mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
670 lines
25 KiB
C
670 lines
25 KiB
C
/**
|
|
* A simple implementation of Blake2b's internal permutation
|
|
* in the form of a sponge.
|
|
*
|
|
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
|
*
|
|
* This software is hereby placed in the public domain.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
//#include "algo-gate.h"
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
#include <immintrin.h>
|
|
#include "sponge.h"
|
|
#include "lyra2.h"
|
|
|
|
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
|
|
|
|
inline void squeeze_2way( uint64_t *State, byte *Out, unsigned int len )
|
|
{
|
|
const int len_m256i = len / 32;
|
|
const int fullBlocks = len_m256i / BLOCK_LEN_M256I;
|
|
__m512i* state = (__m512i*)State;
|
|
__m512i* out = (__m512i*)Out;
|
|
int i;
|
|
|
|
//Squeezes full blocks
|
|
for ( i = 0; i < fullBlocks; i++ )
|
|
{
|
|
memcpy_512( out, state, BLOCK_LEN_M256I );
|
|
LYRA_ROUND_2WAY_AVX512( state[0], state[1], state[2], state[3] );
|
|
out += BLOCK_LEN_M256I;
|
|
}
|
|
//Squeezes remaining bytes
|
|
memcpy_512( out, state, len_m256i % BLOCK_LEN_M256I );
|
|
}
|
|
|
|
inline void absorbBlock_2way( uint64_t *State, const uint64_t *In0,
|
|
const uint64_t *In1 )
|
|
{
|
|
register __m512i state0, state1, state2, state3;
|
|
__m512i in[3];
|
|
casti_m256i( in, 0 ) = casti_m256i( In0, 0 );
|
|
casti_m256i( in, 1 ) = casti_m256i( In1, 1 );
|
|
casti_m256i( in, 2 ) = casti_m256i( In0, 2 );
|
|
casti_m256i( in, 3 ) = casti_m256i( In1, 3 );
|
|
casti_m256i( in, 4 ) = casti_m256i( In0, 4 );
|
|
casti_m256i( in, 5 ) = casti_m256i( In1, 5 );
|
|
|
|
state0 = _mm512_load_si512( (__m512i*)State );
|
|
state1 = _mm512_load_si512( (__m512i*)State + 1 );
|
|
state2 = _mm512_load_si512( (__m512i*)State + 2 );
|
|
state3 = _mm512_load_si512( (__m512i*)State + 3 );
|
|
|
|
state0 = _mm512_xor_si512( state0, in[0] );
|
|
state1 = _mm512_xor_si512( state1, in[1] );
|
|
state2 = _mm512_xor_si512( state2, in[2] );
|
|
|
|
LYRA_12_ROUNDS_2WAY_AVX512( state0, state1, state2, state3 );
|
|
|
|
_mm512_store_si512( (__m512i*)State, state0 );
|
|
_mm512_store_si512( (__m512i*)State + 1, state1 );
|
|
_mm512_store_si512( (__m512i*)State + 2, state2 );
|
|
_mm512_store_si512( (__m512i*)State + 3, state3 );
|
|
|
|
}
|
|
|
|
inline void absorbBlockBlake2Safe_2way( uint64_t *State, const uint64_t *In,
|
|
const uint64_t nBlocks, const uint64_t block_len )
|
|
{
|
|
register __m512i state0, state1, state2, state3;
|
|
|
|
state0 =
|
|
state1 = m512_zero;
|
|
state2 = m512_const4_64( 0xa54ff53a5f1d36f1ULL, 0x3c6ef372fe94f82bULL,
|
|
0xbb67ae8584caa73bULL, 0x6a09e667f3bcc908ULL );
|
|
state3 = m512_const4_64( 0x5be0cd19137e2179ULL, 0x1f83d9abfb41bd6bULL,
|
|
0x9b05688c2b3e6c1fULL, 0x510e527fade682d1ULL );
|
|
|
|
for ( int i = 0; i < nBlocks; i++ )
|
|
{
|
|
__m512i *in = (__m512i*)In;
|
|
state0 = _mm512_xor_si512( state0, in[0] );
|
|
state1 = _mm512_xor_si512( state1, in[1] );
|
|
|
|
LYRA_12_ROUNDS_2WAY_AVX512( state0, state1, state2, state3 );
|
|
In += block_len*2;
|
|
}
|
|
|
|
_mm512_store_si512( (__m512i*)State, state0 );
|
|
_mm512_store_si512( (__m512i*)State + 1, state1 );
|
|
_mm512_store_si512( (__m512i*)State + 2, state2 );
|
|
_mm512_store_si512( (__m512i*)State + 3, state3 );
|
|
|
|
}
|
|
|
|
inline void reducedSqueezeRow0_2way( uint64_t* State, uint64_t* rowOut,
|
|
uint64_t nCols )
|
|
{
|
|
int i;
|
|
|
|
//M[row][C-1-col] = H.reduced_squeeze()
|
|
|
|
|
|
register __m512i state0, state1, state2, state3;
|
|
__m512i* out = (__m512i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I );
|
|
|
|
state0 = _mm512_load_si512( (__m512i*)State );
|
|
state1 = _mm512_load_si512( (__m512i*)State + 1 );
|
|
state2 = _mm512_load_si512( (__m512i*)State + 2 );
|
|
state3 = _mm512_load_si512( (__m512i*)State + 3 );
|
|
|
|
for ( i = 0; i < 9; i += 3)
|
|
{
|
|
_mm_prefetch( out - i, _MM_HINT_T0 );
|
|
_mm_prefetch( out - i - 2, _MM_HINT_T0 );
|
|
}
|
|
|
|
for ( i = 0; i < nCols; i++ )
|
|
{
|
|
_mm_prefetch( out - 9, _MM_HINT_T0 );
|
|
_mm_prefetch( out - 11, _MM_HINT_T0 );
|
|
|
|
out[0] = state0;
|
|
out[1] = state1;
|
|
out[2] = state2;
|
|
|
|
//Goes to next block (column) that will receive the squeezed data
|
|
out -= BLOCK_LEN_M256I;
|
|
|
|
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
|
|
}
|
|
|
|
_mm512_store_si512( (__m512i*)State, state0 );
|
|
_mm512_store_si512( (__m512i*)State + 1, state1 );
|
|
_mm512_store_si512( (__m512i*)State + 2, state2 );
|
|
_mm512_store_si512( (__m512i*)State + 3, state3 );
|
|
}
|
|
|
|
|
|
inline void reducedDuplexRow1_2way( uint64_t *State, uint64_t *rowIn,
|
|
uint64_t *rowOut, uint64_t nCols )
|
|
{
|
|
int i;
|
|
register __m512i state0, state1, state2, state3;
|
|
__m512i *in = (__m512i*)rowIn;
|
|
__m512i *out = (__m512i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I );
|
|
|
|
state0 = _mm512_load_si512( (__m512i*)State );
|
|
state1 = _mm512_load_si512( (__m512i*)State + 1 );
|
|
state2 = _mm512_load_si512( (__m512i*)State + 2 );
|
|
state3 = _mm512_load_si512( (__m512i*)State + 3 );
|
|
|
|
for ( i = 0; i < nCols; i++ )
|
|
{
|
|
state0 = _mm512_xor_si512( state0, in[0] );
|
|
state1 = _mm512_xor_si512( state1, in[1] );
|
|
state2 = _mm512_xor_si512( state2, in[2] );
|
|
|
|
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
|
|
|
|
out[0] = _mm512_xor_si512( state0, in[0] );
|
|
out[1] = _mm512_xor_si512( state1, in[1] );
|
|
out[2] = _mm512_xor_si512( state2, in[2] );
|
|
|
|
//Input: next column (i.e., next block in sequence)
|
|
in += BLOCK_LEN_M256I;
|
|
//Output: goes to previous column
|
|
out -= BLOCK_LEN_M256I;
|
|
}
|
|
|
|
_mm512_store_si512( (__m512i*)State, state0 );
|
|
_mm512_store_si512( (__m512i*)State + 1, state1 );
|
|
_mm512_store_si512( (__m512i*)State + 2, state2 );
|
|
_mm512_store_si512( (__m512i*)State + 3, state3 );
|
|
}
|
|
|
|
inline void reducedDuplexRowSetup_2way( uint64_t *State, uint64_t *rowIn,
|
|
uint64_t *rowInOut, uint64_t *rowOut, uint64_t nCols )
|
|
{
|
|
int i;
|
|
register __m512i state0, state1, state2, state3;
|
|
__m512i* in = (__m512i*)rowIn;
|
|
__m512i* inout = (__m512i*)rowInOut;
|
|
__m512i* out = (__m512i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I );
|
|
|
|
state0 = _mm512_load_si512( (__m512i*)State );
|
|
state1 = _mm512_load_si512( (__m512i*)State + 1 );
|
|
state2 = _mm512_load_si512( (__m512i*)State + 2 );
|
|
state3 = _mm512_load_si512( (__m512i*)State + 3 );
|
|
|
|
for ( i = 0; i < nCols; i++ )
|
|
{
|
|
state0 = _mm512_xor_si512( state0,
|
|
_mm512_add_epi64( in[0], inout[0] ) );
|
|
state1 = _mm512_xor_si512( state1,
|
|
_mm512_add_epi64( in[1], inout[1] ) );
|
|
state2 = _mm512_xor_si512( state2,
|
|
_mm512_add_epi64( in[2], inout[2] ) );
|
|
|
|
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
|
|
|
|
out[0] = _mm512_xor_si512( state0, in[0] );
|
|
out[1] = _mm512_xor_si512( state1, in[1] );
|
|
out[2] = _mm512_xor_si512( state2, in[2] );
|
|
|
|
{
|
|
register __m512i t0, t1, t2;
|
|
|
|
//M[row*][col] = M[row*][col] XOR rotW(rand)
|
|
t0 = _mm512_permutex_epi64( state0, 0x93 );
|
|
t1 = _mm512_permutex_epi64( state1, 0x93 );
|
|
t2 = _mm512_permutex_epi64( state2, 0x93 );
|
|
|
|
inout[0] = _mm512_xor_si512( inout[0],
|
|
_mm512_mask_blend_epi64( 0x11, t0, t2 ) );
|
|
inout[1] = _mm512_xor_si512( inout[1],
|
|
_mm512_mask_blend_epi64( 0x11, t1, t0 ) );
|
|
inout[2] = _mm512_xor_si512( inout[2],
|
|
_mm512_mask_blend_epi64( 0x11, t2, t1 ) );
|
|
}
|
|
|
|
//Inputs: next column (i.e., next block in sequence)
|
|
in += BLOCK_LEN_M256I;
|
|
inout += BLOCK_LEN_M256I;
|
|
//Output: goes to previous column
|
|
out -= BLOCK_LEN_M256I;
|
|
}
|
|
|
|
_mm512_store_si512( (__m512i*)State, state0 );
|
|
_mm512_store_si512( (__m512i*)State + 1, state1 );
|
|
_mm512_store_si512( (__m512i*)State + 2, state2 );
|
|
_mm512_store_si512( (__m512i*)State + 3, state3 );
|
|
}
|
|
|
|
// reduced duplex row has three version depending on rows inout.
|
|
// If they are the same the fastest version can be used, equivalent to
|
|
// linear version.
|
|
// If either rowinout overlaps with rowout the slowest version is used,
|
|
// to refresh local data after overwriting rowout.
|
|
// Otherwise the normal version is used, slower than unified, faster than
|
|
// overlap.
|
|
//
|
|
// The likelyhood of each case depends on the number of rows. More rows
|
|
// means unified and overlap are both less likely.
|
|
// Unified has a 1 in Nrows chances,
|
|
// Overlap has 2 in Nrows chance reduced to 1 in Nrows because if both
|
|
// overlap it's unified.
|
|
// As a result normal is Nrows-2 / Nrows.
|
|
// for 4 rows: 1 unified, 2 overlap, 1 normal.
|
|
// for 8 rows: 1 unified, 2 overlap, 5 normal.
|
|
|
|
static inline void reducedDuplexRow_2way_normal( uint64_t *State,
|
|
uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1,
|
|
uint64_t *rowOut, uint64_t nCols)
|
|
{
|
|
int i;
|
|
register __m512i state0, state1, state2, state3;
|
|
__m512i *in = (__m512i*)rowIn;
|
|
__m512i *inout0 = (__m512i*)rowInOut0;
|
|
__m512i *inout1 = (__m512i*)rowInOut1;
|
|
__m512i *out = (__m512i*)rowOut;
|
|
register __m512i io0, io1, io2;
|
|
|
|
state0 = _mm512_load_si512( (__m512i*)State );
|
|
state1 = _mm512_load_si512( (__m512i*)State + 1 );
|
|
state2 = _mm512_load_si512( (__m512i*)State + 2 );
|
|
state3 = _mm512_load_si512( (__m512i*)State + 3 );
|
|
|
|
for ( i = 0; i < nCols; i++ )
|
|
{
|
|
//Absorbing "M[prev] [+] M[row*]"
|
|
io0 = _mm512_load_si512( inout0 );
|
|
io1 = _mm512_load_si512( inout0 +1 );
|
|
io2 = _mm512_load_si512( inout0 +2 );
|
|
|
|
io0 = _mm512_mask_load_epi64( io0, 0xf0, inout1 );
|
|
io1 = _mm512_mask_load_epi64( io1, 0xf0, inout1 +1 );
|
|
io2 = _mm512_mask_load_epi64( io2, 0xf0, inout1 +2 );
|
|
|
|
/*
|
|
io0 = _mm512_mask_blend_epi64( 0xf0,
|
|
_mm512_load_si512( (__m512i*)inout0 ),
|
|
_mm512_load_si512( (__m512i*)inout1 ) );
|
|
io1 = _mm512_mask_blend_epi64( 0xf0,
|
|
_mm512_load_si512( (__m512i*)inout0 +1 ),
|
|
_mm512_load_si512( (__m512i*)inout1 +1 ) );
|
|
io2 = _mm512_mask_blend_epi64( 0xf0,
|
|
_mm512_load_si512( (__m512i*)inout0 +2 ),
|
|
_mm512_load_si512( (__m512i*)inout1 +2 ) );
|
|
*/
|
|
|
|
state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], io0 ) );
|
|
state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], io1 ) );
|
|
state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], io2 ) );
|
|
|
|
//Applies the reduced-round transformation f to the sponge's state
|
|
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
|
|
|
|
{
|
|
register __m512i t0, t1, t2;
|
|
|
|
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
|
|
t0 = _mm512_permutex_epi64( state0, 0x93 );
|
|
t1 = _mm512_permutex_epi64( state1, 0x93 );
|
|
t2 = _mm512_permutex_epi64( state2, 0x93 );
|
|
|
|
io0 = _mm512_xor_si512( io0, _mm512_mask_blend_epi64( 0x11, t0, t2 ) );
|
|
io1 = _mm512_xor_si512( io1, _mm512_mask_blend_epi64( 0x11, t1, t0 ) );
|
|
io2 = _mm512_xor_si512( io2, _mm512_mask_blend_epi64( 0x11, t2, t1 ) );
|
|
|
|
//M[rowOut][col] = M[rowOut][col] XOR rand
|
|
out[0] = _mm512_xor_si512( out[0], state0 );
|
|
out[1] = _mm512_xor_si512( out[1], state1 );
|
|
out[2] = _mm512_xor_si512( out[2], state2 );
|
|
}
|
|
|
|
_mm512_mask_store_epi64( inout0, 0x0f, io0 );
|
|
_mm512_mask_store_epi64( inout1, 0xf0, io0 );
|
|
_mm512_mask_store_epi64( inout0 +1, 0x0f, io1 );
|
|
_mm512_mask_store_epi64( inout1 +1, 0xf0, io1 );
|
|
_mm512_mask_store_epi64( inout0 +2, 0x0f, io2 );
|
|
_mm512_mask_store_epi64( inout1 +2, 0xf0, io2 );
|
|
|
|
//Goes to next block
|
|
in += BLOCK_LEN_M256I;
|
|
inout0 += BLOCK_LEN_M256I;
|
|
inout1 += BLOCK_LEN_M256I;
|
|
out += BLOCK_LEN_M256I;
|
|
}
|
|
|
|
_mm512_store_si512( (__m512i*)State, state0 );
|
|
_mm512_store_si512( (__m512i*)State + 1, state1 );
|
|
_mm512_store_si512( (__m512i*)State + 2, state2 );
|
|
_mm512_store_si512( (__m512i*)State + 3, state3 );
|
|
}
|
|
|
|
static inline void reducedDuplexRow_2way_overlap( uint64_t *State,
|
|
uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1,
|
|
uint64_t *rowOut, uint64_t nCols)
|
|
{
|
|
int i;
|
|
register __m512i state0, state1, state2, state3;
|
|
__m512i *in = (__m512i*)rowIn;
|
|
__m512i *inout0 = (__m512i*)rowInOut0;
|
|
__m512i *inout1 = (__m512i*)rowInOut1;
|
|
__m512i *out = (__m512i*)rowOut;
|
|
// inout_ovly io;
|
|
ovly_512 io0, io1, io2;
|
|
|
|
state0 = _mm512_load_si512( (__m512i*)State );
|
|
state1 = _mm512_load_si512( (__m512i*)State + 1 );
|
|
state2 = _mm512_load_si512( (__m512i*)State + 2 );
|
|
state3 = _mm512_load_si512( (__m512i*)State + 3 );
|
|
|
|
for ( i = 0; i < nCols; i++ )
|
|
{
|
|
//Absorbing "M[prev] [+] M[row*]"
|
|
io0.v512 = _mm512_load_si512( inout0 );
|
|
io1.v512 = _mm512_load_si512( inout0 +1 );
|
|
io2.v512 = _mm512_load_si512( inout0 +2 );
|
|
|
|
io0.v512 = _mm512_mask_load_epi64( io0.v512, 0xf0, inout1 );
|
|
io1.v512 = _mm512_mask_load_epi64( io1.v512, 0xf0, inout1 +1 );
|
|
io2.v512 = _mm512_mask_load_epi64( io2.v512, 0xf0, inout1 +2 );
|
|
|
|
/*
|
|
io0.v512 = _mm512_mask_blend_epi64( 0xf0,
|
|
_mm512_load_si512( (__m512i*)inout0 ),
|
|
_mm512_load_si512( (__m512i*)inout1 ) );
|
|
io1.v512 = _mm512_mask_blend_epi64( 0xf0,
|
|
_mm512_load_si512( (__m512i*)inout0 +1 ),
|
|
_mm512_load_si512( (__m512i*)inout1 +1 ) );
|
|
io2.v512 = _mm512_mask_blend_epi64( 0xf0,
|
|
_mm512_load_si512( (__m512i*)inout0 +2 ),
|
|
_mm512_load_si512( (__m512i*)inout1 +2 ) );
|
|
*/
|
|
|
|
state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], io0.v512 ) );
|
|
state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], io1.v512 ) );
|
|
state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], io2.v512 ) );
|
|
|
|
//Applies the reduced-round transformation f to the sponge's state
|
|
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
|
|
|
|
{
|
|
__m512i t0, t1, t2;
|
|
|
|
//M[rowOut][col] = M[rowOut][col] XOR rand
|
|
out[0] = _mm512_xor_si512( out[0], state0 );
|
|
out[1] = _mm512_xor_si512( out[1], state1 );
|
|
out[2] = _mm512_xor_si512( out[2], state2 );
|
|
|
|
// if out is the same row as inout, update with new data.
|
|
if ( rowOut == rowInOut0 )
|
|
{
|
|
io0.v512 = _mm512_mask_blend_epi64( 0x0f, io0.v512, out[0] );
|
|
io1.v512 = _mm512_mask_blend_epi64( 0x0f, io1.v512, out[1] );
|
|
io2.v512 = _mm512_mask_blend_epi64( 0x0f, io2.v512, out[2] );
|
|
|
|
}
|
|
if ( rowOut == rowInOut1 )
|
|
{
|
|
io0.v512 = _mm512_mask_blend_epi64( 0xf0, io0.v512, out[0] );
|
|
io1.v512 = _mm512_mask_blend_epi64( 0xf0, io1.v512, out[1] );
|
|
io2.v512 = _mm512_mask_blend_epi64( 0xf0, io2.v512, out[2] );
|
|
}
|
|
|
|
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
|
|
t0 = _mm512_permutex_epi64( state0, 0x93 );
|
|
t1 = _mm512_permutex_epi64( state1, 0x93 );
|
|
t2 = _mm512_permutex_epi64( state2, 0x93 );
|
|
|
|
io0.v512 = _mm512_xor_si512( io0.v512,
|
|
_mm512_mask_blend_epi64( 0x11, t0, t2 ) );
|
|
io1.v512 = _mm512_xor_si512( io1.v512,
|
|
_mm512_mask_blend_epi64( 0x11, t1, t0 ) );
|
|
io2.v512 = _mm512_xor_si512( io2.v512,
|
|
_mm512_mask_blend_epi64( 0x11, t2, t1 ) );
|
|
}
|
|
|
|
/*
|
|
casti_m256i( inout0, 0 ) = _mm512_castsi512_si256( io0.v512 );
|
|
casti_m256i( inout0, 2 ) = _mm512_castsi512_si256( io1.v512 );
|
|
casti_m256i( inout0, 4 ) = _mm512_castsi512_si256( io2.v512 );
|
|
_mm512_mask_store_epi64( inout1, 0xf0, io0.v512 );
|
|
_mm512_mask_store_epi64( inout1 +1, 0xf0, io1.v512 );
|
|
_mm512_mask_store_epi64( inout1 +2, 0xf0, io2.v512 );
|
|
*/
|
|
|
|
|
|
casti_m256i( inout0, 0 ) = io0.v256lo;
|
|
casti_m256i( inout1, 1 ) = io0.v256hi;
|
|
casti_m256i( inout0, 2 ) = io1.v256lo;
|
|
casti_m256i( inout1, 3 ) = io1.v256hi;
|
|
casti_m256i( inout0, 4 ) = io2.v256lo;
|
|
casti_m256i( inout1, 5 ) = io2.v256hi;
|
|
|
|
/*
|
|
_mm512_mask_store_epi64( inout0, 0x0f, io.v512[0] );
|
|
_mm512_mask_store_epi64( inout1, 0xf0, io.v512[0] );
|
|
_mm512_mask_store_epi64( inout0 +1, 0x0f, io.v512[1] );
|
|
_mm512_mask_store_epi64( inout1 +1, 0xf0, io.v512[1] );
|
|
_mm512_mask_store_epi64( inout0 +2, 0x0f, io.v512[2] );
|
|
_mm512_mask_store_epi64( inout1 +2, 0xf0, io.v512[2] );
|
|
*/
|
|
//Goes to next block
|
|
in += BLOCK_LEN_M256I;
|
|
inout0 += BLOCK_LEN_M256I;
|
|
inout1 += BLOCK_LEN_M256I;
|
|
out += BLOCK_LEN_M256I;
|
|
}
|
|
|
|
_mm512_store_si512( (__m512i*)State, state0 );
|
|
_mm512_store_si512( (__m512i*)State + 1, state1 );
|
|
_mm512_store_si512( (__m512i*)State + 2, state2 );
|
|
_mm512_store_si512( (__m512i*)State + 3, state3 );
|
|
|
|
}
|
|
|
|
static inline void reducedDuplexRow_2way_overlap_X( uint64_t *State,
|
|
uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1,
|
|
uint64_t *rowOut, uint64_t nCols)
|
|
{
|
|
int i;
|
|
register __m512i state0, state1, state2, state3;
|
|
__m512i *in = (__m512i*)rowIn;
|
|
__m256i *inout0 = (__m256i*)rowInOut0;
|
|
__m256i *inout1 = (__m256i*)rowInOut1;
|
|
__m512i *out = (__m512i*)rowOut;
|
|
inout_ovly inout;
|
|
__m512i t0, t1, t2;
|
|
|
|
state0 = _mm512_load_si512( (__m512i*)State );
|
|
state1 = _mm512_load_si512( (__m512i*)State + 1 );
|
|
state2 = _mm512_load_si512( (__m512i*)State + 2 );
|
|
state3 = _mm512_load_si512( (__m512i*)State + 3 );
|
|
|
|
for ( i = 0; i < nCols; i++ )
|
|
{
|
|
|
|
//Absorbing "M[prev] [+] M[row*]"
|
|
inout.v256[0] = inout0[0];
|
|
inout.v256[1] = inout1[1];
|
|
inout.v256[2] = inout0[2];
|
|
inout.v256[3] = inout1[3];
|
|
inout.v256[4] = inout0[4];
|
|
inout.v256[5] = inout1[5];
|
|
|
|
state0 = _mm512_xor_si512( state0,
|
|
_mm512_add_epi64( in[0], inout.v512[0] ) );
|
|
state1 = _mm512_xor_si512( state1,
|
|
_mm512_add_epi64( in[1], inout.v512[1] ) );
|
|
state2 = _mm512_xor_si512( state2,
|
|
_mm512_add_epi64( in[2], inout.v512[2] ) );
|
|
|
|
|
|
//Applies the reduced-round transformation f to the sponge's state
|
|
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
|
|
|
|
//M[rowOut][col] = M[rowOut][col] XOR rand
|
|
out[0] = _mm512_xor_si512( out[0], state0 );
|
|
out[1] = _mm512_xor_si512( out[1], state1 );
|
|
out[2] = _mm512_xor_si512( out[2], state2 );
|
|
|
|
// if inout is the same row as out it was just overwritten, reload.
|
|
if ( rowOut == rowInOut0 )
|
|
{
|
|
inout.v256[0] = ( (__m256i*)out )[0];
|
|
inout.v256[2] = ( (__m256i*)out )[2];
|
|
inout.v256[4] = ( (__m256i*)out )[4];
|
|
}
|
|
if ( rowOut == rowInOut1 )
|
|
{
|
|
inout.v256[1] = ( (__m256i*)out )[1];
|
|
inout.v256[3] = ( (__m256i*)out )[3];
|
|
inout.v256[5] = ( (__m256i*)out )[5];
|
|
}
|
|
|
|
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
|
|
t0 = _mm512_permutex_epi64( state0, 0x93 );
|
|
t1 = _mm512_permutex_epi64( state1, 0x93 );
|
|
t2 = _mm512_permutex_epi64( state2, 0x93 );
|
|
|
|
inout.v512[0] = _mm512_xor_si512( inout.v512[0],
|
|
_mm512_mask_blend_epi64( 0x11, t0, t2 ) );
|
|
inout.v512[1] = _mm512_xor_si512( inout.v512[1],
|
|
_mm512_mask_blend_epi64( 0x11, t1, t0 ) );
|
|
inout.v512[2] = _mm512_xor_si512( inout.v512[2],
|
|
_mm512_mask_blend_epi64( 0x11, t2, t1 ) );
|
|
|
|
inout0[0] = inout.v256[0];
|
|
inout1[1] = inout.v256[1];
|
|
inout0[2] = inout.v256[2];
|
|
inout1[3] = inout.v256[3];
|
|
inout0[4] = inout.v256[4];
|
|
inout1[5] = inout.v256[5];
|
|
|
|
//Goes to next block
|
|
in += BLOCK_LEN_M256I;
|
|
inout0 += BLOCK_LEN_M256I * 2;
|
|
inout1 += BLOCK_LEN_M256I * 2;
|
|
out += BLOCK_LEN_M256I;
|
|
}
|
|
|
|
_mm512_store_si512( (__m512i*)State, state0 );
|
|
_mm512_store_si512( (__m512i*)State + 1, state1 );
|
|
_mm512_store_si512( (__m512i*)State + 2, state2 );
|
|
_mm512_store_si512( (__m512i*)State + 3, state3 );
|
|
}
|
|
|
|
// rowInOut0 == rowInOut1, fastest, least likely: 1 / nrows
|
|
static inline void reducedDuplexRow_2way_unified( uint64_t *State,
|
|
uint64_t *rowIn, uint64_t *rowInOut0,
|
|
uint64_t *rowOut, uint64_t nCols)
|
|
{
|
|
int i;
|
|
register __m512i state0, state1, state2, state3;
|
|
__m512i *in = (__m512i*)rowIn;
|
|
__m512i *inout = (__m512i*)rowInOut0;
|
|
__m512i *out = (__m512i*)rowOut;
|
|
|
|
state0 = _mm512_load_si512( (__m512i*)State );
|
|
state1 = _mm512_load_si512( (__m512i*)State + 1 );
|
|
state2 = _mm512_load_si512( (__m512i*)State + 2 );
|
|
state3 = _mm512_load_si512( (__m512i*)State + 3 );
|
|
|
|
for ( i = 0; i < nCols; i++ )
|
|
{
|
|
//Absorbing "M[prev] [+] M[row*]"
|
|
state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], inout[0] ) );
|
|
state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], inout[1] ) );
|
|
state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], inout[2] ) );
|
|
|
|
//Applies the reduced-round transformation f to the sponge's state
|
|
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
|
|
|
|
{
|
|
register __m512i t0, t1, t2;
|
|
|
|
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
|
|
t0 = _mm512_permutex_epi64( state0, 0x93 );
|
|
t1 = _mm512_permutex_epi64( state1, 0x93 );
|
|
t2 = _mm512_permutex_epi64( state2, 0x93 );
|
|
|
|
inout[0] = _mm512_xor_si512( inout[0],
|
|
_mm512_mask_blend_epi64( 0x11, t0, t2 ) );
|
|
inout[1] = _mm512_xor_si512( inout[1],
|
|
_mm512_mask_blend_epi64( 0x11, t1, t0 ) );
|
|
inout[2] = _mm512_xor_si512( inout[2],
|
|
_mm512_mask_blend_epi64( 0x11, t2, t1 ) );
|
|
|
|
out[0] = _mm512_xor_si512( out[0], state0 );
|
|
out[1] = _mm512_xor_si512( out[1], state1 );
|
|
out[2] = _mm512_xor_si512( out[2], state2 );
|
|
|
|
}
|
|
|
|
//Goes to next block
|
|
in += BLOCK_LEN_M256I;
|
|
inout += BLOCK_LEN_M256I;
|
|
out += BLOCK_LEN_M256I;
|
|
}
|
|
|
|
_mm512_store_si512( (__m512i*)State, state0 );
|
|
_mm512_store_si512( (__m512i*)State + 1, state1 );
|
|
_mm512_store_si512( (__m512i*)State + 2, state2 );
|
|
_mm512_store_si512( (__m512i*)State + 3, state3 );
|
|
}
|
|
|
|
// Multi level specialization.
|
|
// There are three cases that need to be handled:
|
|
// unified: inout data is contiguous, fastest, unlikely.
|
|
// normal: inout data is not contiguous with no overlap with out, likely.
|
|
// overlap: inout data is not contiguous and one lane overlaps with out
|
|
// slowest, unlikely.
|
|
//
|
|
// In adition different algos prefer different coding. x25x and x22i prefer
|
|
// 256 bit memory acceses to handle the diverged data while all other
|
|
// algos prefer 512 bit memory accesses with masking and blending.
|
|
|
|
|
|
// Wrapper
|
|
inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
|
|
uint64_t *rowInOut0, uint64_t *rowInOut1,
|
|
uint64_t *rowOut, uint64_t nCols )
|
|
{
|
|
if ( rowInOut0 == rowInOut1 )
|
|
reducedDuplexRow_2way_unified( State, rowIn, rowInOut0, rowOut, nCols );
|
|
else if ( ( rowInOut0 == rowOut ) || ( rowInOut1 == rowOut ) )
|
|
reducedDuplexRow_2way_overlap( State, rowIn, rowInOut0, rowInOut1,
|
|
rowOut, nCols );
|
|
else
|
|
reducedDuplexRow_2way_normal( State, rowIn, rowInOut0, rowInOut1,
|
|
rowOut, nCols );
|
|
}
|
|
|
|
inline void reducedDuplexRow_2way_X( uint64_t *State, uint64_t *rowIn,
|
|
uint64_t *rowInOut0, uint64_t *rowInOut1,
|
|
uint64_t *rowOut, uint64_t nCols )
|
|
{
|
|
if ( rowInOut0 == rowInOut1 )
|
|
reducedDuplexRow_2way_unified( State, rowIn, rowInOut0, rowOut, nCols );
|
|
else if ( ( rowInOut0 == rowOut ) || ( rowInOut1 == rowOut ) )
|
|
{
|
|
asm volatile ( "nop" ); // Prevent GCC from optimizing
|
|
reducedDuplexRow_2way_overlap_X( State, rowIn, rowInOut0, rowInOut1,
|
|
rowOut, nCols );
|
|
}
|
|
else
|
|
reducedDuplexRow_2way_normal( State, rowIn, rowInOut0, rowInOut1,
|
|
rowOut, nCols );
|
|
}
|
|
|
|
|
|
#endif // AVX512
|