Files
cpuminer-opt-gpu/algo/simd/simd-hash-2way.c
Jay D Dee da7030faa8 v3.21.0
2022-12-21 13:09:14 -05:00

1999 lines
56 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "simd-hash-2way.h"
#if defined (__AVX2__)
union _m256_v16 {
uint16_t u16[16];
__m256i v256;
};
typedef union _m256_v16 m256_v16;
// imported from simd_iv.h
uint32_t SIMD_IV_512[] = { 0x0ba16b95, 0x72f999ad, 0x9fecc2ae, 0xba3264fc,
0x5e894929, 0x8e9f30e5, 0x2f1daa37, 0xf0f2c558,
0xac506643, 0xa90635a5, 0xe25b878b, 0xaab7878f,
0x88817f7a, 0x0a02892b, 0x559a7550, 0x598f657e,
0x7eef60a1, 0x6b70e3e8, 0x9c1714d1, 0xb958e2a8,
0xab02675e, 0xed1c014f, 0xcd8d65bb, 0xfdb7a257,
0x09254899, 0xd699c7bc, 0x9019b6dc, 0x2b9022e4,
0x8fa14956, 0x21bf9bd3, 0xb94d0943, 0x6ffddc22 };
// targetted
/* Twiddle tables */
static const m256_v16 FFT64_Twiddle[] =
{
{{ 1, 2, 4, 8, 16, 32, 64, 128,
1, 2, 4, 8, 16, 32, 64, 128 }},
{{ 1, 60, 2, 120, 4, -17, 8, -34,
1, 60, 2, 120, 4, -17, 8, -34 }},
{{ 1, 120, 8, -68, 64, -30, -2, 17,
1, 120, 8, -68, 64, -30, -2, 17 }},
{{ 1, 46, 60, -67, 2, 92, 120, 123,
1, 46, 60, -67, 2, 92, 120, 123 }},
{{ 1, 92, -17, -22, 32, 117, -30, 67,
1, 92, -17, -22, 32, 117, -30, 67 }},
{{ 1, -67, 120, -73, 8, -22, -68, -70,
1, -67, 120, -73, 8, -22, -68, -70 }},
{{ 1, 123, -34, -70, 128, 67, 17, 35,
1, 123, -34, -70, 128, 67, 17, 35 }},
};
static const m256_v16 FFT128_Twiddle[] =
{
{{ 1, -118, 46, -31, 60, 116, -67, -61,
1, -118, 46, -31, 60, 116, -67, -61 }},
{{ 2, 21, 92, -62, 120, -25, 123, -122,
2, 21, 92, -62, 120, -25, 123, -122 }},
{{ 4, 42, -73, -124, -17, -50, -11, 13,
4, 42, -73, -124, -17, -50, -11, 13 }},
{{ 8, 84, 111, 9, -34, -100, -22, 26,
8, 84, 111, 9, -34, -100, -22, 26 }},
{{ 16, -89, -35, 18, -68, 57, -44, 52,
16, -89, -35, 18, -68, 57, -44, 52 }},
{{ 32, 79, -70, 36, 121, 114, -88, 104,
32, 79, -70, 36, 121, 114, -88, 104 }},
{{ 64, -99, 117, 72, -15, -29, 81, -49,
64, -99, 117, 72, -15, -29, 81, -49 }},
{{ 128, 59, -23, -113, -30, -58, -95, -98,
128, 59, -23, -113, -30, -58, -95, -98 }},
};
static const m256_v16 FFT256_Twiddle[] =
{
{{ 1, 41, -118, 45, 46, 87, -31, 14,
1, 41, -118, 45, 46, 87, -31, 14 }},
{{ 60, -110, 116, -127, -67, 80, -61, 69,
60, -110, 116, -127, -67, 80, -61, 69 }},
{{ 2, 82, 21, 90, 92, -83, -62, 28,
2, 82, 21, 90, 92, -83, -62, 28 }},
{{ 120, 37, -25, 3, 123, -97, -122, -119,
120, 37, -25, 3, 123, -97, -122, -119 }},
{{ 4, -93, 42, -77, -73, 91, -124, 56,
4, -93, 42, -77, -73, 91, -124, 56 }},
{{ -17, 74, -50, 6, -11, 63, 13, 19,
-17, 74, -50, 6, -11, 63, 13, 19 }},
{{ 8, 71, 84, 103, 111, -75, 9, 112,
8, 71, 84, 103, 111, -75, 9, 112 }},
{{ -34, -109, -100, 12, -22, 126, 26, 38,
-34, -109, -100, 12, -22, 126, 26, 38 }},
{{ 16, -115, -89, -51, -35, 107, 18, -33,
16, -115, -89, -51, -35, 107, 18, -33 }},
{{ -68, 39, 57, 24, -44, -5, 52, 76,
-68, 39, 57, 24, -44, -5, 52, 76 }},
{{ 32, 27, 79, -102, -70, -43, 36, -66,
32, 27, 79, -102, -70, -43, 36, -66 }},
{{ 121, 78, 114, 48, -88, -10, 104, -105,
121, 78, 114, 48, -88, -10, 104, -105 }},
{{ 64, 54, -99, 53, 117, -86, 72, 125,
64, 54, -99, 53, 117, -86, 72, 125 }},
{{ -15, -101, -29, 96, 81, -20, -49, 47,
-15, -101, -29, 96, 81, -20, -49, 47 }},
{{ 128, 108, 59, 106, -23, 85, -113, -7,
128, 108, 59, 106, -23, 85, -113, -7 }},
{{ -30, 55, -58, -65, -95, -40, -98, 94,
-30, 55, -58, -65, -95, -40, -98, 94 }}
};
// generic
#define SHUFXOR_1 0xb1 /* 0b10110001 */
#define SHUFXOR_2 0x4e /* 0b01001110 */
#define SHUFXOR_3 0x1b /* 0b00011011 */
#define CAT(x, y) x##y
#define XCAT(x,y) CAT(x,y)
#define SUM7_00 0
#define SUM7_01 1
#define SUM7_02 2
#define SUM7_03 3
#define SUM7_04 4
#define SUM7_05 5
#define SUM7_06 6
#define SUM7_10 1
#define SUM7_11 2
#define SUM7_12 3
#define SUM7_13 4
#define SUM7_14 5
#define SUM7_15 6
#define SUM7_16 0
#define SUM7_20 2
#define SUM7_21 3
#define SUM7_22 4
#define SUM7_23 5
#define SUM7_24 6
#define SUM7_25 0
#define SUM7_26 1
#define SUM7_30 3
#define SUM7_31 4
#define SUM7_32 5
#define SUM7_33 6
#define SUM7_34 0
#define SUM7_35 1
#define SUM7_36 2
#define SUM7_40 4
#define SUM7_41 5
#define SUM7_42 6
#define SUM7_43 0
#define SUM7_44 1
#define SUM7_45 2
#define SUM7_46 3
#define SUM7_50 5
#define SUM7_51 6
#define SUM7_52 0
#define SUM7_53 1
#define SUM7_54 2
#define SUM7_55 3
#define SUM7_56 4
#define SUM7_60 6
#define SUM7_61 0
#define SUM7_62 1
#define SUM7_63 2
#define SUM7_64 3
#define SUM7_65 4
#define SUM7_66 5
#define PERM(z,d,a,shufxor) XCAT(PERM_,XCAT(SUM7_##z,PERM_START))(d,a,shufxor)
#define PERM_0(d,a,shufxor) /* XOR 1 */ \
do { \
d##l = shufxor( a##l, 1 ); \
d##h = shufxor( a##h, 1 ); \
} while(0)
#define PERM_1(d,a,shufxor) /* XOR 6 */ \
do { \
d##l = shufxor( a##h, 2 ); \
d##h = shufxor( a##l, 2 ); \
} while(0)
#define PERM_2(d,a,shufxor) /* XOR 2 */ \
do { \
d##l = shufxor( a##l, 2 ); \
d##h = shufxor( a##h, 2 ); \
} while(0)
#define PERM_3(d,a,shufxor) /* XOR 3 */ \
do { \
d##l = shufxor( a##l, 3 ); \
d##h = shufxor( a##h, 3 ); \
} while(0)
#define PERM_4(d,a,shufxor) /* XOR 5 */ \
do { \
d##l = shufxor( a##h, 1 ); \
d##h = shufxor( a##l, 1 ); \
} while(0)
#define PERM_5(d,a,shufxor) /* XOR 7 */ \
do { \
d##l = shufxor( a##h, 3 ); \
d##h = shufxor( a##l, 3 ); \
} while(0)
#define PERM_6(d,a,shufxor) /* XOR 4 */ \
do { \
d##l = a##h; \
d##h = a##l; \
} while(0)
// targetted
#define shufxor2w(x,s) _mm256_shuffle_epi32( x, XCAT( SHUFXOR_, s ))
#define REDUCE(x) \
_mm256_sub_epi16( _mm256_and_si256( x, m256_const1_64( \
0x00ff00ff00ff00ff ) ), _mm256_srai_epi16( x, 8 ) )
#define EXTRA_REDUCE_S(x)\
_mm256_sub_epi16( x, _mm256_and_si256( \
m256_const1_64( 0x0101010101010101 ), \
_mm256_cmpgt_epi16( x, m256_const1_64( 0x0080008000800080 ) ) ) )
#define REDUCE_FULL_S( x ) EXTRA_REDUCE_S( REDUCE (x ) )
//#define DO_REDUCE( i ) X(i) = REDUCE( X(i) )
#define DO_REDUCE_FULL_S(i) \
do { \
X(i) = REDUCE( X(i) ); \
X(i) = EXTRA_REDUCE_S( X(i) ); \
} while(0)
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
////////////////////////////////////
//
// SIMD 4 way AVX512
union _m512_v16 {
uint16_t u16[32];
__m512i v512;
};
typedef union _m512_v16 m512_v16;
static const m512_v16 FFT64_Twiddle4w[] =
{
{{ 1, 2, 4, 8, 16, 32, 64, 128,
1, 2, 4, 8, 16, 32, 64, 128,
1, 2, 4, 8, 16, 32, 64, 128,
1, 2, 4, 8, 16, 32, 64, 128 }},
{{ 1, 60, 2, 120, 4, -17, 8, -34,
1, 60, 2, 120, 4, -17, 8, -34,
1, 60, 2, 120, 4, -17, 8, -34,
1, 60, 2, 120, 4, -17, 8, -34 }},
{{ 1, 120, 8, -68, 64, -30, -2, 17,
1, 120, 8, -68, 64, -30, -2, 17,
1, 120, 8, -68, 64, -30, -2, 17,
1, 120, 8, -68, 64, -30, -2, 17 }},
{{ 1, 46, 60, -67, 2, 92, 120, 123,
1, 46, 60, -67, 2, 92, 120, 123,
1, 46, 60, -67, 2, 92, 120, 123,
1, 46, 60, -67, 2, 92, 120, 123 }},
{{ 1, 92, -17, -22, 32, 117, -30, 67,
1, 92, -17, -22, 32, 117, -30, 67,
1, 92, -17, -22, 32, 117, -30, 67,
1, 92, -17, -22, 32, 117, -30, 67 }},
{{ 1, -67, 120, -73, 8, -22, -68, -70,
1, -67, 120, -73, 8, -22, -68, -70,
1, -67, 120, -73, 8, -22, -68, -70,
1, -67, 120, -73, 8, -22, -68, -70 }},
{{ 1, 123, -34, -70, 128, 67, 17, 35,
1, 123, -34, -70, 128, 67, 17, 35,
1, 123, -34, -70, 128, 67, 17, 35,
1, 123, -34, -70, 128, 67, 17, 35 }},
};
static const m512_v16 FFT128_Twiddle4w[] =
{
{{ 1, -118, 46, -31, 60, 116, -67, -61,
1, -118, 46, -31, 60, 116, -67, -61,
1, -118, 46, -31, 60, 116, -67, -61,
1, -118, 46, -31, 60, 116, -67, -61 }},
{{ 2, 21, 92, -62, 120, -25, 123, -122,
2, 21, 92, -62, 120, -25, 123, -122,
2, 21, 92, -62, 120, -25, 123, -122,
2, 21, 92, -62, 120, -25, 123, -122 }},
{{ 4, 42, -73, -124, -17, -50, -11, 13,
4, 42, -73, -124, -17, -50, -11, 13,
4, 42, -73, -124, -17, -50, -11, 13,
4, 42, -73, -124, -17, -50, -11, 13 }},
{{ 8, 84, 111, 9, -34, -100, -22, 26,
8, 84, 111, 9, -34, -100, -22, 26,
8, 84, 111, 9, -34, -100, -22, 26,
8, 84, 111, 9, -34, -100, -22, 26 }},
{{ 16, -89, -35, 18, -68, 57, -44, 52,
16, -89, -35, 18, -68, 57, -44, 52,
16, -89, -35, 18, -68, 57, -44, 52,
16, -89, -35, 18, -68, 57, -44, 52 }},
{{ 32, 79, -70, 36, 121, 114, -88, 104,
32, 79, -70, 36, 121, 114, -88, 104,
32, 79, -70, 36, 121, 114, -88, 104,
32, 79, -70, 36, 121, 114, -88, 104 }},
{{ 64, -99, 117, 72, -15, -29, 81, -49,
64, -99, 117, 72, -15, -29, 81, -49,
64, -99, 117, 72, -15, -29, 81, -49,
64, -99, 117, 72, -15, -29, 81, -49 }},
{{ 128, 59, -23, -113, -30, -58, -95, -98,
128, 59, -23, -113, -30, -58, -95, -98,
128, 59, -23, -113, -30, -58, -95, -98,
128, 59, -23, -113, -30, -58, -95, -98 }},
};
static const m512_v16 FFT256_Twiddle4w[] =
{
{{ 1, 41, -118, 45, 46, 87, -31, 14,
1, 41, -118, 45, 46, 87, -31, 14,
1, 41, -118, 45, 46, 87, -31, 14,
1, 41, -118, 45, 46, 87, -31, 14 }},
{{ 60, -110, 116, -127, -67, 80, -61, 69,
60, -110, 116, -127, -67, 80, -61, 69,
60, -110, 116, -127, -67, 80, -61, 69,
60, -110, 116, -127, -67, 80, -61, 69 }},
{{ 2, 82, 21, 90, 92, -83, -62, 28,
2, 82, 21, 90, 92, -83, -62, 28,
2, 82, 21, 90, 92, -83, -62, 28,
2, 82, 21, 90, 92, -83, -62, 28 }},
{{ 120, 37, -25, 3, 123, -97, -122, -119,
120, 37, -25, 3, 123, -97, -122, -119,
120, 37, -25, 3, 123, -97, -122, -119,
120, 37, -25, 3, 123, -97, -122, -119 }},
{{ 4, -93, 42, -77, -73, 91, -124, 56,
4, -93, 42, -77, -73, 91, -124, 56,
4, -93, 42, -77, -73, 91, -124, 56,
4, -93, 42, -77, -73, 91, -124, 56 }},
{{ -17, 74, -50, 6, -11, 63, 13, 19,
-17, 74, -50, 6, -11, 63, 13, 19,
-17, 74, -50, 6, -11, 63, 13, 19,
-17, 74, -50, 6, -11, 63, 13, 19 }},
{{ 8, 71, 84, 103, 111, -75, 9, 112,
8, 71, 84, 103, 111, -75, 9, 112,
8, 71, 84, 103, 111, -75, 9, 112,
8, 71, 84, 103, 111, -75, 9, 112 }},
{{ -34, -109, -100, 12, -22, 126, 26, 38,
-34, -109, -100, 12, -22, 126, 26, 38,
-34, -109, -100, 12, -22, 126, 26, 38,
-34, -109, -100, 12, -22, 126, 26, 38 }},
{{ 16, -115, -89, -51, -35, 107, 18, -33,
16, -115, -89, -51, -35, 107, 18, -33,
16, -115, -89, -51, -35, 107, 18, -33,
16, -115, -89, -51, -35, 107, 18, -33 }},
{{ -68, 39, 57, 24, -44, -5, 52, 76,
-68, 39, 57, 24, -44, -5, 52, 76,
-68, 39, 57, 24, -44, -5, 52, 76,
-68, 39, 57, 24, -44, -5, 52, 76 }},
{{ 32, 27, 79, -102, -70, -43, 36, -66,
32, 27, 79, -102, -70, -43, 36, -66,
32, 27, 79, -102, -70, -43, 36, -66,
32, 27, 79, -102, -70, -43, 36, -66 }},
{{ 121, 78, 114, 48, -88, -10, 104, -105,
121, 78, 114, 48, -88, -10, 104, -105,
121, 78, 114, 48, -88, -10, 104, -105,
121, 78, 114, 48, -88, -10, 104, -105 }},
{{ 64, 54, -99, 53, 117, -86, 72, 125,
64, 54, -99, 53, 117, -86, 72, 125,
64, 54, -99, 53, 117, -86, 72, 125,
64, 54, -99, 53, 117, -86, 72, 125 }},
{{ -15, -101, -29, 96, 81, -20, -49, 47,
-15, -101, -29, 96, 81, -20, -49, 47,
-15, -101, -29, 96, 81, -20, -49, 47,
-15, -101, -29, 96, 81, -20, -49, 47 }},
{{ 128, 108, 59, 106, -23, 85, -113, -7,
128, 108, 59, 106, -23, 85, -113, -7,
128, 108, 59, 106, -23, 85, -113, -7,
128, 108, 59, 106, -23, 85, -113, -7 }},
{{ -30, 55, -58, -65, -95, -40, -98, 94,
-30, 55, -58, -65, -95, -40, -98, 94,
-30, 55, -58, -65, -95, -40, -98, 94,
-30, 55, -58, -65, -95, -40, -98, 94 }}
};
#define shufxor4w(x,s) _mm512_shuffle_epi32( x, XCAT( SHUFXOR_, s ))
#define REDUCE4w(x) \
_mm512_sub_epi16( _mm512_maskz_mov_epi8( 0x5555555555555555, x ), \
_mm512_srai_epi16( x, 8 ) )
/*
#define REDUCE4w(x) \
_mm512_sub_epi16( _mm512_and_si512( x, m512_const1_64( \
0x00ff00ff00ff00ff ) ), _mm512_srai_epi16( x, 8 ) )
*/
#define EXTRA_REDUCE_S4w(x) \
_mm512_sub_epi16( x, _mm512_and_si512( \
m512_const1_64( 0x0101010101010101 ), \
_mm512_movm_epi16( _mm512_cmpgt_epi16_mask( \
x, m512_const1_64( 0x0080008000800080 ) ) ) ) )
// generic, except it calls targetted macros
#define REDUCE_FULL_S4w( x ) EXTRA_REDUCE_S4w( REDUCE4w (x ) )
//#define DO_REDUCE4w( i ) X(i) = REDUCE4w( X(i) )
#define DO_REDUCE_FULL_S4w(i) \
do { \
X(i) = REDUCE4w( X(i) ); \
X(i) = EXTRA_REDUCE_S4w( X(i) ); \
} while(0)
// targetted
void fft64_4way( void *a )
{
__m512i* const A = a;
register __m512i X0, X1, X2, X3, X4, X5, X6, X7;
// generic
#define X(i) X##i
X0 = A[0];
X1 = A[1];
X2 = A[2];
X3 = A[3];
X4 = A[4];
X5 = A[5];
X6 = A[6];
X7 = A[7];
#define DO_REDUCE(i) X(i) = REDUCE4w( X(i) )
// Begin with 8 parallels DIF FFT_8
//
// FFT_8 using w=4 as 8th root of unity
// Unrolled decimation in frequency (DIF) radix-2 NTT.
// Output data is in revbin_permuted order.
// targetted
#define BUTTERFLY_0( i,j ) \
do { \
__m512i v = X(j); \
X(j) = _mm512_add_epi16( X(i), X(j) ); \
X(i) = _mm512_sub_epi16( X(i), v ); \
} while(0)
#define BUTTERFLY_N( i, j, w ) \
do { \
__m512i v = X(j); \
X(j) = _mm512_add_epi16( X(i), X(j) ); \
X(i) = _mm512_slli_epi16( _mm512_sub_epi16( X(i), v ), w ); \
} while(0)
BUTTERFLY_0( 0, 4 );
BUTTERFLY_N( 1, 5, 2 );
BUTTERFLY_N( 2, 6, 4 );
BUTTERFLY_N( 3, 7, 6 );
DO_REDUCE( 2 );
DO_REDUCE( 3 );
BUTTERFLY_0( 0, 2 );
BUTTERFLY_0( 4, 6 );
BUTTERFLY_N( 1, 3, 4 );
BUTTERFLY_N( 5, 7, 4 );
DO_REDUCE( 1 );
BUTTERFLY_0( 0, 1 );
BUTTERFLY_0( 2, 3 );
BUTTERFLY_0( 4, 5 );
BUTTERFLY_0( 6, 7 );
/* We don't need to reduce X(7) */
DO_REDUCE_FULL_S4w( 0 );
DO_REDUCE_FULL_S4w( 1 );
DO_REDUCE_FULL_S4w( 2 );
DO_REDUCE_FULL_S4w( 3 );
DO_REDUCE_FULL_S4w( 4 );
DO_REDUCE_FULL_S4w( 5 );
DO_REDUCE_FULL_S4w( 6 );
#undef BUTTERFLY_0
#undef BUTTERFLY_N
// twiddle is hard coded T[0] = m512_const2_64( {128,64,32,16}, {8,4,2,1} )
// Multiply by twiddle factors
// X(6) = _mm512_mullo_epi16( X(6), m512_const2_64( 0x0080004000200010,
// 0x0008000400020001 );
// X(5) = _mm512_mullo_epi16( X(5), m512_const2_64( 0xffdc0008ffef0004,
// 0x00780002003c0001 );
X(6) = _mm512_mullo_epi16( X(6), FFT64_Twiddle4w[0].v512 );
X(5) = _mm512_mullo_epi16( X(5), FFT64_Twiddle4w[1].v512 );
X(4) = _mm512_mullo_epi16( X(4), FFT64_Twiddle4w[2].v512 );
X(3) = _mm512_mullo_epi16( X(3), FFT64_Twiddle4w[3].v512 );
X(2) = _mm512_mullo_epi16( X(2), FFT64_Twiddle4w[4].v512 );
X(1) = _mm512_mullo_epi16( X(1), FFT64_Twiddle4w[5].v512 );
X(0) = _mm512_mullo_epi16( X(0), FFT64_Twiddle4w[6].v512 );
// Transpose the FFT state with a revbin order permutation
// on the rows and the column.
// This will make the full FFT_64 in order.
#define INTERLEAVE( i, j ) \
do { \
__m512i u = X(j); \
X(j) = _mm512_unpackhi_epi16( X(i), X(j) ); \
X(i) = _mm512_unpacklo_epi16( X(i), u ); \
} while(0)
INTERLEAVE( 1, 0 );
INTERLEAVE( 3, 2 );
INTERLEAVE( 5, 4 );
INTERLEAVE( 7, 6 );
INTERLEAVE( 2, 0 );
INTERLEAVE( 3, 1 );
INTERLEAVE( 6, 4 );
INTERLEAVE( 7, 5 );
INTERLEAVE( 4, 0 );
INTERLEAVE( 5, 1 );
INTERLEAVE( 6, 2 );
INTERLEAVE( 7, 3 );
#undef INTERLEAVE
#define BUTTERFLY_0( i,j ) \
do { \
__m512i u = X(j); \
X(j) = _mm512_sub_epi16( X(j), X(i) ); \
X(i) = _mm512_add_epi16( u, X(i) ); \
} while(0)
#define BUTTERFLY_N( i, j, w ) \
do { \
__m512i u = X(j); \
X(i) = _mm512_slli_epi16( X(i), w ); \
X(j) = _mm512_sub_epi16( X(j), X(i) ); \
X(i) = _mm512_add_epi16( u, X(i) ); \
} while(0)
DO_REDUCE( 0 );
DO_REDUCE( 1 );
DO_REDUCE( 2 );
DO_REDUCE( 3 );
DO_REDUCE( 4 );
DO_REDUCE( 5 );
DO_REDUCE( 6 );
DO_REDUCE( 7 );
BUTTERFLY_0( 0, 1 );
BUTTERFLY_0( 2, 3 );
BUTTERFLY_0( 4, 5 );
BUTTERFLY_0( 6, 7 );
BUTTERFLY_0( 0, 2 );
BUTTERFLY_0( 4, 6 );
BUTTERFLY_N( 1, 3, 4 );
BUTTERFLY_N( 5, 7, 4 );
DO_REDUCE( 3 );
BUTTERFLY_0( 0, 4 );
BUTTERFLY_N( 1, 5, 2 );
BUTTERFLY_N( 2, 6, 4 );
BUTTERFLY_N( 3, 7, 6 );
DO_REDUCE_FULL_S4w( 0 );
DO_REDUCE_FULL_S4w( 1 );
DO_REDUCE_FULL_S4w( 2 );
DO_REDUCE_FULL_S4w( 3 );
DO_REDUCE_FULL_S4w( 4 );
DO_REDUCE_FULL_S4w( 5 );
DO_REDUCE_FULL_S4w( 6 );
DO_REDUCE_FULL_S4w( 7 );
#undef BUTTERFLY_0
#undef BUTTERFLY_N
#undef DO_REDUCE
A[0] = X0;
A[1] = X1;
A[2] = X2;
A[3] = X3;
A[4] = X4;
A[5] = X5;
A[6] = X6;
A[7] = X7;
#undef X
}
void fft128_4way( void *a )
{
int i;
// Temp space to help for interleaving in the end
__m512i B[8];
__m512i *A = (__m512i*) a;
/* Size-2 butterflies */
for ( i = 0; i<8; i++ )
{
B[ i ] = _mm512_add_epi16( A[ i ], A[ i+8 ] );
B[ i ] = REDUCE_FULL_S4w( B[ i ] );
A[ i+8 ] = _mm512_sub_epi16( A[ i ], A[ i+8 ] );
A[ i+8 ] = REDUCE_FULL_S4w( A[ i+8 ] );
A[ i+8 ] = _mm512_mullo_epi16( A[ i+8 ], FFT128_Twiddle4w[i].v512 );
A[ i+8 ] = REDUCE_FULL_S4w( A[ i+8 ] );
}
fft64_4way( B );
fft64_4way( A+8 );
/* Transposi (i.e. interleave) */
for ( i = 0; i < 8; i++ )
{
A[ 2*i ] = _mm512_unpacklo_epi16( B[ i ], A[ i+8 ] );
A[ 2*i+1 ] = _mm512_unpackhi_epi16( B[ i ], A[ i+8 ] );
}
}
void fft128_4way_msg( uint16_t *a, const uint8_t *x, int final )
{
const __m512i zero = _mm512_setzero_si512();
static const m512_v16 Tweak = {{ 0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,1 }};
static const m512_v16 FinalTweak = {{ 0,0,0,0,0,1,0,1, 0,0,0,0,0,1,0,1,
0,0,0,0,0,1,0,1, 0,0,0,0,0,1,0,1 }};
__m512i *X = (__m512i*)x;
__m512i *A = (__m512i*)a;
#define UNPACK( i ) \
do { \
__m512i t = X[i]; \
A[2*i] = _mm512_unpacklo_epi8( t, zero ); \
A[2*i+8] = _mm512_mullo_epi16( A[2*i], FFT128_Twiddle4w[2*i].v512 ); \
A[2*i+8] = REDUCE4w(A[2*i+8]); \
A[2*i+1] = _mm512_unpackhi_epi8( t, zero ); \
A[2*i+9] = _mm512_mullo_epi16(A[2*i+1], FFT128_Twiddle4w[2*i+1].v512 ); \
A[2*i+9] = REDUCE4w(A[2*i+9]); \
} while(0)
// This allows to tweak the last butterflies to introduce X^127
#define UNPACK_TWEAK( i,tw ) \
do { \
__m512i t = X[i]; \
__m512i tmp; \
A[2*i] = _mm512_unpacklo_epi8( t, zero ); \
A[2*i+8] = _mm512_mullo_epi16( A[ 2*i ], FFT128_Twiddle4w[ 2*i ].v512 ); \
A[2*i+8] = REDUCE4w( A[ 2*i+8 ] ); \
tmp = _mm512_unpackhi_epi8( t, zero ); \
A[2*i+1] = _mm512_add_epi16( tmp, tw ); \
A[2*i+9] = _mm512_mullo_epi16( _mm512_sub_epi16( tmp, tw ), \
FFT128_Twiddle4w[ 2*i+1 ].v512 );\
A[2*i+9] = REDUCE4w( A[ 2*i+9 ] ); \
} while(0)
UNPACK( 0 );
UNPACK( 1 );
UNPACK( 2 );
if ( final )
UNPACK_TWEAK( 3, FinalTweak.v512 );
else
UNPACK_TWEAK( 3, Tweak.v512 );
#undef UNPACK
#undef UNPACK_TWEAK
fft64_4way( a );
fft64_4way( a+256 );
}
void fft256_4way_msg( uint16_t *a, const uint8_t *x, int final )
{
const __m512i zero = _mm512_setzero_si512();
static const m512_v16 Tweak = {{ 0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,1 }};
static const m512_v16 FinalTweak = {{ 0,0,0,0,0,1,0,1, 0,0,0,0,0,1,0,1,
0,0,0,0,0,1,0,1, 0,0,0,0,0,1,0,1 }};
__m512i *X = (__m512i*)x;
__m512i *A = (__m512i*)a;
#define UNPACK( i ) \
do { \
__m512i t = X[i]; \
A[ 2*i ] = _mm512_unpacklo_epi8( t, zero ); \
A[ 2*i + 16 ] = _mm512_mullo_epi16( A[ 2*i ], \
FFT256_Twiddle4w[ 2*i ].v512 ); \
A[ 2*i + 16 ] = REDUCE4w( A[ 2*i + 16 ] ); \
A[ 2*i + 1 ] = _mm512_unpackhi_epi8( t, zero ); \
A[ 2*i + 17 ] = _mm512_mullo_epi16( A[ 2*i + 1 ], \
FFT256_Twiddle4w[ 2*i + 1 ].v512 ); \
A[ 2*i + 17 ] = REDUCE4w( A[ 2*i + 17 ] ); \
} while(0)
// This allows to tweak the last butterflies to introduce X^127
#define UNPACK_TWEAK( i,tw ) \
do { \
__m512i t = X[i]; \
__m512i tmp; \
A[ 2*i ] = _mm512_unpacklo_epi8( t, zero ); \
A[ 2*i + 16 ] = _mm512_mullo_epi16( A[ 2*i ], \
FFT256_Twiddle4w[ 2*i ].v512 ); \
A[ 2*i + 16 ] = REDUCE4w( A[ 2*i + 16 ] ); \
tmp = _mm512_unpackhi_epi8( t, zero ); \
A[ 2*i + 1 ] = _mm512_add_epi16( tmp, tw ); \
A[ 2*i + 17 ] = _mm512_mullo_epi16( _mm512_sub_epi16( tmp, tw ), \
FFT256_Twiddle4w[ 2*i + 1 ].v512 ); \
} while(0)
UNPACK( 0 );
UNPACK( 1 );
UNPACK( 2 );
UNPACK( 3 );
UNPACK( 4 );
UNPACK( 5 );
UNPACK( 6 );
if ( final )
UNPACK_TWEAK( 7, FinalTweak.v512 );
else
UNPACK_TWEAK( 7, Tweak.v512 );
#undef UNPACK
#undef UNPACK_TWEAK
fft128_4way( a );
fft128_4way( a+512 );
}
#define c1_16_512( x ) {{ x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x }}
void rounds512_4way( uint32_t *state, const uint8_t *msg, uint16_t *fft )
{
register __m512i S0l, S1l, S2l, S3l;
register __m512i S0h, S1h, S2h, S3h;
__m512i *S = (__m512i*) state;
__m512i *M = (__m512i*) msg;
__m512i *W = (__m512i*) fft;
static const m512_v16 code[] = { c1_16_512(185), c1_16_512(233) };
S0l = _mm512_xor_si512( S[0], M[0] );
S0h = _mm512_xor_si512( S[1], M[1] );
S1l = _mm512_xor_si512( S[2], M[2] );
S1h = _mm512_xor_si512( S[3], M[3] );
S2l = _mm512_xor_si512( S[4], M[4] );
S2h = _mm512_xor_si512( S[5], M[5] );
S3l = _mm512_xor_si512( S[6], M[6] );
S3h = _mm512_xor_si512( S[7], M[7] );
// targetted, local macros don't need a unique name
#define S(i) S##i
#define F_0( B, C, D ) _mm512_ternarylogic_epi32( B, C, D, 0xca )
#define F_1( B, C, D ) _mm512_ternarylogic_epi32( B, C, D, 0xe8 )
/*
#define F_0(B, C, D) \
_mm512_xor_si512( _mm512_and_si512( _mm512_xor_si512( C,D ), B ), D )
#define F_1(B, C, D) \
_mm512_or_si512( _mm512_and_si512( D, C ),\
_mm512_and_si512( _mm512_or_si512( D,C ), B ) )
*/
#define Fl(a,b,c,fun) F_##fun (a##l,b##l,c##l)
#define Fh(a,b,c,fun) F_##fun (a##h,b##h,c##h)
// We split the round function in two halfes
// so as to insert some independent computations in between
// targetted
#define STEP_1_(a,b,c,d,w,fun,r,s,z) \
do { \
TTl = Fl( a,b,c,fun ); \
TTh = Fh( a,b,c,fun ); \
a##l = mm512_rol_32( a##l, r ); \
a##h = mm512_rol_32( a##h, r ); \
w##l = _mm512_add_epi32( w##l, d##l ); \
w##h = _mm512_add_epi32( w##h, d##h ); \
TTl = _mm512_add_epi32( TTl, w##l ); \
TTh = _mm512_add_epi32( TTh, w##h ); \
TTl = mm512_rol_32( TTl, s ); \
TTh = mm512_rol_32( TTh, s ); \
PERM( z,d,a, shufxor4w ); \
} while(0)
#define STEP_1( a,b,c,d,w,fun,r,s,z ) STEP_1_( a,b,c,d,w,fun,r,s,z )
#define STEP_2_( a,b,c,d,w,fun,r,s ) \
do { \
d##l = _mm512_add_epi32( d##l, TTl ); \
d##h = _mm512_add_epi32( d##h, TTh ); \
} while(0)
#define STEP_2( a,b,c,d,w,fun,r,s ) STEP_2_( a,b,c,d,w,fun,r,s )
#define STEP( a,b,c,d,w1,w2,fun,r,s,z ) \
do { \
register __m512i TTl, TTh, Wl=w1, Wh=w2; \
STEP_1( a,b,c,d,W,fun,r,s,z ); \
STEP_2( a,b,c,d,W,fun,r,s ); \
} while(0);
#define MSG_l(x) (2*(x))
#define MSG_h(x) (2*(x)+1)
#define MSG( w,hh,ll,u,z ) \
do { \
int a = MSG_##u(hh); \
int b = MSG_##u(ll); \
w##l = _mm512_unpacklo_epi16( W[a], W[b] ); \
w##l = _mm512_mullo_epi16( w##l, code[z].v512 ); \
w##h = _mm512_unpackhi_epi16( W[a], W[b]) ; \
w##h = _mm512_mullo_epi16( w##h, code[z].v512 ); \
} while(0)
#define ROUND( h0,l0,u0,h1,l1,u1,h2,l2,u2,h3,l3,u3,fun,r,s,t,u,z ) \
do { \
register __m512i W0l, W1l, W2l, W3l, TTl; \
register __m512i W0h, W1h, W2h, W3h, TTh; \
MSG( W0, h0, l0, u0, z ); \
STEP_1( S(0), S(1), S(2), S(3), W0, fun, r, s, 0 ); \
MSG( W1, h1, l1, u1, z ); \
STEP_2( S(0), S(1), S(2), S(3), W0, fun, r, s ); \
STEP_1( S(3), S(0), S(1), S(2), W1, fun, s, t, 1 ); \
MSG( W2,h2,l2,u2,z ); \
STEP_2( S(3), S(0), S(1), S(2), W1, fun, s, t ); \
STEP_1( S(2), S(3), S(0), S(1), W2, fun, t, u, 2 ); \
MSG( W3,h3,l3,u3,z ); \
STEP_2( S(2), S(3), S(0), S(1), W2, fun, t, u ); \
STEP_1( S(1), S(2), S(3), S(0), W3, fun, u, r, 3 ); \
STEP_2( S(1), S(2), S(3), S(0), W3, fun, u, r ); \
} while(0)
// 4 rounds with code 185
#define PERM_START 0
ROUND( 2, 10, l, 3, 11, l, 0, 8, l, 1, 9, l, 0, 3, 23, 17, 27, 0);
#undef PERM_START
#define PERM_START 4
ROUND( 3, 11, h, 2, 10, h, 1, 9, h, 0, 8, h, 1, 3, 23, 17, 27, 0);
#undef PERM_START
#define PERM_START 1
ROUND( 7, 15, h, 5, 13, h, 6, 14, l, 4, 12, l, 0, 28, 19, 22, 7, 0);
#undef PERM_START
#define PERM_START 5
ROUND( 4, 12, h, 6, 14, h, 5, 13, l, 7, 15, l, 1, 28, 19, 22, 7, 0);
#undef PERM_START
// 4 rounds with code 233
#define PERM_START 2
ROUND( 0, 4, h, 1, 5, l, 3, 7, h, 2, 6, l, 0, 29, 9, 15, 5, 1);
#undef PERM_START
#define PERM_START 6
ROUND( 3, 7, l, 2, 6, h, 0, 4, l, 1, 5, h, 1, 29, 9, 15, 5, 1);
#undef PERM_START
#define PERM_START 3
ROUND( 11, 15, l, 8, 12, l, 8, 12, h, 11, 15, h, 0, 4, 13, 10, 25, 1);
#undef PERM_START
#define PERM_START 0
ROUND( 9, 13, h, 10, 14, h, 10, 14, l, 9, 13, l, 1, 4, 13, 10, 25, 1);
#undef PERM_START
// 1 round as feed-forward
#define PERM_START 4
STEP( S(0), S(1), S(2), S(3), S[0], S[1], 0, 4, 13, 0 );
STEP( S(3), S(0), S(1), S(2), S[2], S[3], 0, 13, 10, 1 );
STEP( S(2), S(3), S(0), S(1), S[4], S[5], 0, 10, 25, 2 );
STEP( S(1), S(2), S(3), S(0), S[6], S[7], 0, 25, 4, 3 );
S[0] = S0l; S[1] = S0h; S[2] = S1l; S[3] = S1h;
S[4] = S2l; S[5] = S2h; S[6] = S3l; S[7] = S3h;
#undef PERM_START
#undef STEP_1
#undef STEP_1_
#undef STEP_2
#undef STEP_2_
#undef STEP
#undef ROUND
#undef S
#undef F_0
#undef F_1
#undef Fl
#undef Fh
#undef MSG_l
#undef MSG_h
#undef MSG
}
void SIMD_4way_Compress( simd_4way_context *state, const void *m, int final )
{
m512_v16 Y[32];
uint16_t *y = (uint16_t*) Y[0].u16;
fft256_4way_msg( y, m, final );
rounds512_4way( state->A, m, y );
}
// imported from nist.c
int simd_4way_init( simd_4way_context *state, int hashbitlen )
{
__m512i *A = (__m512i*)state->A;
int n = 8;
state->hashbitlen = hashbitlen;
state->n_feistels = n;
state->blocksize = 128*8;
state->count = 0;
for ( int i = 0; i < 8; i++ )
A[i] = _mm512_set4_epi32( SIMD_IV_512[4*i+3], SIMD_IV_512[4*i+2],
SIMD_IV_512[4*i+1], SIMD_IV_512[4*i+0] );
return 0;
}
int simd_4way_update( simd_4way_context *state, const void *data,
int databitlen )
{
int bs = state->blocksize;
int current = state->count & (bs - 1);
while ( databitlen > 0 )
{
if ( ( current == 0 ) && ( databitlen >= bs ) )
{
// We can hash the data directly from the input buffer.
SIMD_4way_Compress( state, data, 0 );
databitlen -= bs;
data += 4*(bs/8);
state->count += bs;
}
else
{
// Copy a chunk of data to the buffer
int len = bs - current;
if ( databitlen < len )
{
memcpy( state->buffer + 4 * (current/8), data, 4 * (databitlen/8) );
state->count += databitlen;
return 0;
}
else
{
memcpy( state->buffer + 4 * (current / 8), data, 4 * (len / 8) );
state->count += len;
databitlen -= len;
data += 4*(len/8);
current = 0;
SIMD_4way_Compress( state, state->buffer, 0 );
}
}
}
return 0;
}
int simd_4way_close( simd_4way_context *state, void *hashval )
{
uint64_t l;
int current = state->count & (state->blocksize - 1);
int i;
int isshort = 1;
// If there is still some data in the buffer, hash it
if ( current )
{
current = ( current+7 ) / 8;
memset( state->buffer + 4*current, 0, 4*( state->blocksize/8 - current ) );
SIMD_4way_Compress( state, state->buffer, 0 );
}
//* Input the message length as the last block
memset( state->buffer, 0, 4*(state->blocksize / 8) );
l = state->count;
for ( i = 0; i < 8; i++ )
{
state->buffer[ i ] = l & 0xff;
state->buffer[ i+16 ] = l & 0xff;
state->buffer[ i+32 ] = l & 0xff;
state->buffer[ i+48 ] = l & 0xff;
l >>= 8;
}
if ( state->count < 16384 )
isshort = 2;
SIMD_4way_Compress( state, state->buffer, isshort );
memcpy( hashval, state->A, 4*(state->hashbitlen / 8) );
return 0;
}
int simd_4way_update_close( simd_4way_context *state, void *hashval,
const void *data, int databitlen )
{
int current, i;
int bs = state->blocksize; // bits in one lane
int isshort = 1;
uint64_t l;
current = state->count & (bs - 1);
while ( databitlen > 0 )
{
if ( current == 0 && databitlen >= bs )
{
// We can hash the data directly from the input buffer.
SIMD_4way_Compress( state, data, 0 );
databitlen -= bs;
data += 4*( bs/8 );
state->count += bs;
}
else
{
// Copy a chunk of data to the buffer
int len = bs - current;
if ( databitlen < len )
{
memcpy( state->buffer + 4*( current/8 ), data, 4*( (databitlen)/8 ) );
state->count += databitlen;
break;
}
else
{
memcpy( state->buffer + 4*(current/8), data, 4*(len/8) );
state->count += len;
databitlen -= len;
data += 4*( len/8 );
current = 0;
SIMD_4way_Compress( state, state->buffer, 0 );
}
}
}
current = state->count & (state->blocksize - 1);
// If there is still some data in the buffer, hash it
if ( current )
{
current = current / 8;
memset( state->buffer + 4*current, 0, 4*( state->blocksize/8 - current) );
SIMD_4way_Compress( state, state->buffer, 0 );
}
//* Input the message length as the last block
memset( state->buffer, 0, 4*( state->blocksize/8 ) );
l = state->count;
for ( i = 0; i < 8; i++ )
{
state->buffer[ i ] = l & 0xff;
state->buffer[ i+16 ] = l & 0xff;
state->buffer[ i+32 ] = l & 0xff;
state->buffer[ i+48 ] = l & 0xff;
l >>= 8;
}
if ( state->count < 16384 )
isshort = 2;
SIMD_4way_Compress( state, state->buffer, isshort );
memcpy( hashval, state->A, 4*( state->hashbitlen / 8 ) );
return 0;
}
int simd512_4way_full( simd_4way_context *state, void *hashval,
const void *data, int datalen )
{
__m512i *A = (__m512i*)state->A;
state->hashbitlen = 512;
state->n_feistels = 8;
state->blocksize = 128*8;
state->count = 0;
for ( int i = 0; i < 8; i++ )
A[i] = _mm512_set4_epi32( SIMD_IV_512[4*i+3], SIMD_IV_512[4*i+2],
SIMD_IV_512[4*i+1], SIMD_IV_512[4*i+0] );
int current, i;
int bs = state->blocksize; // bits in one lane
int isshort = 1;
uint64_t l;
int databitlen = datalen * 8;
current = state->count & (bs - 1);
while ( databitlen > 0 )
{
if ( current == 0 && databitlen >= bs )
{
// We can hash the data directly from the input buffer.
SIMD_4way_Compress( state, data, 0 );
databitlen -= bs;
data += 4*( bs/8 );
state->count += bs;
}
else
{
// Copy a chunk of data to the buffer
int len = bs - current;
if ( databitlen < len )
{
memcpy( state->buffer + 4*( current/8 ), data, 4*( (databitlen)/8 ) );
state->count += databitlen;
break;
}
else
{
memcpy( state->buffer + 4*(current/8), data, 4*(len/8) );
state->count += len;
databitlen -= len;
data += 4*( len/8 );
current = 0;
SIMD_4way_Compress( state, state->buffer, 0 );
}
}
}
current = state->count & (state->blocksize - 1);
// If there is still some data in the buffer, hash it
if ( current )
{
current = current / 8;
memset( state->buffer + 4*current, 0, 4*( state->blocksize/8 - current) );
SIMD_4way_Compress( state, state->buffer, 0 );
}
//* Input the message length as the last block
memset( state->buffer, 0, 4*( state->blocksize/8 ) );
l = state->count;
for ( i = 0; i < 8; i++ )
{
state->buffer[ i ] = l & 0xff;
state->buffer[ i+16 ] = l & 0xff;
state->buffer[ i+32 ] = l & 0xff;
state->buffer[ i+48 ] = l & 0xff;
l >>= 8;
}
if ( state->count < 16384 )
isshort = 2;
SIMD_4way_Compress( state, state->buffer, isshort );
memcpy( hashval, state->A, 4*( state->hashbitlen / 8 ) );
return 0;
}
#endif // AVX512
////////////////////////////////////
//
// SIMD 2 way AVX2
void fft64_2way( void *a )
{
__m256i* const A = a;
register __m256i X0, X1, X2, X3, X4, X5, X6, X7;
#define X(i) X##i
X0 = A[0];
X1 = A[1];
X2 = A[2];
X3 = A[3];
X4 = A[4];
X5 = A[5];
X6 = A[6];
X7 = A[7];
#define DO_REDUCE(i) X(i) = REDUCE( X(i) )
// Begin with 8 parallels DIF FFT_8
//
// FFT_8 using w=4 as 8th root of unity
// Unrolled decimation in frequency (DIF) radix-2 NTT.
// Output data is in revbin_permuted order.
static const int w[] = {0, 2, 4, 6};
// __m256i *Twiddle = (__m256i*)FFT64_Twiddle;
#define BUTTERFLY_0( i,j ) \
do { \
__m256i v = X(j); \
X(j) = _mm256_add_epi16( X(i), X(j) ); \
X(i) = _mm256_sub_epi16( X(i), v ); \
} while(0)
#define BUTTERFLY_N( i,j,n ) \
do { \
__m256i v = X(j); \
X(j) = _mm256_add_epi16( X(i), X(j) ); \
X(i) = _mm256_slli_epi16( _mm256_sub_epi16( X(i), v ), w[n] ); \
} while(0)
BUTTERFLY_0( 0, 4 );
BUTTERFLY_N( 1, 5, 1 );
BUTTERFLY_N( 2, 6, 2 );
BUTTERFLY_N( 3, 7, 3 );
DO_REDUCE( 2 );
DO_REDUCE( 3 );
BUTTERFLY_0( 0, 2 );
BUTTERFLY_0( 4, 6 );
BUTTERFLY_N( 1, 3, 2 );
BUTTERFLY_N( 5, 7, 2 );
DO_REDUCE( 1 );
BUTTERFLY_0( 0, 1 );
BUTTERFLY_0( 2, 3 );
BUTTERFLY_0( 4, 5 );
BUTTERFLY_0( 6, 7 );
/* We don't need to reduce X(7) */
DO_REDUCE_FULL_S( 0 );
DO_REDUCE_FULL_S( 1 );
DO_REDUCE_FULL_S( 2 );
DO_REDUCE_FULL_S( 3 );
DO_REDUCE_FULL_S( 4 );
DO_REDUCE_FULL_S( 5 );
DO_REDUCE_FULL_S( 6 );
#undef BUTTERFLY_0
#undef BUTTERFLY_N
// Multiply by twiddle factors
X(6) = _mm256_mullo_epi16( X(6), FFT64_Twiddle[0].v256 );
X(5) = _mm256_mullo_epi16( X(5), FFT64_Twiddle[1].v256 );
X(4) = _mm256_mullo_epi16( X(4), FFT64_Twiddle[2].v256 );
X(3) = _mm256_mullo_epi16( X(3), FFT64_Twiddle[3].v256 );
X(2) = _mm256_mullo_epi16( X(2), FFT64_Twiddle[4].v256 );
X(1) = _mm256_mullo_epi16( X(1), FFT64_Twiddle[5].v256 );
X(0) = _mm256_mullo_epi16( X(0), FFT64_Twiddle[6].v256 );
// Transpose the FFT state with a revbin order permutation
// on the rows and the column.
// This will make the full FFT_64 in order.
#define INTERLEAVE(i,j) \
do { \
__m256i t1= X(i); \
__m256i t2= X(j); \
X(i) = _mm256_unpacklo_epi16( t1, t2 ); \
X(j) = _mm256_unpackhi_epi16( t1, t2 ); \
} while(0)
INTERLEAVE( 1, 0 );
INTERLEAVE( 3, 2 );
INTERLEAVE( 5, 4 );
INTERLEAVE( 7, 6 );
INTERLEAVE( 2, 0 );
INTERLEAVE( 3, 1 );
INTERLEAVE( 6, 4 );
INTERLEAVE( 7, 5 );
INTERLEAVE( 4, 0 );
INTERLEAVE( 5, 1 );
INTERLEAVE( 6, 2 );
INTERLEAVE( 7, 3 );
#undef INTERLEAVE
//Finish with 8 parallels DIT FFT_8
//FFT_8 using w=4 as 8th root of unity
// Unrolled decimation in time (DIT) radix-2 NTT.
// Input data is in revbin_permuted order.
#define BUTTERFLY_0( i,j ) \
do { \
__m256i u = X(j); \
X(j) = _mm256_sub_epi16( X(j), X(i) ); \
X(i) = _mm256_add_epi16( u, X(i) ); \
} while(0)
#define BUTTERFLY_N( i,j,n ) \
do { \
__m256i u = X(j); \
X(i) = _mm256_slli_epi16( X(i), w[n] ); \
X(j) = _mm256_sub_epi16( X(j), X(i) ); \
X(i) = _mm256_add_epi16( u, X(i) ); \
} while(0)
DO_REDUCE( 0 );
DO_REDUCE( 1 );
DO_REDUCE( 2 );
DO_REDUCE( 3 );
DO_REDUCE( 4 );
DO_REDUCE( 5 );
DO_REDUCE( 6 );
DO_REDUCE( 7 );
BUTTERFLY_0( 0, 1 );
BUTTERFLY_0( 2, 3 );
BUTTERFLY_0( 4, 5 );
BUTTERFLY_0( 6, 7 );
BUTTERFLY_0( 0, 2 );
BUTTERFLY_0( 4, 6 );
BUTTERFLY_N( 1, 3, 2 );
BUTTERFLY_N( 5, 7, 2 );
DO_REDUCE( 3 );
BUTTERFLY_0( 0, 4 );
BUTTERFLY_N( 1, 5, 1 );
BUTTERFLY_N( 2, 6, 2 );
BUTTERFLY_N( 3, 7, 3 );
DO_REDUCE_FULL_S( 0 );
DO_REDUCE_FULL_S( 1 );
DO_REDUCE_FULL_S( 2 );
DO_REDUCE_FULL_S( 3 );
DO_REDUCE_FULL_S( 4 );
DO_REDUCE_FULL_S( 5 );
DO_REDUCE_FULL_S( 6 );
DO_REDUCE_FULL_S( 7 );
#undef BUTTERFLY_0
#undef BUTTERFLY_N
#undef DO_REDUCE
A[0] = X0;
A[1] = X1;
A[2] = X2;
A[3] = X3;
A[4] = X4;
A[5] = X5;
A[6] = X6;
A[7] = X7;
#undef X
}
void fft128_2way( void *a )
{
int i;
// Temp space to help for interleaving in the end
__m256i B[8];
__m256i *A = (__m256i*) a;
// __m256i *Twiddle = (__m256i*)FFT128_Twiddle;
/* Size-2 butterflies */
for ( i = 0; i<8; i++ )
{
B[ i ] = _mm256_add_epi16( A[ i ], A[ i+8 ] );
B[ i ] = REDUCE_FULL_S( B[ i ] );
A[ i+8 ] = _mm256_sub_epi16( A[ i ], A[ i+8 ] );
A[ i+8 ] = REDUCE_FULL_S( A[ i+8 ] );
A[ i+8 ] = _mm256_mullo_epi16( A[ i+8 ], FFT128_Twiddle[i].v256 );
A[ i+8 ] = REDUCE_FULL_S( A[ i+8 ] );
}
fft64_2way( B );
fft64_2way( A+8 );
/* Transpose (i.e. interleave) */
for ( i = 0; i < 8; i++ )
{
A[ 2*i ] = _mm256_unpacklo_epi16( B[ i ], A[ i+8 ] );
A[ 2*i+1 ] = _mm256_unpackhi_epi16( B[ i ], A[ i+8 ] );
}
}
void fft128_2way_msg( uint16_t *a, const uint8_t *x, int final )
{
const __m256i zero = _mm256_setzero_si256();
static const m256_v16 Tweak = {{ 0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,1, }};
static const m256_v16 FinalTweak = {{ 0,0,0,0,0,1,0,1, 0,0,0,0,0,1,0,1, }};
__m256i *X = (__m256i*)x;
__m256i *A = (__m256i*)a;
// __m256i *Twiddle = (__m256i*)FFT128_Twiddle;
#define UNPACK( i ) \
do { \
__m256i t = X[i]; \
A[2*i] = _mm256_unpacklo_epi8( t, zero ); \
A[2*i+8] = _mm256_mullo_epi16( A[2*i], FFT128_Twiddle[2*i].v256 ); \
A[2*i+8] = REDUCE(A[2*i+8]); \
A[2*i+1] = _mm256_unpackhi_epi8( t, zero ); \
A[2*i+9] = _mm256_mullo_epi16(A[2*i+1], FFT128_Twiddle[2*i+1].v256 ); \
A[2*i+9] = REDUCE(A[2*i+9]); \
} while(0)
// This allows to tweak the last butterflies to introduce X^127
#define UNPACK_TWEAK( i,tw ) \
do { \
__m256i t = X[i]; \
__m256i tmp; \
A[2*i] = _mm256_unpacklo_epi8( t, zero ); \
A[2*i+8] = _mm256_mullo_epi16( A[ 2*i ], FFT128_Twiddle[ 2*i ].v256 ); \
A[2*i+8] = REDUCE( A[ 2*i+8 ] ); \
tmp = _mm256_unpackhi_epi8( t, zero ); \
A[2*i+1] = _mm256_add_epi16( tmp, tw ); \
A[2*i+9] = _mm256_mullo_epi16( _mm256_sub_epi16( tmp, tw ), \
FFT128_Twiddle[ 2*i+1 ].v256 );\
A[2*i+9] = REDUCE( A[ 2*i+9 ] ); \
} while(0)
UNPACK( 0 );
UNPACK( 1 );
UNPACK( 2 );
if ( final )
UNPACK_TWEAK( 3, FinalTweak.v256 );
else
UNPACK_TWEAK( 3, Tweak.v256 );
#undef UNPACK
#undef UNPACK_TWEAK
fft64_2way( a );
fft64_2way( a+128 );
}
void fft256_2way_msg( uint16_t *a, const uint8_t *x, int final )
{
const __m256i zero = _mm256_setzero_si256();
static const m256_v16 Tweak = {{ 0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,1, }};
static const m256_v16 FinalTweak = {{ 0,0,0,0,0,1,0,1, 0,0,0,0,0,1,0,1, }};
__m256i *X = (__m256i*)x;
__m256i *A = (__m256i*)a;
// __m256i *Twiddle = (__m256i*)FFT256_Twiddle;
#define UNPACK( i ) \
do { \
__m256i t = X[i]; \
A[ 2*i ] = _mm256_unpacklo_epi8( t, zero ); \
A[ 2*i + 16 ] = _mm256_mullo_epi16( A[ 2*i ], \
FFT256_Twiddle[ 2*i ].v256 ); \
A[ 2*i + 16 ] = REDUCE( A[ 2*i + 16 ] ); \
A[ 2*i + 1 ] = _mm256_unpackhi_epi8( t, zero ); \
A[ 2*i + 17 ] = _mm256_mullo_epi16( A[ 2*i + 1 ], \
FFT256_Twiddle[ 2*i + 1 ].v256 ); \
A[ 2*i + 17 ] = REDUCE( A[ 2*i + 17 ] ); \
} while(0)
// This allows to tweak the last butterflies to introduce X^127
#define UNPACK_TWEAK( i,tw ) \
do { \
__m256i t = X[i]; \
__m256i tmp; \
A[ 2*i ] = _mm256_unpacklo_epi8( t, zero ); \
A[ 2*i + 16 ] = _mm256_mullo_epi16( A[ 2*i ], \
FFT256_Twiddle[ 2*i ].v256 ); \
A[ 2*i + 16 ] = REDUCE( A[ 2*i + 16 ] ); \
tmp = _mm256_unpackhi_epi8( t, zero ); \
A[ 2*i + 1 ] = _mm256_add_epi16( tmp, tw ); \
A[ 2*i + 17 ] = _mm256_mullo_epi16( _mm256_sub_epi16( tmp, tw ), \
FFT256_Twiddle[ 2*i + 1 ].v256 ); \
} while(0)
UNPACK( 0 );
UNPACK( 1 );
UNPACK( 2 );
UNPACK( 3 );
UNPACK( 4 );
UNPACK( 5 );
UNPACK( 6 );
if ( final )
UNPACK_TWEAK( 7, FinalTweak.v256 );
else
UNPACK_TWEAK( 7, Tweak.v256 );
#undef UNPACK
#undef UNPACK_TWEAK
fft128_2way( a );
fft128_2way( a+256 );
}
#define c1_16( x ) {{ x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x }}
void rounds512_2way( uint32_t *state, const uint8_t *msg, uint16_t *fft )
{
register __m256i S0l, S1l, S2l, S3l;
register __m256i S0h, S1h, S2h, S3h;
__m256i *S = (__m256i*) state;
__m256i *M = (__m256i*) msg;
__m256i *W = (__m256i*) fft;
static const m256_v16 code[] = { c1_16(185), c1_16(233) };
S0l = _mm256_xor_si256( S[0], M[0] );
S0h = _mm256_xor_si256( S[1], M[1] );
S1l = _mm256_xor_si256( S[2], M[2] );
S1h = _mm256_xor_si256( S[3], M[3] );
S2l = _mm256_xor_si256( S[4], M[4] );
S2h = _mm256_xor_si256( S[5], M[5] );
S3l = _mm256_xor_si256( S[6], M[6] );
S3h = _mm256_xor_si256( S[7], M[7] );
#define S(i) S##i
#define F_0(B, C, D) \
_mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( C,D ), B ), D )
#define F_1(B, C, D) \
_mm256_or_si256( _mm256_and_si256( D, C ),\
_mm256_and_si256( _mm256_or_si256( D,C ), B ) )
#define Fl(a,b,c,fun) F_##fun (a##l,b##l,c##l)
#define Fh(a,b,c,fun) F_##fun (a##h,b##h,c##h)
// We split the round function in two halfes
// so as to insert some independent computations in between
#if 0
#define SUM7_00 0
#define SUM7_01 1
#define SUM7_02 2
#define SUM7_03 3
#define SUM7_04 4
#define SUM7_05 5
#define SUM7_06 6
#define SUM7_10 1
#define SUM7_11 2
#define SUM7_12 3
#define SUM7_13 4
#define SUM7_14 5
#define SUM7_15 6
#define SUM7_16 0
#define SUM7_20 2
#define SUM7_21 3
#define SUM7_22 4
#define SUM7_23 5
#define SUM7_24 6
#define SUM7_25 0
#define SUM7_26 1
#define SUM7_30 3
#define SUM7_31 4
#define SUM7_32 5
#define SUM7_33 6
#define SUM7_34 0
#define SUM7_35 1
#define SUM7_36 2
#define SUM7_40 4
#define SUM7_41 5
#define SUM7_42 6
#define SUM7_43 0
#define SUM7_44 1
#define SUM7_45 2
#define SUM7_46 3
#define SUM7_50 5
#define SUM7_51 6
#define SUM7_52 0
#define SUM7_53 1
#define SUM7_54 2
#define SUM7_55 3
#define SUM7_56 4
#define SUM7_60 6
#define SUM7_61 0
#define SUM7_62 1
#define SUM7_63 2
#define SUM7_64 3
#define SUM7_65 4
#define SUM7_66 5
#define PERM(z,d,a) XCAT(PERM_,XCAT(SUM7_##z,PERM_START))(d,a)
#define PERM_0(d,a) /* XOR 1 */ \
do { \
d##l = shufxor( a##l, 1 ); \
d##h = shufxor( a##h, 1 ); \
} while(0)
#define PERM_1(d,a) /* XOR 6 */ \
do { \
d##l = shufxor( a##h, 2 ); \
d##h = shufxor( a##l, 2 ); \
} while(0)
#define PERM_2(d,a) /* XOR 2 */ \
do { \
d##l = shufxor( a##l, 2 ); \
d##h = shufxor( a##h, 2 ); \
} while(0)
#define PERM_3(d,a) /* XOR 3 */ \
do { \
d##l = shufxor( a##l, 3 ); \
d##h = shufxor( a##h, 3 ); \
} while(0)
#define PERM_4(d,a) /* XOR 5 */ \
do { \
d##l = shufxor( a##h, 1 ); \
d##h = shufxor( a##l, 1 ); \
} while(0)
#define PERM_5(d,a) /* XOR 7 */ \
do { \
d##l = shufxor( a##h, 3 ); \
d##h = shufxor( a##l, 3 ); \
} while(0)
#define PERM_6(d,a) /* XOR 4 */ \
do { \
d##l = a##h; \
d##h = a##l; \
} while(0)
#endif
#define STEP_1_(a,b,c,d,w,fun,r,s,z) \
do { \
TTl = Fl( a,b,c,fun ); \
TTh = Fh( a,b,c,fun ); \
a##l = mm256_rol_32( a##l, r ); \
a##h = mm256_rol_32( a##h, r ); \
w##l = _mm256_add_epi32( w##l, d##l ); \
w##h = _mm256_add_epi32( w##h, d##h ); \
TTl = _mm256_add_epi32( TTl, w##l ); \
TTh = _mm256_add_epi32( TTh, w##h ); \
TTl = mm256_rol_32( TTl, s ); \
TTh = mm256_rol_32( TTh, s ); \
PERM( z,d,a, shufxor2w ); \
} while(0)
#define STEP_1( a,b,c,d,w,fun,r,s,z ) STEP_1_( a,b,c,d,w,fun,r,s,z )
#define STEP_2_( a,b,c,d,w,fun,r,s ) \
do { \
d##l = _mm256_add_epi32( d##l, TTl ); \
d##h = _mm256_add_epi32( d##h, TTh ); \
} while(0)
#define STEP_2( a,b,c,d,w,fun,r,s ) STEP_2_( a,b,c,d,w,fun,r,s )
#define STEP( a,b,c,d,w1,w2,fun,r,s,z ) \
do { \
register __m256i TTl, TTh, Wl=w1, Wh=w2; \
STEP_1( a,b,c,d,W,fun,r,s,z ); \
STEP_2( a,b,c,d,W,fun,r,s ); \
} while(0);
#define MSG_l(x) (2*(x))
#define MSG_h(x) (2*(x)+1)
#define MSG( w,hh,ll,u,z ) \
do { \
int a = MSG_##u(hh); \
int b = MSG_##u(ll); \
w##l = _mm256_unpacklo_epi16( W[a], W[b] ); \
w##l = _mm256_mullo_epi16( w##l, code[z].v256 ); \
w##h = _mm256_unpackhi_epi16( W[a], W[b]) ; \
w##h = _mm256_mullo_epi16( w##h, code[z].v256 ); \
} while(0)
#define ROUND( h0,l0,u0,h1,l1,u1,h2,l2,u2,h3,l3,u3,fun,r,s,t,u,z ) \
do { \
register __m256i W0l, W1l, W2l, W3l, TTl; \
register __m256i W0h, W1h, W2h, W3h, TTh; \
MSG( W0, h0, l0, u0, z ); \
STEP_1( S(0), S(1), S(2), S(3), W0, fun, r, s, 0 ); \
MSG( W1, h1, l1, u1, z ); \
STEP_2( S(0), S(1), S(2), S(3), W0, fun, r, s ); \
STEP_1( S(3), S(0), S(1), S(2), W1, fun, s, t, 1 ); \
MSG( W2,h2,l2,u2,z ); \
STEP_2( S(3), S(0), S(1), S(2), W1, fun, s, t ); \
STEP_1( S(2), S(3), S(0), S(1), W2, fun, t, u, 2 ); \
MSG( W3,h3,l3,u3,z ); \
STEP_2( S(2), S(3), S(0), S(1), W2, fun, t, u ); \
STEP_1( S(1), S(2), S(3), S(0), W3, fun, u, r, 3 ); \
STEP_2( S(1), S(2), S(3), S(0), W3, fun, u, r ); \
} while(0)
// 4 rounds with code 185
#define PERM_START 0
ROUND( 2, 10, l, 3, 11, l, 0, 8, l, 1, 9, l, 0, 3, 23, 17, 27, 0);
#undef PERM_START
#define PERM_START 4
ROUND( 3, 11, h, 2, 10, h, 1, 9, h, 0, 8, h, 1, 3, 23, 17, 27, 0);
#undef PERM_START
#define PERM_START 1
ROUND( 7, 15, h, 5, 13, h, 6, 14, l, 4, 12, l, 0, 28, 19, 22, 7, 0);
#undef PERM_START
#define PERM_START 5
ROUND( 4, 12, h, 6, 14, h, 5, 13, l, 7, 15, l, 1, 28, 19, 22, 7, 0);
#undef PERM_START
// 4 rounds with code 233
#define PERM_START 2
ROUND( 0, 4, h, 1, 5, l, 3, 7, h, 2, 6, l, 0, 29, 9, 15, 5, 1);
#undef PERM_START
#define PERM_START 6
ROUND( 3, 7, l, 2, 6, h, 0, 4, l, 1, 5, h, 1, 29, 9, 15, 5, 1);
#undef PERM_START
#define PERM_START 3
ROUND( 11, 15, l, 8, 12, l, 8, 12, h, 11, 15, h, 0, 4, 13, 10, 25, 1);
#undef PERM_START
#define PERM_START 0
ROUND( 9, 13, h, 10, 14, h, 10, 14, l, 9, 13, l, 1, 4, 13, 10, 25, 1);
#undef PERM_START
// 1 round as feed-forward
#define PERM_START 4
STEP( S(0), S(1), S(2), S(3), S[0], S[1], 0, 4, 13, 0 );
STEP( S(3), S(0), S(1), S(2), S[2], S[3], 0, 13, 10, 1 );
STEP( S(2), S(3), S(0), S(1), S[4], S[5], 0, 10, 25, 2 );
STEP( S(1), S(2), S(3), S(0), S[6], S[7], 0, 25, 4, 3 );
S[0] = S0l; S[1] = S0h; S[2] = S1l; S[3] = S1h;
S[4] = S2l; S[5] = S2h; S[6] = S3l; S[7] = S3h;
#undef PERM_START
#undef STEP_1
#undef STEP_1_
#undef STEP_2
#undef STEP_2_
#undef STEP
#undef ROUND
#undef S
#undef F_0
#undef F_1
#undef Fl
#undef Fh
#undef MSG_l
#undef MSG_h
#undef MSG
}
void SIMD_2way_Compress( simd_2way_context *state, const void *m, int final )
{
m256_v16 Y[32];
uint16_t *y = (uint16_t*) Y[0].u16;
fft256_2way_msg( y, m, final );
rounds512_2way( state->A, m, y );
}
// imported from nist.c
int simd_2way_init( simd_2way_context *state, int hashbitlen )
{
__m256i *A = (__m256i*)state->A;
int n = 8;
state->hashbitlen = hashbitlen;
state->n_feistels = n;
state->blocksize = 128*8;
state->count = 0;
for ( int i = 0; i < 8; i++ )
A[i] = _mm256_set_epi32( SIMD_IV_512[4*i+3], SIMD_IV_512[4*i+2],
SIMD_IV_512[4*i+1], SIMD_IV_512[4*i+0],
SIMD_IV_512[4*i+3], SIMD_IV_512[4*i+2],
SIMD_IV_512[4*i+1], SIMD_IV_512[4*i+0] );
return 0;
}
int simd_2way_update( simd_2way_context *state, const void *data,
int databitlen )
{
int bs = state->blocksize;
int current = state->count & (bs - 1);
while ( databitlen > 0 )
{
if ( current == 0 && databitlen >= bs )
{
// We can hash the data directly from the input buffer.
SIMD_2way_Compress( state, data, 0 );
databitlen -= bs;
data += 2*(bs/8);
state->count += bs;
}
else
{
// Copy a chunk of data to the buffer
int len = bs - current;
if ( databitlen < len )
{
memcpy( state->buffer + 2*(current/8), data, 2*((databitlen+7)/8) );
state->count += databitlen;
return 0;
}
else
{
memcpy( state->buffer + 2*(current/8), data, 2*(len/8) );
state->count += len;
databitlen -= len;
data += 2*(len/8);
current = 0;
SIMD_2way_Compress( state, state->buffer, 0 );
}
}
}
return 0;
}
int simd_2way_close( simd_2way_context *state, void *hashval )
{
uint64_t l;
int current = state->count & (state->blocksize - 1);
int i;
int isshort = 1;
// If there is still some data in the buffer, hash it
if ( current )
{
current = ( current+7 ) / 8;
memset( state->buffer + 2*current, 0, 2*( state->blocksize/8 - current ) );
SIMD_2way_Compress( state, state->buffer, 0 );
}
//* Input the message length as the last block
memset( state->buffer, 0, 2*(state->blocksize / 8) );
l = state->count;
for ( i = 0; i < 8; i++ )
{
state->buffer[ i ] = l & 0xff;
state->buffer[ i+16 ] = l & 0xff;
l >>= 8;
}
if ( state->count < 16384 )
isshort = 2;
SIMD_2way_Compress( state, state->buffer, isshort );
memcpy( hashval, state->A, 2*(state->hashbitlen / 8) );
return 0;
}
int simd_2way_update_close( simd_2way_context *state, void *hashval,
const void *data, int databitlen )
{
int current, i;
int bs = state->blocksize; // bits in one lane
int isshort = 1;
uint64_t l;
current = state->count & (bs - 1);
while ( databitlen > 0 )
{
if ( current == 0 && databitlen >= bs )
{
// We can hash the data directly from the input buffer.
SIMD_2way_Compress( state, data, 0 );
databitlen -= bs;
data += 2*( bs/8 );
state->count += bs;
}
else
{
// Copy a chunk of data to the buffer
int len = bs - current;
if ( databitlen < len )
{
memcpy( state->buffer + 2*( current/8 ), data, 2*( (databitlen+7)/8 ) );
state->count += databitlen;
break;
}
else
{
memcpy( state->buffer + 2*(current/8), data, 2*(len/8) );
state->count += len;
databitlen -= len;
data += 2*( len/8 );
current = 0;
SIMD_2way_Compress( state, state->buffer, 0 );
}
}
}
current = state->count & (state->blocksize - 1);
// If there is still some data in the buffer, hash it
if ( current )
{
current = ( current+7 ) / 8;
memset( state->buffer + 2*current, 0, 2*( state->blocksize/8 - current) );
SIMD_2way_Compress( state, state->buffer, 0 );
}
//* Input the message length as the last block
memset( state->buffer, 0, 2*( state->blocksize/8 ) );
l = state->count;
for ( i = 0; i < 8; i++ )
{
state->buffer[ i ] = l & 0xff;
state->buffer[ i+16 ] = l & 0xff;
l >>= 8;
}
if ( state->count < 16384 )
isshort = 2;
SIMD_2way_Compress( state, state->buffer, isshort );
memcpy( hashval, state->A, 2*( state->hashbitlen / 8 ) );
return 0;
}
int simd512_2way_full( simd_2way_context *state, void *hashval,
const void *data, int datalen )
{
__m256i *A = (__m256i*)state->A;
state->hashbitlen = 512;
state->n_feistels = 8;
state->blocksize = 128*8;
state->count = 0;
for ( int i = 0; i < 8; i++ )
A[i] = _mm256_set_epi32( SIMD_IV_512[4*i+3], SIMD_IV_512[4*i+2],
SIMD_IV_512[4*i+1], SIMD_IV_512[4*i+0],
SIMD_IV_512[4*i+3], SIMD_IV_512[4*i+2],
SIMD_IV_512[4*i+1], SIMD_IV_512[4*i+0] );
int current, i;
int bs = state->blocksize; // bits in one lane
int isshort = 1;
uint64_t l;
int databitlen = datalen * 8;
current = state->count & (bs - 1);
while ( databitlen > 0 )
{
if ( current == 0 && databitlen >= bs )
{
// We can hash the data directly from the input buffer.
SIMD_2way_Compress( state, data, 0 );
databitlen -= bs;
data += 2*( bs/8 );
state->count += bs;
}
else
{
// Copy a chunk of data to the buffer
int len = bs - current;
if ( databitlen < len )
{
memcpy( state->buffer + 2*( current/8 ), data, 2*( (databitlen+7)/8 ) );
state->count += databitlen;
break;
}
else
{
memcpy( state->buffer + 2*(current/8), data, 2*(len/8) );
state->count += len;
databitlen -= len;
data += 2*( len/8 );
current = 0;
SIMD_2way_Compress( state, state->buffer, 0 );
}
}
}
current = state->count & (state->blocksize - 1);
// If there is still some data in the buffer, hash it
if ( current )
{
current = ( current+7 ) / 8;
memset( state->buffer + 2*current, 0, 2*( state->blocksize/8 - current) );
SIMD_2way_Compress( state, state->buffer, 0 );
}
//* Input the message length as the last block
memset( state->buffer, 0, 2*( state->blocksize/8 ) );
l = state->count;
for ( i = 0; i < 8; i++ )
{
state->buffer[ i ] = l & 0xff;
state->buffer[ i+16 ] = l & 0xff;
l >>= 8;
}
if ( state->count < 16384 )
isshort = 2;
SIMD_2way_Compress( state, state->buffer, isshort );
memcpy( hashval, state->A, 2*( state->hashbitlen / 8 ) );
return 0;
}
#endif