Files
cpuminer-opt-gpu/algo/argon2d/argon2d-gate.c
Jay D Dee dd99580a4c v25.3
2025-01-16 12:31:53 -05:00

184 lines
5.8 KiB
C

#include "argon2d-gate.h"
#include "simd-utils.h"
#include "argon2d/argon2.h"
static const size_t INPUT_BYTES = 80; // Lenth of a block header in bytes. Input Length = Salt Length (salt = input)
static const size_t OUTPUT_BYTES = 32; // Length of output needed for a 256-bit hash
static const unsigned int DEFAULT_ARGON2_FLAG = 2; //Same as ARGON2_DEFAULT_FLAGS
void argon2d250_hash( void *output, const void *input )
{
argon2_context context;
context.out = (uint8_t *)output;
context.outlen = (uint32_t)OUTPUT_BYTES;
context.pwd = (uint8_t *)input;
context.pwdlen = (uint32_t)INPUT_BYTES;
context.salt = (uint8_t *)input; //salt = input
context.saltlen = (uint32_t)INPUT_BYTES;
context.secret = NULL;
context.secretlen = 0;
context.ad = NULL;
context.adlen = 0;
context.allocate_cbk = NULL;
context.free_cbk = NULL;
context.flags = DEFAULT_ARGON2_FLAG; // = ARGON2_DEFAULT_FLAGS
// main configurable Argon2 hash parameters
context.m_cost = 250; // Memory in KiB (~256KB)
context.lanes = 4; // Degree of Parallelism
context.threads = 1; // Threads
context.t_cost = 1; // Iterations
context.version = ARGON2_VERSION_10;
argon2_ctx( &context, Argon2_d );
}
int scanhash_argon2d250( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) edata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t nonce = first_nonce;
swab32_array( edata, pdata, 20 );
do {
be32enc(&edata[19], nonce);
argon2d250_hash( hash, edata );
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
submit_solution( work, hash, mythr );
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
bool register_argon2d250_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_argon2d250;
gate->hash = (void*)&argon2d250_hash;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT | NEON_OPT;
opt_target_factor = 65536.0;
return true;
}
void argon2d500_hash( void *output, const void *input )
{
argon2_context context;
context.out = (uint8_t *)output;
context.outlen = (uint32_t)OUTPUT_BYTES;
context.pwd = (uint8_t *)input;
context.pwdlen = (uint32_t)INPUT_BYTES;
context.salt = (uint8_t *)input; //salt = input
context.saltlen = (uint32_t)INPUT_BYTES;
context.secret = NULL;
context.secretlen = 0;
context.ad = NULL;
context.adlen = 0;
context.allocate_cbk = NULL;
context.free_cbk = NULL;
context.flags = DEFAULT_ARGON2_FLAG; // = ARGON2_DEFAULT_FLAGS
// main configurable Argon2 hash parameters
context.m_cost = 500; // Memory in KiB (512KB)
context.lanes = 8; // Degree of Parallelism
context.threads = 1; // Threads
context.t_cost = 2; // Iterations
context.version = ARGON2_VERSION_10;
argon2_ctx( &context, Argon2_d );
}
int scanhash_argon2d500( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) edata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const int thr_id = mythr->id;
const uint32_t first_nonce = (const uint32_t)pdata[19];
const uint32_t last_nonce = (const uint32_t)max_nonce;
uint32_t nonce = first_nonce;
const bool bench = opt_benchmark;
v128_bswap32_80( edata, pdata );
do
{
edata[19] = nonce;
argon2d500_hash( hash, edata );
if ( unlikely( valid_hash( (uint64_t*)hash, (uint64_t*)ptarget )
&& !bench ) )
{
pdata[19] = bswap_32( nonce );;
submit_solution( work, hash, mythr );
}
nonce++;
} while ( likely( nonce < last_nonce && !work_restart[thr_id].restart ) );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
return 0;
}
bool register_argon2d500_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_argon2d500;
gate->hash = (void*)&argon2d500_hash;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT | NEON_OPT;
opt_target_factor = 65536.0;
return true;
}
int scanhash_argon2d4096( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) vhash[8];
uint32_t _ALIGN(64) edata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = (const uint32_t)max_nonce;
uint32_t n = first_nonce;
const int thr_id = mythr->id; // thr_id arg is deprecated
uint32_t t_cost = 1; // 1 iteration
uint32_t m_cost = 4096; // use 4MB
uint32_t parallelism = 1; // 1 thread, 2 lanes
const bool bench = opt_benchmark;
v128_bswap32_80( edata, pdata );
do {
edata[19] = n;
argon2d_hash_raw( t_cost, m_cost, parallelism, (char*) edata, 80,
(char*) edata, 80, (char*) vhash, 32, ARGON2_VERSION_13 );
if ( unlikely( valid_hash( vhash, ptarget ) && !bench ) )
{
be32enc( &pdata[19], n );
submit_solution( work, vhash, mythr );
}
n++;
} while ( likely( n < last_nonce && !work_restart[thr_id].restart ) );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}
bool register_argon2d4096_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_argon2d4096;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT |NEON_OPT;
opt_target_factor = 65536.0;
return true;
}