State[ 2] ^= ( ptrWordIn[ 2] + ptrWordInOut[ 2] );
State[ 3] ^= ( ptrWordIn[ 3] + ptrWordInOut[ 3] );
State[ 4] ^= ( ptrWordIn[ 4] + ptrWordInOut[ 4] );
State[ 5] ^= ( ptrWordIn[ 5] + ptrWordInOut[ 5] );
State[ 6] ^= ( ptrWordIn[ 6] + ptrWordInOut[ 6] );
State[ 7] ^= ( ptrWordIn[ 7] + ptrWordInOut[ 7] );
State[ 8] ^= ( ptrWordIn[ 8] + ptrWordInOut[ 8] );
State[ 9] ^= ( ptrWordIn[ 9] + ptrWordInOut[ 9] );
State[10] ^= ( ptrWordIn[10] + ptrWordInOut[10] );
State[11] ^= ( ptrWordIn[11] + ptrWordInOut[11] );
reducedBlake2bLyra( State );
ptrWordOut[ 0] = ptrWordIn[ 0] ^ State[0];
ptrWordOut[ 1] = ptrWordIn[ 1] ^ State[1];
ptrWordOut[ 2] = ptrWordIn[ 2] ^ State[2];
ptrWordOut[ 3] = ptrWordIn[ 3] ^ State[3];
ptrWordOut[ 4] = ptrWordIn[ 4] ^ State[4];
ptrWordOut[ 5] = ptrWordIn[ 5] ^ State[5];
ptrWordOut[ 6] = ptrWordIn[ 6] ^ State[6];
ptrWordOut[ 7] = ptrWordIn[ 7] ^ State[7];
ptrWordOut[ 8] = ptrWordIn[ 8] ^ State[8];
ptrWordOut[ 9] = ptrWordIn[ 9] ^ State[9];
ptrWordOut[10] = ptrWordIn[10] ^ State[10];
ptrWordOut[11] = ptrWordIn[11] ^ State[11];
ptrWordInOut[ 0] ^= State[11];
ptrWordInOut[ 1] ^= State[ 0];
ptrWordInOut[ 2] ^= State[ 1];
ptrWordInOut[ 3] ^= State[ 2];
ptrWordInOut[ 4] ^= State[ 3];
ptrWordInOut[ 5] ^= State[ 4];
ptrWordInOut[ 6] ^= State[ 5];
ptrWordInOut[ 7] ^= State[ 6];
ptrWordInOut[ 8] ^= State[ 7];
ptrWordInOut[ 9] ^= State[ 8];
ptrWordInOut[10] ^= State[ 9];
ptrWordInOut[11] ^= State[10];
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
ptrWordOut -= BLOCK_LEN_INT64;
}
#endif
}
inline void reducedDuplexRow( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut, uint64_t *rowOut, uint64_t nCols )
{
int i;
#if defined __AVX2__
register __m256i state0, state1, state2, state3;
__m256i* in = (__m256i*)rowIn;
__m256i* inout = (__m256i*)rowInOut;
__m256i* out = (__m256i*)rowOut;
__m256i t0, t1, t2;
state0 = _mm256_load_si256( (__m256i*)State );
state1 = _mm256_load_si256( (__m256i*)State + 1 );
state2 = _mm256_load_si256( (__m256i*)State + 2 );
state3 = _mm256_load_si256( (__m256i*)State + 3 );
for ( i = 0; i < 9; i += 3)
{
_mm_prefetch( in + i, _MM_HINT_T0 );
_mm_prefetch( in + i + 2, _MM_HINT_T0 );
_mm_prefetch( out + i, _MM_HINT_T0 );
_mm_prefetch( out + i + 2, _MM_HINT_T0 );
_mm_prefetch( inout + i, _MM_HINT_T0 );
_mm_prefetch( inout + i + 2, _MM_HINT_T0 );
}
for ( i = 0; i < nCols; i++ )
{
_mm_prefetch( in + 9, _MM_HINT_T0 );
_mm_prefetch( in + 11, _MM_HINT_T0 );
_mm_prefetch( out + 9, _MM_HINT_T0 );
_mm_prefetch( out + 11, _MM_HINT_T0 );
_mm_prefetch( inout + 9, _MM_HINT_T0 );
_mm_prefetch( inout + 11, _MM_HINT_T0 );
state0 = _mm256_xor_si256( state0, _mm256_add_epi64( in[0], inout[0] ) );
state1 = _mm256_xor_si256( state1, _mm256_add_epi64( in[1], inout[1] ) );
state2 = _mm256_xor_si256( state2, _mm256_add_epi64( in[2], inout[2] ) );
LYRA_ROUND_AVX2( state0, state1, state2, state3 );
out[0] = _mm256_xor_si256( out[0], state0 );
out[1] = _mm256_xor_si256( out[1], state1 );
out[2] = _mm256_xor_si256( out[2], state2 );
t0 = _mm256_permute4x64_epi64( state0, 0x93 );
t1 = _mm256_permute4x64_epi64( state1, 0x93 );
t2 = _mm256_permute4x64_epi64( state2, 0x93 );
inout[0] = _mm256_xor_si256( inout[0],
_mm256_blend_epi32( t0, t2, 0x03 ) );
inout[1] = _mm256_xor_si256( inout[1],
_mm256_blend_epi32( t1, t0, 0x03 ) );
inout[2] = _mm256_xor_si256( inout[2],
_mm256_blend_epi32( t2, t1, 0x03 ) );
in += BLOCK_LEN_256;
out += BLOCK_LEN_256;
inout += BLOCK_LEN_256;
}
_mm256_store_si256( (__m256i*)State, state0 );
_mm256_store_si256( (__m256i*)State + 1, state1 );
_mm256_store_si256( (__m256i*)State + 2, state2 );
_mm256_store_si256( (__m256i*)State + 3, state3 );
#elif defined (__SSE2__) || defined(__ARM_NEON)
v128u64_t* state = (v128u64_t*)State;
v128u64_t* in = (v128u64_t*)rowIn;
v128u64_t* inout = (v128u64_t*)rowInOut;
v128u64_t* out = (v128u64_t*)rowOut;
for ( i = 0; i < nCols; i++)
{
state[0] = v128_xor( state[0], v128_add64( in[0], inout[0] ) );
state[1] = v128_xor( state[1], v128_add64( in[1], inout[1] ) );
state[2] = v128_xor( state[2], v128_add64( in[2], inout[2] ) );
state[3] = v128_xor( state[3], v128_add64( in[3], inout[3] ) );
state[4] = v128_xor( state[4], v128_add64( in[4], inout[4] ) );
state[5] = v128_xor( state[5], v128_add64( in[5], inout[5] ) );
LYRA_ROUND_AVX( state[0], state[1], state[2], state[3],
state[4], state[5], state[6], state[7] );
out[0] = v128_xor( state[0], out[0] );
out[1] = v128_xor( state[1], out[1] );
out[2] = v128_xor( state[2], out[2] );
out[3] = v128_xor( state[3], out[3] );
out[4] = v128_xor( state[4], out[4] );
out[5] = v128_xor( state[5], out[5] );
inout[0] = v128_xor( inout[0], v128_alignr64( state[0], state[5], 1 ) );
inout[1] = v128_xor( inout[1], v128_alignr64( state[1], state[0], 1 ) );
inout[2] = v128_xor( inout[2], v128_alignr64( state[2], state[1], 1 ) );
inout[3] = v128_xor( inout[3], v128_alignr64( state[3], state[2], 1 ) );
inout[4] = v128_xor( inout[4], v128_alignr64( state[4], state[3], 1 ) );
inout[5] = v128_xor( inout[5], v128_alignr64( state[5], state[4], 1 ) );
out += BLOCK_LEN_128;
inout += BLOCK_LEN_128;
in += BLOCK_LEN_128;
}
#else
uint64_t* ptrWordInOut = rowInOut;
uint64_t* ptrWordIn = rowIn;
uint64_t* ptrWordOut = rowOut;
for ( i = 0; i < nCols; i++)
{
State[ 0] ^= ( ptrWordIn[ 0] + ptrWordInOut[ 0] );
State[ 1] ^= ( ptrWordIn[ 1] + ptrWordInOut[ 1] );
State[ 2] ^= ( ptrWordIn[ 2] + ptrWordInOut[ 2] );
State[ 3] ^= ( ptrWordIn[ 3] + ptrWordInOut[ 3] );
State[ 4] ^= ( ptrWordIn[ 4] + ptrWordInOut[ 4] );
State[ 5] ^= ( ptrWordIn[ 5] + ptrWordInOut[ 5] );
State[ 6] ^= ( ptrWordIn[ 6] + ptrWordInOut[ 6] );
State[ 7] ^= ( ptrWordIn[ 7] + ptrWordInOut[ 7] );
State[ 8] ^= ( ptrWordIn[ 8] + ptrWordInOut[ 8] );
State[ 9] ^= ( ptrWordIn[ 9] + ptrWordInOut[ 9] );
State[10] ^= ( ptrWordIn[10] + ptrWordInOut[10] );
State[11] ^= ( ptrWordIn[11] + ptrWordInOut[11] );
reducedBlake2bLyra( State);
ptrWordOut[ 0] ^= State[ 0];
ptrWordOut[ 1] ^= State[ 1];
ptrWordOut[ 2] ^= State[ 2];
ptrWordOut[ 3] ^= State[ 3];
ptrWordOut[ 4] ^= State[ 4];
ptrWordOut[ 5] ^= State[ 5];
ptrWordOut[ 6] ^= State[ 6];
ptrWordOut[ 7] ^= State[ 7];
ptrWordOut[ 8] ^= State[ 8];
ptrWordOut[ 9] ^= State[ 9];
ptrWordOut[10] ^= State[10];
ptrWordOut[11] ^= State[11];
ptrWordInOut[ 0] ^= State[11];
ptrWordInOut[ 1] ^= State[ 0];
ptrWordInOut[ 2] ^= State[ 1];
ptrWordInOut[ 3] ^= State[ 2];
ptrWordInOut[ 4] ^= State[ 3];
ptrWordInOut[ 5] ^= State[ 4];
ptrWordInOut[ 6] ^= State[ 5];
ptrWordInOut[ 7] ^= State[ 6];
ptrWordInOut[ 8] ^= State[ 7];
ptrWordInOut[ 9] ^= State[ 8];
ptrWordInOut[10] ^= State[ 9];
ptrWordInOut[11] ^= State[10];
ptrWordOut += BLOCK_LEN_INT64;
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
}
#endif
}