Files
cpuminer-opt-gpu/algo/blake/blake256-hash-4way.c
Jay D Dee da7030faa8 v3.21.0
2022-12-21 13:09:14 -05:00

2724 lines
93 KiB
C

/* $Id: blake.c 252 2011-06-07 17:55:14Z tp $ */
/*
* BLAKE implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
* 2016-2022 JayDDee246@gmail.com
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
//#if defined (__SSE4_2__)
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <limits.h>
#include "blake-hash-4way.h"
#ifdef __cplusplus
extern "C"{
#endif
#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_BLAKE
#define SPH_SMALL_FOOTPRINT_BLAKE 1
#endif
#if SPH_SMALL_FOOTPRINT_BLAKE
#define SPH_COMPACT_BLAKE_32 1
#endif
#if SPH_64 && (SPH_SMALL_FOOTPRINT_BLAKE || !SPH_64_TRUE)
#define SPH_COMPACT_BLAKE_64 1
#endif
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
// Blake-256
static const uint32_t IV256[8] =
{
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
#if SPH_COMPACT_BLAKE_32 || SPH_COMPACT_BLAKE_64
// Blake-256 4 & 8 way, Blake-512 4 way
static const unsigned sigma[16][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
#endif
#define Z00 0
#define Z01 1
#define Z02 2
#define Z03 3
#define Z04 4
#define Z05 5
#define Z06 6
#define Z07 7
#define Z08 8
#define Z09 9
#define Z0A A
#define Z0B B
#define Z0C C
#define Z0D D
#define Z0E E
#define Z0F F
#define Z10 E
#define Z11 A
#define Z12 4
#define Z13 8
#define Z14 9
#define Z15 F
#define Z16 D
#define Z17 6
#define Z18 1
#define Z19 C
#define Z1A 0
#define Z1B 2
#define Z1C B
#define Z1D 7
#define Z1E 5
#define Z1F 3
#define Z20 B
#define Z21 8
#define Z22 C
#define Z23 0
#define Z24 5
#define Z25 2
#define Z26 F
#define Z27 D
#define Z28 A
#define Z29 E
#define Z2A 3
#define Z2B 6
#define Z2C 7
#define Z2D 1
#define Z2E 9
#define Z2F 4
#define Z30 7
#define Z31 9
#define Z32 3
#define Z33 1
#define Z34 D
#define Z35 C
#define Z36 B
#define Z37 E
#define Z38 2
#define Z39 6
#define Z3A 5
#define Z3B A
#define Z3C 4
#define Z3D 0
#define Z3E F
#define Z3F 8
#define Z40 9
#define Z41 0
#define Z42 5
#define Z43 7
#define Z44 2
#define Z45 4
#define Z46 A
#define Z47 F
#define Z48 E
#define Z49 1
#define Z4A B
#define Z4B C
#define Z4C 6
#define Z4D 8
#define Z4E 3
#define Z4F D
#define Z50 2
#define Z51 C
#define Z52 6
#define Z53 A
#define Z54 0
#define Z55 B
#define Z56 8
#define Z57 3
#define Z58 4
#define Z59 D
#define Z5A 7
#define Z5B 5
#define Z5C F
#define Z5D E
#define Z5E 1
#define Z5F 9
#define Z60 C
#define Z61 5
#define Z62 1
#define Z63 F
#define Z64 E
#define Z65 D
#define Z66 4
#define Z67 A
#define Z68 0
#define Z69 7
#define Z6A 6
#define Z6B 3
#define Z6C 9
#define Z6D 2
#define Z6E 8
#define Z6F B
#define Z70 D
#define Z71 B
#define Z72 7
#define Z73 E
#define Z74 C
#define Z75 1
#define Z76 3
#define Z77 9
#define Z78 5
#define Z79 0
#define Z7A F
#define Z7B 4
#define Z7C 8
#define Z7D 6
#define Z7E 2
#define Z7F A
#define Z80 6
#define Z81 F
#define Z82 E
#define Z83 9
#define Z84 B
#define Z85 3
#define Z86 0
#define Z87 8
#define Z88 C
#define Z89 2
#define Z8A D
#define Z8B 7
#define Z8C 1
#define Z8D 4
#define Z8E A
#define Z8F 5
#define Z90 A
#define Z91 2
#define Z92 8
#define Z93 4
#define Z94 7
#define Z95 6
#define Z96 1
#define Z97 5
#define Z98 F
#define Z99 B
#define Z9A 9
#define Z9B E
#define Z9C 3
#define Z9D C
#define Z9E D
#define Z9F 0
#define Mx(r, i) Mx_(Z ## r ## i)
#define Mx_(n) Mx__(n)
#define Mx__(n) M ## n
// Blake-256 4 & 8 way
#define CSx(r, i) CSx_(Z ## r ## i)
#define CSx_(n) CSx__(n)
#define CSx__(n) CS ## n
#define CS0 SPH_C32(0x243F6A88)
#define CS1 SPH_C32(0x85A308D3)
#define CS2 SPH_C32(0x13198A2E)
#define CS3 SPH_C32(0x03707344)
#define CS4 SPH_C32(0xA4093822)
#define CS5 SPH_C32(0x299F31D0)
#define CS6 SPH_C32(0x082EFA98)
#define CS7 SPH_C32(0xEC4E6C89)
#define CS8 SPH_C32(0x452821E6)
#define CS9 SPH_C32(0x38D01377)
#define CSA SPH_C32(0xBE5466CF)
#define CSB SPH_C32(0x34E90C6C)
#define CSC SPH_C32(0xC0AC29B7)
#define CSD SPH_C32(0xC97C50DD)
#define CSE SPH_C32(0x3F84D5B5)
#define CSF SPH_C32(0xB5470917)
#if SPH_COMPACT_BLAKE_32
static const sph_u32 CS[16] = {
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3),
SPH_C32(0x13198A2E), SPH_C32(0x03707344),
SPH_C32(0xA4093822), SPH_C32(0x299F31D0),
SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89),
SPH_C32(0x452821E6), SPH_C32(0x38D01377),
SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD),
SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917)
};
#endif
/////////////////////////////////////////
//
// Blake-256 1 way SIMD
#define BLAKE256_ROUND( r ) \
{ \
V0 = _mm_add_epi32( V0, _mm_add_epi32( V1, \
_mm_set_epi32( CSx( r, 7 ) ^ Mx( r, 6 ), \
CSx( r, 5 ) ^ Mx( r, 4 ), \
CSx( r, 3 ) ^ Mx( r, 2 ), \
CSx( r, 1 ) ^ Mx( r, 0 ) ) ) ); \
V3 = mm128_swap32_16( _mm_xor_si128( V3, V0 ) ); \
V2 = _mm_add_epi32( V2, V3 ); \
V1 = mm128_ror_32( _mm_xor_si128( V1, V2 ), 12 ); \
V0 = _mm_add_epi32( V0, _mm_add_epi32( V1, \
_mm_set_epi32( CSx( r, 6 ) ^ Mx( r, 7 ), \
CSx( r, 4 ) ^ Mx( r, 5 ), \
CSx( r, 2 ) ^ Mx( r, 3 ), \
CSx( r, 0 ) ^ Mx( r, 1 ) ) ) ); \
V3 = mm128_shuflr32_8( _mm_xor_si128( V3, V0 ) ); \
V2 = _mm_add_epi32( V2, V3 ); \
V1 = mm128_ror_32( _mm_xor_si128( V1, V2 ), 7 ); \
V3 = mm128_shufll_32( V3 ); \
V2 = mm128_swap_64( V2 ); \
V1 = mm128_shuflr_32( V1 ); \
V0 = _mm_add_epi32( V0, _mm_add_epi32( V1, \
_mm_set_epi32( CSx( r, F ) ^ Mx( r, E ), \
CSx( r, D ) ^ Mx( r, C ), \
CSx( r, B ) ^ Mx( r, A ), \
CSx( r, 9 ) ^ Mx( r, 8 ) ) ) ); \
V3 = mm128_swap32_16( _mm_xor_si128( V3, V0 ) ); \
V2 = _mm_add_epi32( V2, V3 ); \
V1 = mm128_ror_32( _mm_xor_si128( V1, V2 ), 12 ); \
V0 = _mm_add_epi32( V0, _mm_add_epi32( V1, \
_mm_set_epi32( CSx( r, E ) ^ Mx( r, F ), \
CSx( r, C ) ^ Mx( r, D ), \
CSx( r, A ) ^ Mx( r, B ), \
CSx( r, 8 ) ^ Mx( r, 9 ) ) ) ); \
V3 = mm128_shuflr32_8( _mm_xor_si128( V3, V0 ) ); \
V2 = _mm_add_epi32( V2, V3 ); \
V1 = mm128_ror_32( _mm_xor_si128( V1, V2 ), 7 ); \
V3 = mm128_shuflr_32( V3 ); \
V2 = mm128_swap_64( V2 ); \
V1 = mm128_shufll_32( V1 ); \
}
void blake256_transform_le( uint32_t *H, const uint32_t *buf,
const uint32_t T0, const uint32_t T1 )
{
__m128i V0, V1, V2, V3;
uint32_t M0, M1, M2, M3, M4, M5, M6, M7, M8, M9, MA, MB, MC, MD, ME, MF;
V0 = casti_m128i( H, 0 );
V1 = casti_m128i( H, 1 );
V2 = _mm_set_epi32( 0x03707344, 0x13198A2E, 0x85A308D3, 0x243F6A88 );
V3 = _mm_set_epi32( T1 ^ 0xEC4E6C89, T1 ^ 0x082EFA98,
T0 ^ 0x299F31D0, T0 ^ 0xA4093822 );
M0 = buf[ 0];
M1 = buf[ 1];
M2 = buf[ 2];
M3 = buf[ 3];
M4 = buf[ 4];
M5 = buf[ 5];
M6 = buf[ 6];
M7 = buf[ 7];
M8 = buf[ 8];
M9 = buf[ 9];
MA = buf[10];
MB = buf[11];
MC = buf[12];
MD = buf[13];
ME = buf[14];
MF = buf[15];
BLAKE256_ROUND( 0 );
BLAKE256_ROUND( 1 );
BLAKE256_ROUND( 2 );
BLAKE256_ROUND( 3 );
BLAKE256_ROUND( 4 );
BLAKE256_ROUND( 5 );
BLAKE256_ROUND( 6 );
BLAKE256_ROUND( 7 );
BLAKE256_ROUND( 8 );
BLAKE256_ROUND( 9 );
BLAKE256_ROUND( 0 );
BLAKE256_ROUND( 1 );
BLAKE256_ROUND( 2 );
BLAKE256_ROUND( 3 );
casti_m128i( H, 0 ) = mm128_xor3( casti_m128i( H, 0 ), V0, V2 );
casti_m128i( H, 1 ) = mm128_xor3( casti_m128i( H, 1 ), V1, V3 );
}
////////////////////////////////////////////
//
// Blake-256 4 way
#define GS_4WAY( m0, m1, c0, c1, a, b, c, d ) \
{ \
a = _mm_add_epi32( _mm_add_epi32( a, b ), \
_mm_xor_si128( _mm_set1_epi32( c1 ), m0 ) ); \
d = mm128_swap32_16( _mm_xor_si128( d, a ) ); \
c = _mm_add_epi32( c, d ); \
b = mm128_ror_32( _mm_xor_si128( b, c ), 12 ); \
a = _mm_add_epi32( _mm_add_epi32( a, b ), \
_mm_xor_si128( _mm_set1_epi32( c0 ), m1 ) ); \
d = mm128_shuflr32_8( _mm_xor_si128( d, a ) ); \
c = _mm_add_epi32( c, d ); \
b = mm128_ror_32( _mm_xor_si128( b, c ), 7 ); \
}
#if SPH_COMPACT_BLAKE_32
// Not used
#if 0
#define ROUND_S_4WAY(r) do { \
GS_4WAY(M[sigma[r][0x0]], M[sigma[r][0x1]], \
CS[sigma[r][0x0]], CS[sigma[r][0x1]], V0, V4, V8, VC); \
GS_4WAY(M[sigma[r][0x2]], M[sigma[r][0x3]], \
CS[sigma[r][0x2]], CS[sigma[r][0x3]], V1, V5, V9, VD); \
GS_4WAY(M[sigma[r][0x4]], M[sigma[r][0x5]], \
CS[sigma[r][0x4]], CS[sigma[r][0x5]], V2, V6, VA, VE); \
GS_4WAY(M[sigma[r][0x6]], M[sigma[r][0x7]], \
CS[sigma[r][0x6]], CS[sigma[r][0x7]], V3, V7, VB, VF); \
GS_4WAY(M[sigma[r][0x8]], M[sigma[r][0x9]], \
CS[sigma[r][0x8]], CS[sigma[r][0x9]], V0, V5, VA, VF); \
GS_4WAY(M[sigma[r][0xA]], M[sigma[r][0xB]], \
CS[sigma[r][0xA]], CS[sigma[r][0xB]], V1, V6, VB, VC); \
GS_4WAY(M[sigma[r][0xC]], M[sigma[r][0xD]], \
CS[sigma[r][0xC]], CS[sigma[r][0xD]], V2, V7, V8, VD); \
GS_4WAY(M[sigma[r][0xE]], M[sigma[r][0xF]], \
CS[sigma[r][0xE]], CS[sigma[r][0xF]], V3, V4, V9, VE); \
} while (0)
#endif
#else
#define ROUND_S_4WAY(r) \
{ \
GS_4WAY(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
GS_4WAY(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
GS_4WAY(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
GS_4WAY(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
GS_4WAY(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
GS_4WAY(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
GS_4WAY(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
GS_4WAY(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
}
#endif
#define DECL_STATE32_4WAY \
__m128i H0, H1, H2, H3, H4, H5, H6, H7; \
uint32_t T0, T1;
#define READ_STATE32_4WAY(state) do { \
H0 = casti_m128i( state->H, 0 ); \
H1 = casti_m128i( state->H, 1 ); \
H2 = casti_m128i( state->H, 2 ); \
H3 = casti_m128i( state->H, 3 ); \
H4 = casti_m128i( state->H, 4 ); \
H5 = casti_m128i( state->H, 5 ); \
H6 = casti_m128i( state->H, 6 ); \
H7 = casti_m128i( state->H, 7 ); \
T0 = (state)->T0; \
T1 = (state)->T1; \
} while (0)
#define WRITE_STATE32_4WAY(state) do { \
casti_m128i( state->H, 0 ) = H0; \
casti_m128i( state->H, 1 ) = H1; \
casti_m128i( state->H, 2 ) = H2; \
casti_m128i( state->H, 3 ) = H3; \
casti_m128i( state->H, 4 ) = H4; \
casti_m128i( state->H, 5 ) = H5; \
casti_m128i( state->H, 6 ) = H6; \
casti_m128i( state->H, 7 ) = H7; \
(state)->T0 = T0; \
(state)->T1 = T1; \
} while (0)
#if SPH_COMPACT_BLAKE_32
// not used
#if 0
#define COMPRESS32_4WAY( rounds ) do { \
__m128i M[16]; \
__m128i V0, V1, V2, V3, V4, V5, V6, V7; \
__m128i V8, V9, VA, VB, VC, VD, VE, VF; \
unsigned r; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm_xor_si128( S0, _mm_set1_epi32( CS0 ) ); \
V9 = _mm_xor_si128( S1, _mm_set1_epi32( CS1 ) ); \
VA = _mm_xor_si128( S2, _mm_set1_epi32( CS2 ) ); \
VB = _mm_xor_si128( S3, _mm_set1_epi32( CS3 ) ); \
VC = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS4 ) ); \
VD = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS5 ) ); \
VE = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS6 ) ); \
VF = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS7 ) ); \
mm128_block_bswap_32( M, buf ); \
mm128_block_bswap_32( M+8, buf+8 ); \
for (r = 0; r < rounds; r ++) \
ROUND_S_4WAY(r); \
H0 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S0, V0 ), V8 ), H0 ); \
H1 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S1, V1 ), V9 ), H1 ); \
H2 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S2, V2 ), VA ), H2 ); \
H3 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S3, V3 ), VB ), H3 ); \
H4 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S0, V4 ), VC ), H4 ); \
H5 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S1, V5 ), VD ), H5 ); \
H6 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S2, V6 ), VE ), H6 ); \
H7 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S3, V7 ), VF ), H7 ); \
} while (0)
#endif
#else
// current impl
#if defined(__SSSE3__)
#define BLAKE256_4WAY_BLOCK_BSWAP32 \
{ \
__m128i shuf_bswap32 = _mm_set_epi64x( 0x0c0d0e0f08090a0b, \
0x0405060700010203 ); \
M0 = _mm_shuffle_epi8( buf[ 0], shuf_bswap32 ); \
M1 = _mm_shuffle_epi8( buf[ 1], shuf_bswap32 ); \
M2 = _mm_shuffle_epi8( buf[ 2], shuf_bswap32 ); \
M3 = _mm_shuffle_epi8( buf[ 3], shuf_bswap32 ); \
M4 = _mm_shuffle_epi8( buf[ 4], shuf_bswap32 ); \
M5 = _mm_shuffle_epi8( buf[ 5], shuf_bswap32 ); \
M6 = _mm_shuffle_epi8( buf[ 6], shuf_bswap32 ); \
M7 = _mm_shuffle_epi8( buf[ 7], shuf_bswap32 ); \
M8 = _mm_shuffle_epi8( buf[ 8], shuf_bswap32 ); \
M9 = _mm_shuffle_epi8( buf[ 9], shuf_bswap32 ); \
MA = _mm_shuffle_epi8( buf[10], shuf_bswap32 ); \
MB = _mm_shuffle_epi8( buf[11], shuf_bswap32 ); \
MC = _mm_shuffle_epi8( buf[12], shuf_bswap32 ); \
MD = _mm_shuffle_epi8( buf[13], shuf_bswap32 ); \
ME = _mm_shuffle_epi8( buf[14], shuf_bswap32 ); \
MF = _mm_shuffle_epi8( buf[15], shuf_bswap32 ); \
}
#else // SSE2
#define BLAKE256_4WAY_BLOCK_BSWAP32 \
{ \
M0 = mm128_bswap_32( buf[0] ); \
M1 = mm128_bswap_32( buf[1] ); \
M2 = mm128_bswap_32( buf[2] ); \
M3 = mm128_bswap_32( buf[3] ); \
M4 = mm128_bswap_32( buf[4] ); \
M5 = mm128_bswap_32( buf[5] ); \
M6 = mm128_bswap_32( buf[6] ); \
M7 = mm128_bswap_32( buf[7] ); \
M8 = mm128_bswap_32( buf[8] ); \
M9 = mm128_bswap_32( buf[9] ); \
MA = mm128_bswap_32( buf[10] ); \
MB = mm128_bswap_32( buf[11] ); \
MC = mm128_bswap_32( buf[12] ); \
MD = mm128_bswap_32( buf[13] ); \
ME = mm128_bswap_32( buf[14] ); \
MF = mm128_bswap_32( buf[15] ); \
}
#endif // SSSE3 else SSE2
#define COMPRESS32_4WAY( rounds ) \
{ \
__m128i M0, M1, M2, M3, M4, M5, M6, M7; \
__m128i M8, M9, MA, MB, MC, MD, ME, MF; \
__m128i V0, V1, V2, V3, V4, V5, V6, V7; \
__m128i V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = m128_const1_64( 0x243F6A88243F6A88 ); \
V9 = m128_const1_64( 0x85A308D385A308D3 ); \
VA = m128_const1_64( 0x13198A2E13198A2E ); \
VB = m128_const1_64( 0x0370734403707344 ); \
VC = _mm_set1_epi32( T0 ^ 0xA4093822 ); \
VD = _mm_set1_epi32( T0 ^ 0x299F31D0 ); \
VE = _mm_set1_epi32( T1 ^ 0x082EFA98 ); \
VF = _mm_set1_epi32( T1 ^ 0xEC4E6C89 ); \
BLAKE256_4WAY_BLOCK_BSWAP32; \
ROUND_S_4WAY(0); \
ROUND_S_4WAY(1); \
ROUND_S_4WAY(2); \
ROUND_S_4WAY(3); \
ROUND_S_4WAY(4); \
ROUND_S_4WAY(5); \
ROUND_S_4WAY(6); \
ROUND_S_4WAY(7); \
if (rounds == 14) \
{ \
ROUND_S_4WAY(8); \
ROUND_S_4WAY(9); \
ROUND_S_4WAY(0); \
ROUND_S_4WAY(1); \
ROUND_S_4WAY(2); \
ROUND_S_4WAY(3); \
} \
H0 = _mm_xor_si128( _mm_xor_si128( V8, V0 ), H0 ); \
H1 = _mm_xor_si128( _mm_xor_si128( V9, V1 ), H1 ); \
H2 = _mm_xor_si128( _mm_xor_si128( VA, V2 ), H2 ); \
H3 = _mm_xor_si128( _mm_xor_si128( VB, V3 ), H3 ); \
H4 = _mm_xor_si128( _mm_xor_si128( VC, V4 ), H4 ); \
H5 = _mm_xor_si128( _mm_xor_si128( VD, V5 ), H5 ); \
H6 = _mm_xor_si128( _mm_xor_si128( VE, V6 ), H6 ); \
H7 = _mm_xor_si128( _mm_xor_si128( VF, V7 ), H7 ); \
}
#endif
#if defined (__AVX2__)
/////////////////////////////////
//
// Blake-256 8 way
#define GS_8WAY( m0, m1, c0, c1, a, b, c, d ) \
{ \
a = _mm256_add_epi32( _mm256_add_epi32( a, b ), \
_mm256_xor_si256( _mm256_set1_epi32( c1 ), m0 ) ); \
d = mm256_swap32_16( _mm256_xor_si256( d, a ) ); \
c = _mm256_add_epi32( c, d ); \
b = mm256_ror_32( _mm256_xor_si256( b, c ), 12 ); \
a = _mm256_add_epi32( _mm256_add_epi32( a, b ), \
_mm256_xor_si256( _mm256_set1_epi32( c0 ), m1 ) ); \
d = mm256_shuflr32_8( _mm256_xor_si256( d, a ) ); \
c = _mm256_add_epi32( c, d ); \
b = mm256_ror_32( _mm256_xor_si256( b, c ), 7 ); \
}
#define ROUND_S_8WAY(r) \
{ \
GS_8WAY(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
GS_8WAY(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
GS_8WAY(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
GS_8WAY(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
GS_8WAY(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
GS_8WAY(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
GS_8WAY(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
GS_8WAY(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
}
// Short cut message expansion when the message data is known to be zero.
// M[ 5:12, 14 ] are zero padded for the second block of 80 byte data.
#define G256_8WAY_ALT( a, b, c, d, m0, m1 ) \
{ \
a = _mm256_add_epi32( _mm256_add_epi32( a, b ), m0 ); \
d = mm256_swap32_16( _mm256_xor_si256( d, a ) ); \
c = _mm256_add_epi32( c, d ); \
b = mm256_ror_32( _mm256_xor_si256( b, c ), 12 ); \
a = _mm256_add_epi32( _mm256_add_epi32( a, b ), m1 ); \
d = mm256_shuflr32_8( _mm256_xor_si256( d, a ) ); \
c = _mm256_add_epi32( c, d ); \
b = mm256_ror_32( _mm256_xor_si256( b, c ), 7 ); \
}
// Message expansion optimized for each round.
#define ROUND256_8WAY_0 \
{ \
G256_8WAY_ALT( V0, V4, V8, VC, \
_mm256_xor_si256( M0, _mm256_set1_epi32( CS1 ) ), \
_mm256_xor_si256( M1, _mm256_set1_epi32( CS0 ) ) ); \
G256_8WAY_ALT( V1, V5, V9, VD, \
_mm256_xor_si256( M2, _mm256_set1_epi32( CS3 ) ), \
_mm256_xor_si256( M3, _mm256_set1_epi32( CS2 ) ) ); \
G256_8WAY_ALT( V2, V6, VA, VE, \
_mm256_xor_si256( M4, _mm256_set1_epi32( CS5 ) ), \
_mm256_set1_epi32( CS4 ) ); \
G256_8WAY_ALT( V3, V7, VB, VF, _mm256_set1_epi32( CS7 ) , \
_mm256_set1_epi32( CS6 ) ); \
G256_8WAY_ALT( V0, V5, VA, VF, _mm256_set1_epi32( CS9 ) , \
_mm256_set1_epi32( CS8 ) ); \
G256_8WAY_ALT( V1, V6, VB, VC, _mm256_set1_epi32( CSB ) , \
_mm256_set1_epi32( CSA ) ); \
G256_8WAY_ALT( V2, V7, V8, VD, _mm256_set1_epi32( CSD ) , \
_mm256_xor_si256( MD, _mm256_set1_epi32( CSC ) ) ); \
G256_8WAY_ALT( V3, V4, V9, VE, _mm256_set1_epi32( CSF ) , \
_mm256_xor_si256( MF, _mm256_set1_epi32( CSE ) ) ); \
}
#define ROUND256_8WAY_1 \
{ \
G256_8WAY_ALT( V0, V4, V8, VC, _mm256_set1_epi32( CSA ) , \
_mm256_set1_epi32( CSE ) ); \
G256_8WAY_ALT( V1, V5, V9, VD, \
_mm256_xor_si256( M4, _mm256_set1_epi32( CS8 ) ), \
_mm256_set1_epi32( CS4 ) ); \
G256_8WAY_ALT( V2, V6, VA, VE, _mm256_set1_epi32( CSF ) , \
_mm256_xor_si256( MF, _mm256_set1_epi32( CS9 ) ) ); \
G256_8WAY_ALT( V3, V7, VB, VF, \
_mm256_xor_si256( MD, _mm256_set1_epi32( CS6 ) ), \
_mm256_set1_epi32( CSD ) ); \
G256_8WAY_ALT( V0, V5, VA, VF, \
_mm256_xor_si256( M1, _mm256_set1_epi32( CSC ) ), \
_mm256_set1_epi32( CS1 ) ); \
G256_8WAY_ALT( V1, V6, VB, VC, \
_mm256_xor_si256( M0, _mm256_set1_epi32( CS2 ) ), \
_mm256_xor_si256( M2, _mm256_set1_epi32( CS0 ) ) ); \
G256_8WAY_ALT( V2, V7, V8, VD, _mm256_set1_epi32( CS7 ) , \
_mm256_set1_epi32( CSB ) ); \
G256_8WAY_ALT( V3, V4, V9, VE, _mm256_set1_epi32( CS3 ) , \
_mm256_xor_si256( M3, _mm256_set1_epi32( CS5 ) ) ); \
}
#define ROUND256_8WAY_2 \
{ \
G256_8WAY_ALT( V0, V4, V8, VC, _mm256_set1_epi32( CS8 ) , \
_mm256_set1_epi32( CSB ) ); \
G256_8WAY_ALT( V1, V5, V9, VD, _mm256_set1_epi32( CS0 ) , \
_mm256_xor_si256( M0, _mm256_set1_epi32( CSC ) ) ); \
G256_8WAY_ALT( V2, V6, VA, VE, _mm256_set1_epi32( CS2 ) , \
_mm256_xor_si256( M2, _mm256_set1_epi32( CS5 ) ) ); \
G256_8WAY_ALT( V3, V7, VB, VF, \
_mm256_xor_si256( MF, _mm256_set1_epi32( CSD ) ), \
_mm256_xor_si256( MD, _mm256_set1_epi32( CSF ) ) ); \
G256_8WAY_ALT( V0, V5, VA, VF, _mm256_set1_epi32( CSE ) , \
_mm256_set1_epi32( CSA ) ); \
G256_8WAY_ALT( V1, V6, VB, VC, \
_mm256_xor_si256( M3, _mm256_set1_epi32( CS6 ) ), \
_mm256_set1_epi32( CS3 ) ); \
G256_8WAY_ALT( V2, V7, V8, VD, _mm256_set1_epi32( CS1 ) , \
_mm256_xor_si256( M1, _mm256_set1_epi32( CS7 ) ) ); \
G256_8WAY_ALT( V3, V4, V9, VE, _mm256_set1_epi32( CS4 ) , \
_mm256_xor_si256( M4, _mm256_set1_epi32( CS9 ) ) ); \
}
#define ROUND256_8WAY_3 \
{ \
G256_8WAY_ALT( V0, V4, V8, VC, _mm256_set1_epi32( CS9 ) , \
_mm256_set1_epi32( CS7 ) ); \
G256_8WAY_ALT( V1, V5, V9, VD, \
_mm256_xor_si256( M3, _mm256_set1_epi32( CS1 ) ), \
_mm256_xor_si256( M1, _mm256_set1_epi32( CS3 ) ) ); \
G256_8WAY_ALT( V2, V6, VA, VE, \
_mm256_xor_si256( MD, _mm256_set1_epi32( CSC ) ), \
_mm256_set1_epi32( CSD ) ); \
G256_8WAY_ALT( V3, V7, VB, VF, _mm256_set1_epi32( CSE ) , \
_mm256_set1_epi32( CSB ) ); \
G256_8WAY_ALT( V0, V5, VA, VF, \
_mm256_xor_si256( M2, _mm256_set1_epi32( CS6 ) ), \
_mm256_set1_epi32( CS2 ) ); \
G256_8WAY_ALT( V1, V6, VB, VC, _mm256_set1_epi32( CSA ) , \
_mm256_set1_epi32( CS5 ) ); \
G256_8WAY_ALT( V2, V7, V8, VD, \
_mm256_xor_si256( M4, _mm256_set1_epi32( CS0 ) ), \
_mm256_xor_si256( M0, _mm256_set1_epi32( CS4 ) ) ); \
G256_8WAY_ALT( V3, V4, V9, VE, \
_mm256_xor_si256( MF, _mm256_set1_epi32( CS8 ) ), \
_mm256_set1_epi32( CSF ) ); \
}
#define ROUND256_8WAY_4 \
{ \
G256_8WAY_ALT( V0, V4, V8, VC, _mm256_set1_epi32( CS0 ) , \
_mm256_xor_si256( M0, _mm256_set1_epi32( CS9 ) ) ); \
G256_8WAY_ALT( V1, V5, V9, VD, _mm256_set1_epi32( CS7 ) , \
_mm256_set1_epi32( CS5 ) ); \
G256_8WAY_ALT( V2, V6, VA, VE, \
_mm256_xor_si256( M2, _mm256_set1_epi32( CS4 ) ), \
_mm256_xor_si256( M4, _mm256_set1_epi32( CS2 ) ) ); \
G256_8WAY_ALT( V3, V7, VB, VF, _mm256_set1_epi32( CSF ) , \
_mm256_xor_si256( MF, _mm256_set1_epi32( CSA ) ) ); \
G256_8WAY_ALT( V0, V5, VA, VF, _mm256_set1_epi32( CS1 ) , \
_mm256_xor_si256( M1, _mm256_set1_epi32( CSE ) ) ); \
G256_8WAY_ALT( V1, V6, VB, VC, _mm256_set1_epi32( CSC ) , \
_mm256_set1_epi32( CSB ) ); \
G256_8WAY_ALT( V2, V7, V8, VD, _mm256_set1_epi32( CS8 ) , \
_mm256_set1_epi32( CS6 ) ); \
G256_8WAY_ALT( V3, V4, V9, VE, \
_mm256_xor_si256( M3, _mm256_set1_epi32( CSD ) ), \
_mm256_xor_si256( MD, _mm256_set1_epi32( CS3 ) ) ); \
}
#define ROUND256_8WAY_5 \
{ \
G256_8WAY_ALT( V0, V4, V8, VC, \
_mm256_xor_si256( M2, _mm256_set1_epi32( CSC ) ), \
_mm256_set1_epi32( CS2 ) ); \
G256_8WAY_ALT( V1, V5, V9, VD, _mm256_set1_epi32( CSA ) , \
_mm256_set1_epi32( CS6 ) ); \
G256_8WAY_ALT( V2, V6, VA, VE, \
_mm256_xor_si256( M0, _mm256_set1_epi32( CSB ) ), \
_mm256_set1_epi32( CS0 ) ); \
G256_8WAY_ALT( V3, V7, VB, VF, _mm256_set1_epi32( CS3 ) , \
_mm256_xor_si256( M3, _mm256_set1_epi32( CS8 ) ) ); \
G256_8WAY_ALT( V0, V5, VA, VF, \
_mm256_xor_si256( M4, _mm256_set1_epi32( CSD ) ), \
_mm256_xor_si256( MD, _mm256_set1_epi32( CS4 ) ) ); \
G256_8WAY_ALT( V1, V6, VB, VC, _mm256_set1_epi32( CS5 ) , \
_mm256_set1_epi32( CS7 ) ); \
G256_8WAY_ALT( V2, V7, V8, VD, \
_mm256_xor_si256( MF, _mm256_set1_epi32( CSE ) ), \
_mm256_set1_epi32( CSF ) ); \
G256_8WAY_ALT( V3, V4, V9, VE, \
_mm256_xor_si256( M1, _mm256_set1_epi32( CS9 ) ), \
_mm256_set1_epi32( CS1 ) ); \
}
#define ROUND256_8WAY_6 \
{ \
G256_8WAY_ALT( V0, V4, V8, VC, _mm256_set1_epi32( CS5 ) , \
_mm256_set1_epi32( CSC ) ); \
G256_8WAY_ALT( V1, V5, V9, VD, \
_mm256_xor_si256( M1, _mm256_set1_epi32( CSF ) ), \
_mm256_xor_si256( MF, _mm256_set1_epi32( CS1 ) ) ); \
G256_8WAY_ALT( V2, V6, VA, VE, _mm256_set1_epi32( CSD ) , \
_mm256_xor_si256( MD, _mm256_set1_epi32( CSE ) ) );\
G256_8WAY_ALT( V3, V7, VB, VF, \
_mm256_xor_si256( M4, _mm256_set1_epi32( CSA ) ), \
_mm256_set1_epi32( CS4 ) ); \
G256_8WAY_ALT( V0, V5, VA, VF, \
_mm256_xor_si256( M0, _mm256_set1_epi32( CS7 ) ), \
_mm256_set1_epi32( CS0 ) ); \
G256_8WAY_ALT( V1, V6, VB, VC, _mm256_set1_epi32( CS3 ) , \
_mm256_xor_si256( M3, _mm256_set1_epi32( CS6 ) ) ); \
G256_8WAY_ALT( V2, V7, V8, VD, _mm256_set1_epi32( CS2 ) , \
_mm256_xor_si256( M2, _mm256_set1_epi32( CS9 ) ) ); \
G256_8WAY_ALT( V3, V4, V9, VE, _mm256_set1_epi32( CSB ) , \
_mm256_set1_epi32( CS8 ) ); \
}
#define ROUND256_8WAY_7 \
{ \
G256_8WAY_ALT( V0, V4, V8, VC, \
_mm256_xor_si256( MD, _mm256_set1_epi32( CSB ) ), \
_mm256_set1_epi32( CSD ) ); \
G256_8WAY_ALT( V1, V5, V9, VD, _mm256_set1_epi32( CSE ) , \
_mm256_set1_epi32( CS7 ) ); \
G256_8WAY_ALT( V2, V6, VA, VE, _mm256_set1_epi32( CS1 ) , \
_mm256_xor_si256( M1, _mm256_set1_epi32( CSC ) ) ); \
G256_8WAY_ALT( V3, V7, VB, VF, \
_mm256_xor_si256( M3, _mm256_set1_epi32( CS9 ) ), \
_mm256_set1_epi32( CS3 ) ); \
G256_8WAY_ALT( V0, V5, VA, VF, _mm256_set1_epi32( CS0 ) , \
_mm256_xor_si256( M0, _mm256_set1_epi32( CS5 ) ) ); \
G256_8WAY_ALT( V1, V6, VB, VC, \
_mm256_xor_si256( MF, _mm256_set1_epi32( CS4 ) ), \
_mm256_xor_si256( M4, _mm256_set1_epi32( CSF ) ) ); \
G256_8WAY_ALT( V2, V7, V8, VD, _mm256_set1_epi32( CS6 ) , \
_mm256_set1_epi32( CS8 ) ); \
G256_8WAY_ALT( V3, V4, V9, VE, \
_mm256_xor_si256( M2, _mm256_set1_epi32( CSA ) ), \
_mm256_set1_epi32( CS2 ) ); \
}
#define ROUND256_8WAY_8 \
{ \
G256_8WAY_ALT( V0, V4, V8, VC, _mm256_set1_epi32( CSF ), \
_mm256_xor_si256( MF, _mm256_set1_epi32( CS6 ) ) ); \
G256_8WAY_ALT( V1, V5, V9, VD, _mm256_set1_epi32( CS9 ) , \
_mm256_set1_epi32( CSE ) ); \
G256_8WAY_ALT( V2, V6, VA, VE, _mm256_set1_epi32( CS3 ) , \
_mm256_xor_si256( M3, _mm256_set1_epi32( CSB ) ) ); \
G256_8WAY_ALT( V3, V7, VB, VF, \
_mm256_xor_si256( M0, _mm256_set1_epi32( CS8 ) ), \
_mm256_set1_epi32( CS0 ) ); \
G256_8WAY_ALT( V0, V5, VA, VF, _mm256_set1_epi32( CS2 ) , \
_mm256_xor_si256( M2, _mm256_set1_epi32( CSC ) ) ); \
G256_8WAY_ALT( V1, V6, VB, VC, \
_mm256_xor_si256( MD, _mm256_set1_epi32( CS7 ) ), \
_mm256_set1_epi32( CSD ) ); \
G256_8WAY_ALT( V2, V7, V8, VD, \
_mm256_xor_si256( M1, _mm256_set1_epi32( CS4 ) ), \
_mm256_xor_si256( M4, _mm256_set1_epi32( CS1 ) ) ); \
G256_8WAY_ALT( V3, V4, V9, VE, _mm256_set1_epi32( CS5 ) , \
_mm256_set1_epi32( CSA ) ); \
}
#define ROUND256_8WAY_9 \
{ \
G256_8WAY_ALT( V0, V4, V8, VC, _mm256_set1_epi32( CS2 ) , \
_mm256_xor_si256( M2, _mm256_set1_epi32( CSA ) ) ); \
G256_8WAY_ALT( V1, V5, V9, VD, _mm256_set1_epi32( CS4 ) , \
_mm256_xor_si256( M4, _mm256_set1_epi32( CS8 ) ) ); \
G256_8WAY_ALT( V2, V6, VA, VE, _mm256_set1_epi32( CS6 ) , \
_mm256_set1_epi32( CS7 ) ); \
G256_8WAY_ALT( V3, V7, VB, VF, \
_mm256_xor_si256( M1, _mm256_set1_epi32( CS5 ) ), \
_mm256_set1_epi32( CS1 ) ); \
G256_8WAY_ALT( V0, V5, VA, VF, \
_mm256_xor_si256( MF, _mm256_set1_epi32( CSB ) ), \
_mm256_set1_epi32( CSF ) ); \
G256_8WAY_ALT( V1, V6, VB, VC, _mm256_set1_epi32( CSE ) , \
_mm256_set1_epi32( CS9 ) ); \
G256_8WAY_ALT( V2, V7, V8, VD, \
_mm256_xor_si256( M3, _mm256_set1_epi32( CSC ) ), \
_mm256_set1_epi32( CS3 ) ); \
G256_8WAY_ALT( V3, V4, V9, VE, \
_mm256_xor_si256( MD, _mm256_set1_epi32( CS0 ) ), \
_mm256_xor_si256( M0, _mm256_set1_epi32( CSD ) ) ); \
}
#define DECL_STATE32_8WAY \
__m256i H0, H1, H2, H3, H4, H5, H6, H7; \
sph_u32 T0, T1;
#define READ_STATE32_8WAY(state) \
do { \
H0 = (state)->H[0]; \
H1 = (state)->H[1]; \
H2 = (state)->H[2]; \
H3 = (state)->H[3]; \
H4 = (state)->H[4]; \
H5 = (state)->H[5]; \
H6 = (state)->H[6]; \
H7 = (state)->H[7]; \
T0 = (state)->T0; \
T1 = (state)->T1; \
} while (0)
#define WRITE_STATE32_8WAY(state) \
do { \
(state)->H[0] = H0; \
(state)->H[1] = H1; \
(state)->H[2] = H2; \
(state)->H[3] = H3; \
(state)->H[4] = H4; \
(state)->H[5] = H5; \
(state)->H[6] = H6; \
(state)->H[7] = H7; \
(state)->T0 = T0; \
(state)->T1 = T1; \
} while (0)
#define COMPRESS32_8WAY( rounds ) \
{ \
__m256i M0, M1, M2, M3, M4, M5, M6, M7; \
__m256i M8, M9, MA, MB, MC, MD, ME, MF; \
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
__m256i shuf_bswap32; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = m256_const1_64( 0x243F6A88243F6A88 ); \
V9 = m256_const1_64( 0x85A308D385A308D3 ); \
VA = m256_const1_64( 0x13198A2E13198A2E ); \
VB = m256_const1_64( 0x0370734403707344 ); \
VC = _mm256_set1_epi32( T0 ^ 0xA4093822 ); \
VD = _mm256_set1_epi32( T0 ^ 0x299F31D0 ); \
VE = _mm256_set1_epi32( T1 ^ 0x082EFA98 ); \
VF = _mm256_set1_epi32( T1 ^ 0xEC4E6C89 ); \
shuf_bswap32 = m256_const_64( 0x1c1d1e1f18191a1b, 0x1415161710111213, \
0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
M0 = _mm256_shuffle_epi8( * buf , shuf_bswap32 ); \
M1 = _mm256_shuffle_epi8( *(buf+ 1), shuf_bswap32 ); \
M2 = _mm256_shuffle_epi8( *(buf+ 2), shuf_bswap32 ); \
M3 = _mm256_shuffle_epi8( *(buf+ 3), shuf_bswap32 ); \
M4 = _mm256_shuffle_epi8( *(buf+ 4), shuf_bswap32 ); \
M5 = _mm256_shuffle_epi8( *(buf+ 5), shuf_bswap32 ); \
M6 = _mm256_shuffle_epi8( *(buf+ 6), shuf_bswap32 ); \
M7 = _mm256_shuffle_epi8( *(buf+ 7), shuf_bswap32 ); \
M8 = _mm256_shuffle_epi8( *(buf+ 8), shuf_bswap32 ); \
M9 = _mm256_shuffle_epi8( *(buf+ 9), shuf_bswap32 ); \
MA = _mm256_shuffle_epi8( *(buf+10), shuf_bswap32 ); \
MB = _mm256_shuffle_epi8( *(buf+11), shuf_bswap32 ); \
MC = _mm256_shuffle_epi8( *(buf+12), shuf_bswap32 ); \
MD = _mm256_shuffle_epi8( *(buf+13), shuf_bswap32 ); \
ME = _mm256_shuffle_epi8( *(buf+14), shuf_bswap32 ); \
MF = _mm256_shuffle_epi8( *(buf+15), shuf_bswap32 ); \
ROUND_S_8WAY(0); \
ROUND_S_8WAY(1); \
ROUND_S_8WAY(2); \
ROUND_S_8WAY(3); \
ROUND_S_8WAY(4); \
ROUND_S_8WAY(5); \
ROUND_S_8WAY(6); \
ROUND_S_8WAY(7); \
if (rounds == 14) \
{ \
ROUND_S_8WAY(8); \
ROUND_S_8WAY(9); \
ROUND_S_8WAY(0); \
ROUND_S_8WAY(1); \
ROUND_S_8WAY(2); \
ROUND_S_8WAY(3); \
} \
H0 = mm256_xor3( V8, V0, H0 ); \
H1 = mm256_xor3( V9, V1, H1 ); \
H2 = mm256_xor3( VA, V2, H2 ); \
H3 = mm256_xor3( VB, V3, H3 ); \
H4 = mm256_xor3( VC, V4, H4 ); \
H5 = mm256_xor3( VD, V5, H5 ); \
H6 = mm256_xor3( VE, V6, H6 ); \
H7 = mm256_xor3( VF, V7, H7 ); \
}
#define COMPRESS32_8WAY_LE( rounds ) \
{ \
__m256i M0, M1, M2, M3, M4, M5, M6, M7; \
__m256i M8, M9, MA, MB, MC, MD, ME, MF; \
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = m256_const1_64( 0x243F6A88243F6A88 ); \
V9 = m256_const1_64( 0x85A308D385A308D3 ); \
VA = m256_const1_64( 0x13198A2E13198A2E ); \
VB = m256_const1_64( 0x0370734403707344 ); \
VC = _mm256_set1_epi32( T0 ^ 0xA4093822 ); \
VD = _mm256_set1_epi32( T0 ^ 0x299F31D0 ); \
VE = _mm256_set1_epi32( T1 ^ 0x082EFA98 ); \
VF = _mm256_set1_epi32( T1 ^ 0xEC4E6C89 ); \
M0 = buf[ 0]; \
M1 = buf[ 1]; \
M2 = buf[ 2]; \
M3 = buf[ 3]; \
M4 = buf[ 4]; \
M5 = buf[ 5]; \
M6 = buf[ 6]; \
M7 = buf[ 7]; \
M8 = buf[ 8]; \
M9 = buf[ 9]; \
MA = buf[10]; \
MB = buf[11]; \
MC = buf[12]; \
MD = buf[13]; \
ME = buf[14]; \
MF = buf[15]; \
ROUND_S_8WAY(0); \
ROUND_S_8WAY(1); \
ROUND_S_8WAY(2); \
ROUND_S_8WAY(3); \
ROUND_S_8WAY(4); \
ROUND_S_8WAY(5); \
ROUND_S_8WAY(6); \
ROUND_S_8WAY(7); \
if (rounds == 14) \
{ \
ROUND_S_8WAY(8); \
ROUND_S_8WAY(9); \
ROUND_S_8WAY(0); \
ROUND_S_8WAY(1); \
ROUND_S_8WAY(2); \
ROUND_S_8WAY(3); \
} \
H0 = mm256_xor3( V8, V0, H0 ); \
H1 = mm256_xor3( V9, V1, H1 ); \
H2 = mm256_xor3( VA, V2, H2 ); \
H3 = mm256_xor3( VB, V3, H3 ); \
H4 = mm256_xor3( VC, V4, H4 ); \
H5 = mm256_xor3( VD, V5, H5 ); \
H6 = mm256_xor3( VE, V6, H6 ); \
H7 = mm256_xor3( VF, V7, H7 ); \
}
void blake256_8way_round0_prehash_le( void *midstate, const void *midhash,
void *data )
{
__m256i *M = (__m256i*)data;
__m256i *V = (__m256i*)midstate;
const __m256i *H = (const __m256i*)midhash;
V[ 0] = H[0];
V[ 1] = H[1];
V[ 2] = H[2];
V[ 3] = H[3];
V[ 4] = H[4];
V[ 5] = H[5];
V[ 6] = H[6];
V[ 7] = H[7];
V[ 8] = m256_const1_32( CS0 );
V[ 9] = m256_const1_32( CS1 );
V[10] = m256_const1_32( CS2 );
V[11] = m256_const1_32( CS3 );
V[12] = m256_const1_32( CS4 ^ 0x280 );
V[13] = m256_const1_32( CS5 ^ 0x280 );
V[14] = m256_const1_32( CS6 );
V[15] = m256_const1_32( CS7 );
// M[ 0:3 ] contain new message data including unique nonces in M[ 3].
// M[ 5:12, 14 ] are always zero and not needed or used.
// M[ 4], M[ 13], M[15] are constant and are initialized here.
// M[ 5] is a special case, used as a cache for (M[13] ^ CSC).
M[ 4] = m256_const1_32( 0x80000000 );
M[13] = m256_one_32;
M[15] = m256_const1_32( 80*8 );
M[ 5] =_mm256_xor_si256( M[13], _mm256_set1_epi32( CSC ) );
// G0
GS_8WAY( M[ 0], M[ 1], CS0, CS1, V[ 0], V[ 4], V[ 8], V[12] );
// G1
V[ 1] = _mm256_add_epi32( _mm256_add_epi32( V[ 1], V[ 5] ),
_mm256_xor_si256( _mm256_set1_epi32( CS3 ), M[ 2] ) );
V[13] = mm256_swap32_16( _mm256_xor_si256( V[13], V[ 1] ) );
V[ 9] = _mm256_add_epi32( V[ 9], V[13] );
V[ 5] = mm256_ror_32( _mm256_xor_si256( V[ 5], V[ 9] ), 12 );
V[ 1] = _mm256_add_epi32( V[ 1], V[ 5] );
// G2
// GS_8WAY( M[ 4], M[ 5], CS4, CS5, V[ 2], V[ 6], V[10], V[14] );
V[ 2] = _mm256_add_epi32( _mm256_add_epi32( V[ 2], V[ 6] ),
_mm256_xor_si256( _mm256_set1_epi32( CS5 ), M[ 4] ) );
V[14] = mm256_swap32_16( _mm256_xor_si256( V[14], V[ 2] ) );
V[10] = _mm256_add_epi32( V[10], V[14] );
V[ 6] = mm256_ror_32( _mm256_xor_si256( V[ 6], V[10] ), 12 );
V[ 2] = _mm256_add_epi32( _mm256_add_epi32( V[ 2], V[ 6] ),
_mm256_set1_epi32( CS4 ) );
V[14] = mm256_ror_32( _mm256_xor_si256( V[14], V[ 2] ), 8 );
V[10] = _mm256_add_epi32( V[10], V[14] );
V[ 6] = mm256_ror_32( _mm256_xor_si256( V[ 6], V[10] ), 7 );
// G3
// GS_8WAY( M[ 6], M[ 7], CS6, CS7, V[ 3], V[ 7], V[11], V[15] );
V[ 3] = _mm256_add_epi32( _mm256_add_epi32( V[ 3], V[ 7] ),
_mm256_set1_epi32( CS7 ) );
V[15] = mm256_swap32_16( _mm256_xor_si256( V[15], V[ 3] ) );
V[11] = _mm256_add_epi32( V[11], V[15] );
V[ 7] = mm256_ror_32( _mm256_xor_si256( V[ 7], V[11] ), 12 );
V[ 3] = _mm256_add_epi32( _mm256_add_epi32( V[ 3], V[ 7] ),
_mm256_set1_epi32( CS6 ) );
V[15] = mm256_ror_32( _mm256_xor_si256( V[15], V[ 3] ), 8 );
V[11] = _mm256_add_epi32( V[11], V[15] );
V[ 7] = mm256_ror_32( _mm256_xor_si256( V[ 7], V[11] ), 7 );
// G4
V[ 0] = _mm256_add_epi32( V[ 0], _mm256_set1_epi32( CS9 ) );
// G5
// GS_8WAY( M[10], M[11], CSA, CSB, V1, V6, VB, VC );
// G6
V[ 2] = _mm256_add_epi32( _mm256_add_epi32( V[ 2], V[ 7] ),
_mm256_set1_epi32( CSD ) );
// G7
V[ 3] = _mm256_add_epi32( _mm256_add_epi32( V[ 3], V[ 4] ),
_mm256_set1_epi32( CSF ) );
V[14] = mm256_swap32_16( _mm256_xor_si256( V[14], V[ 3] ) );
V[ 3] = _mm256_add_epi32( V[ 3],
_mm256_xor_si256( _mm256_set1_epi32( CSE ), M[15] ) );
}
void blake256_8way_final_rounds_le( void *final_hash, const void *midstate,
const void *midhash, const void *data )
{
__m256i *H = (__m256i*)final_hash;
const __m256i *h = (const __m256i*)midhash;
__m256i V0, V1, V2, V3, V4, V5, V6, V7;
__m256i V8, V9, VA, VB, VC, VD, VE, VF;
__m256i M0, M1, M2, M3, M4, MD, MF;
__m256i MDxorCSC;
V0 = _mm256_load_si256( (__m256i*)midstate + 0 );
V1 = _mm256_load_si256( (__m256i*)midstate + 1 );
V2 = _mm256_load_si256( (__m256i*)midstate + 2 );
V3 = _mm256_load_si256( (__m256i*)midstate + 3 );
V4 = _mm256_load_si256( (__m256i*)midstate + 4 );
V5 = _mm256_load_si256( (__m256i*)midstate + 5 );
V6 = _mm256_load_si256( (__m256i*)midstate + 6 );
V7 = _mm256_load_si256( (__m256i*)midstate + 7 );
V8 = _mm256_load_si256( (__m256i*)midstate + 8 );
V9 = _mm256_load_si256( (__m256i*)midstate + 9 );
VA = _mm256_load_si256( (__m256i*)midstate + 10 );
VB = _mm256_load_si256( (__m256i*)midstate + 11 );
VC = _mm256_load_si256( (__m256i*)midstate + 12 );
VD = _mm256_load_si256( (__m256i*)midstate + 13 );
VE = _mm256_load_si256( (__m256i*)midstate + 14 );
VF = _mm256_load_si256( (__m256i*)midstate + 15 );
M0 = _mm256_load_si256( (__m256i*)data + 0 );
M1 = _mm256_load_si256( (__m256i*)data + 1 );
M2 = _mm256_load_si256( (__m256i*)data + 2 );
M3 = _mm256_load_si256( (__m256i*)data + 3 );
M4 = _mm256_load_si256( (__m256i*)data + 4 );
// M5 to MC & ME zero padding & optimised out.
MD = _mm256_load_si256( (__m256i*)data + 13 );
MF = _mm256_load_si256( (__m256i*)data + 15 );
// precalculated MD^CSC, used in round0 G6.
MDxorCSC = _mm256_load_si256( (__m256i*)data + 5 );
// Finish round 0 with nonce in M3
// G1
V1 = _mm256_add_epi32( V1,
_mm256_xor_si256( _mm256_set1_epi32( CS2 ), M3 ) );
VD = mm256_shuflr32_8( _mm256_xor_si256( VD, V1 ) );
V9 = _mm256_add_epi32( V9, VD );
V5 = mm256_ror_32( _mm256_xor_si256( V5, V9 ), 7 );
// G4
V0 = _mm256_add_epi32( V0, V5 );
VF = mm256_swap32_16( _mm256_xor_si256( VF, V0 ) );
VA = _mm256_add_epi32( VA, VF );
V5 = mm256_ror_32( _mm256_xor_si256( V5, VA ), 12 );
V0 = _mm256_add_epi32( V0, _mm256_add_epi32( V5,
_mm256_set1_epi32( CS8 ) ) );
VF = mm256_shuflr32_8( _mm256_xor_si256( VF, V0 ) );
VA = _mm256_add_epi32( VA, VF );
V5 = mm256_ror_32( _mm256_xor_si256( V5, VA ), 7 );
// G5
// GS_8WAY( MA, MB, CSA, CSB, V1, V6, VB, VC );
V1 = _mm256_add_epi32( _mm256_add_epi32( V1, V6 ),
_mm256_set1_epi32( CSB ) );
VC = mm256_swap32_16( _mm256_xor_si256( VC, V1 ) );
VB = _mm256_add_epi32( VB, VC );
V6 = mm256_ror_32( _mm256_xor_si256( V6, VB ), 12 );
V1 = _mm256_add_epi32( _mm256_add_epi32( V1, V6 ),
_mm256_set1_epi32( CSA ) );
VC = mm256_ror_32( _mm256_xor_si256( VC, V1 ), 8 );
VB = _mm256_add_epi32( VB, VC );
V6 = mm256_ror_32( _mm256_xor_si256( V6, VB ), 7 );
// G6
VD = mm256_swap32_16( _mm256_xor_si256( VD, V2 ) );
V8 = _mm256_add_epi32( V8, VD );
V7 = mm256_ror_32( _mm256_xor_si256( V7, V8 ), 12 );
V2 = _mm256_add_epi32( V2, _mm256_add_epi32( V7, MDxorCSC ) );
VD = mm256_shuflr32_8( _mm256_xor_si256( VD, V2 ) );
V8 = _mm256_add_epi32( V8, VD );
V7 = mm256_ror_32( _mm256_xor_si256( V7, V8 ), 7 );
// G7
V9 = _mm256_add_epi32( V9, VE );
V4 = mm256_ror_32( _mm256_xor_si256( V4, V9 ), 12 );
V3 = _mm256_add_epi32( V3, V4 );
VE = mm256_shuflr32_8( _mm256_xor_si256( VE, V3 ) );
V9 = _mm256_add_epi32( V9, VE );
V4 = mm256_ror_32( _mm256_xor_si256( V4, V9 ), 7 );
// Remaining rounds
ROUND256_8WAY_1;
ROUND256_8WAY_2;
ROUND256_8WAY_3;
ROUND256_8WAY_4;
ROUND256_8WAY_5;
ROUND256_8WAY_6;
ROUND256_8WAY_7;
ROUND256_8WAY_8;
ROUND256_8WAY_9;
ROUND256_8WAY_0;
ROUND256_8WAY_1;
ROUND256_8WAY_2;
ROUND256_8WAY_3;
const __m256i shuf_bswap32 =
m256_const_64( 0x1c1d1e1f18191a1b, 0x1415161710111213,
0x0c0d0e0f08090a0b, 0x0405060700010203 );
H[0] = _mm256_shuffle_epi8( mm256_xor3( V8, V0, h[0] ), shuf_bswap32 );
H[1] = _mm256_shuffle_epi8( mm256_xor3( V9, V1, h[1] ), shuf_bswap32 );
H[2] = _mm256_shuffle_epi8( mm256_xor3( VA, V2, h[2] ), shuf_bswap32 );
H[3] = _mm256_shuffle_epi8( mm256_xor3( VB, V3, h[3] ), shuf_bswap32 );
H[4] = _mm256_shuffle_epi8( mm256_xor3( VC, V4, h[4] ), shuf_bswap32 );
H[5] = _mm256_shuffle_epi8( mm256_xor3( VD, V5, h[5] ), shuf_bswap32 );
H[6] = _mm256_shuffle_epi8( mm256_xor3( VE, V6, h[6] ), shuf_bswap32 );
H[7] = _mm256_shuffle_epi8( mm256_xor3( VF, V7, h[7] ), shuf_bswap32 );
}
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
///////////////////////////////////////
//
// Blake-256 16 way AVX512
// Generic with full inline message expansion
#define GS_16WAY( m0, m1, c0, c1, a, b, c, d ) \
{ \
a = _mm512_add_epi32( _mm512_add_epi32( a, b ), \
_mm512_xor_si512( _mm512_set1_epi32( c1 ), m0 ) ); \
d = mm512_ror_32( _mm512_xor_si512( d, a ), 16 ); \
c = _mm512_add_epi32( c, d ); \
b = mm512_ror_32( _mm512_xor_si512( b, c ), 12 ); \
a = _mm512_add_epi32( _mm512_add_epi32( a, b ), \
_mm512_xor_si512( _mm512_set1_epi32( c0 ), m1 ) ); \
d = mm512_ror_32( _mm512_xor_si512( d, a ), 8 ); \
c = _mm512_add_epi32( c, d ); \
b = mm512_ror_32( _mm512_xor_si512( b, c ), 7 ); \
}
#define ROUND_S_16WAY(r) \
{ \
GS_16WAY(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
GS_16WAY(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
GS_16WAY(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
GS_16WAY(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
GS_16WAY(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
GS_16WAY(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
GS_16WAY(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
GS_16WAY(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
}
// Short cut message expansion when the message data is known to be zero.
// M[ 5:12, 14 ] are zero padded for the second block of 80 byte data.
#define G256_16WAY_ALT( a, b, c, d, m0, m1 ) \
{ \
a = _mm512_add_epi32( _mm512_add_epi32( a, b ), m0 ); \
d = mm512_ror_32( _mm512_xor_si512( d, a ), 16 ); \
c = _mm512_add_epi32( c, d ); \
b = mm512_ror_32( _mm512_xor_si512( b, c ), 12 ); \
a = _mm512_add_epi32( _mm512_add_epi32( a, b ), m1 ); \
d = mm512_ror_32( _mm512_xor_si512( d, a ), 8 ); \
c = _mm512_add_epi32( c, d ); \
b = mm512_ror_32( _mm512_xor_si512( b, c ), 7 ); \
}
// Message expansion optimized for each round.
#define ROUND256_16WAY_0 \
{ \
G256_16WAY_ALT( V0, V4, V8, VC, \
_mm512_xor_si512( M0, _mm512_set1_epi32( CS1 ) ), \
_mm512_xor_si512( M1, _mm512_set1_epi32( CS0 ) ) ); \
G256_16WAY_ALT( V1, V5, V9, VD, \
_mm512_xor_si512( M2, _mm512_set1_epi32( CS3 ) ), \
_mm512_xor_si512( M3, _mm512_set1_epi32( CS2 ) ) ); \
G256_16WAY_ALT( V2, V6, VA, VE, \
_mm512_xor_si512( M4, _mm512_set1_epi32( CS5 ) ), \
_mm512_set1_epi32( CS4 ) ); \
G256_16WAY_ALT( V3, V7, VB, VF, _mm512_set1_epi32( CS7 ) , \
_mm512_set1_epi32( CS6 ) ); \
G256_16WAY_ALT( V0, V5, VA, VF, _mm512_set1_epi32( CS9 ) , \
_mm512_set1_epi32( CS8 ) ); \
G256_16WAY_ALT( V1, V6, VB, VC, _mm512_set1_epi32( CSB ) , \
_mm512_set1_epi32( CSA ) ); \
G256_16WAY_ALT( V2, V7, V8, VD, _mm512_set1_epi32( CSD ) , \
_mm512_xor_si512( MD, _mm512_set1_epi32( CSC ) ) ); \
G256_16WAY_ALT( V3, V4, V9, VE, _mm512_set1_epi32( CSF ) , \
_mm512_xor_si512( MF, _mm512_set1_epi32( CSE ) ) ); \
}
#define ROUND256_16WAY_1 \
{ \
G256_16WAY_ALT( V0, V4, V8, VC, _mm512_set1_epi32( CSA ) , \
_mm512_set1_epi32( CSE ) ); \
G256_16WAY_ALT( V1, V5, V9, VD, \
_mm512_xor_si512( M4, _mm512_set1_epi32( CS8 ) ), \
_mm512_set1_epi32( CS4 ) ); \
G256_16WAY_ALT( V2, V6, VA, VE, _mm512_set1_epi32( CSF ) , \
_mm512_xor_si512( MF, _mm512_set1_epi32( CS9 ) ) ); \
G256_16WAY_ALT( V3, V7, VB, VF, \
_mm512_xor_si512( MD, _mm512_set1_epi32( CS6 ) ), \
_mm512_set1_epi32( CSD ) ); \
G256_16WAY_ALT( V0, V5, VA, VF, \
_mm512_xor_si512( M1, _mm512_set1_epi32( CSC ) ), \
_mm512_set1_epi32( CS1 ) ); \
G256_16WAY_ALT( V1, V6, VB, VC, \
_mm512_xor_si512( M0, _mm512_set1_epi32( CS2 ) ), \
_mm512_xor_si512( M2, _mm512_set1_epi32( CS0 ) ) ); \
G256_16WAY_ALT( V2, V7, V8, VD, _mm512_set1_epi32( CS7 ) , \
_mm512_set1_epi32( CSB ) ); \
G256_16WAY_ALT( V3, V4, V9, VE, _mm512_set1_epi32( CS3 ) , \
_mm512_xor_si512( M3, _mm512_set1_epi32( CS5 ) ) ); \
}
#define ROUND256_16WAY_2 \
{ \
G256_16WAY_ALT( V0, V4, V8, VC, _mm512_set1_epi32( CS8 ) , \
_mm512_set1_epi32( CSB ) ); \
G256_16WAY_ALT( V1, V5, V9, VD, _mm512_set1_epi32( CS0 ) , \
_mm512_xor_si512( M0, _mm512_set1_epi32( CSC ) ) ); \
G256_16WAY_ALT( V2, V6, VA, VE, _mm512_set1_epi32( CS2 ) , \
_mm512_xor_si512( M2, _mm512_set1_epi32( CS5 ) ) ); \
G256_16WAY_ALT( V3, V7, VB, VF, \
_mm512_xor_si512( MF, _mm512_set1_epi32( CSD ) ), \
_mm512_xor_si512( MD, _mm512_set1_epi32( CSF ) ) ); \
G256_16WAY_ALT( V0, V5, VA, VF, _mm512_set1_epi32( CSE ) , \
_mm512_set1_epi32( CSA ) ); \
G256_16WAY_ALT( V1, V6, VB, VC, \
_mm512_xor_si512( M3, _mm512_set1_epi32( CS6 ) ), \
_mm512_set1_epi32( CS3 ) ); \
G256_16WAY_ALT( V2, V7, V8, VD, _mm512_set1_epi32( CS1 ) , \
_mm512_xor_si512( M1, _mm512_set1_epi32( CS7 ) ) ); \
G256_16WAY_ALT( V3, V4, V9, VE, _mm512_set1_epi32( CS4 ) , \
_mm512_xor_si512( M4, _mm512_set1_epi32( CS9 ) ) ); \
}
#define ROUND256_16WAY_3 \
{ \
G256_16WAY_ALT( V0, V4, V8, VC, _mm512_set1_epi32( CS9 ) , \
_mm512_set1_epi32( CS7 ) ); \
G256_16WAY_ALT( V1, V5, V9, VD, \
_mm512_xor_si512( M3, _mm512_set1_epi32( CS1 ) ), \
_mm512_xor_si512( M1, _mm512_set1_epi32( CS3 ) ) ); \
G256_16WAY_ALT( V2, V6, VA, VE, \
_mm512_xor_si512( MD, _mm512_set1_epi32( CSC ) ), \
_mm512_set1_epi32( CSD ) ); \
G256_16WAY_ALT( V3, V7, VB, VF, _mm512_set1_epi32( CSE ) , \
_mm512_set1_epi32( CSB ) ); \
G256_16WAY_ALT( V0, V5, VA, VF, \
_mm512_xor_si512( M2, _mm512_set1_epi32( CS6 ) ), \
_mm512_set1_epi32( CS2 ) ); \
G256_16WAY_ALT( V1, V6, VB, VC, _mm512_set1_epi32( CSA ) , \
_mm512_set1_epi32( CS5 ) ); \
G256_16WAY_ALT( V2, V7, V8, VD, \
_mm512_xor_si512( M4, _mm512_set1_epi32( CS0 ) ), \
_mm512_xor_si512( M0, _mm512_set1_epi32( CS4 ) ) ); \
G256_16WAY_ALT( V3, V4, V9, VE, \
_mm512_xor_si512( MF, _mm512_set1_epi32( CS8 ) ), \
_mm512_set1_epi32( CSF ) ); \
}
#define ROUND256_16WAY_4 \
{ \
G256_16WAY_ALT( V0, V4, V8, VC, _mm512_set1_epi32( CS0 ) , \
_mm512_xor_si512( M0, _mm512_set1_epi32( CS9 ) ) ); \
G256_16WAY_ALT( V1, V5, V9, VD, _mm512_set1_epi32( CS7 ) , \
_mm512_set1_epi32( CS5 ) ); \
G256_16WAY_ALT( V2, V6, VA, VE, \
_mm512_xor_si512( M2, _mm512_set1_epi32( CS4 ) ), \
_mm512_xor_si512( M4, _mm512_set1_epi32( CS2 ) ) ); \
G256_16WAY_ALT( V3, V7, VB, VF, _mm512_set1_epi32( CSF ) , \
_mm512_xor_si512( MF, _mm512_set1_epi32( CSA ) ) ); \
G256_16WAY_ALT( V0, V5, VA, VF, _mm512_set1_epi32( CS1 ) , \
_mm512_xor_si512( M1, _mm512_set1_epi32( CSE ) ) ); \
G256_16WAY_ALT( V1, V6, VB, VC, _mm512_set1_epi32( CSC ) , \
_mm512_set1_epi32( CSB ) ); \
G256_16WAY_ALT( V2, V7, V8, VD, _mm512_set1_epi32( CS8 ) , \
_mm512_set1_epi32( CS6 ) ); \
G256_16WAY_ALT( V3, V4, V9, VE, \
_mm512_xor_si512( M3, _mm512_set1_epi32( CSD ) ), \
_mm512_xor_si512( MD, _mm512_set1_epi32( CS3 ) ) ); \
}
#define ROUND256_16WAY_5 \
{ \
G256_16WAY_ALT( V0, V4, V8, VC, \
_mm512_xor_si512( M2, _mm512_set1_epi32( CSC ) ), \
_mm512_set1_epi32( CS2 ) ); \
G256_16WAY_ALT( V1, V5, V9, VD, _mm512_set1_epi32( CSA ) , \
_mm512_set1_epi32( CS6 ) ); \
G256_16WAY_ALT( V2, V6, VA, VE, \
_mm512_xor_si512( M0, _mm512_set1_epi32( CSB ) ), \
_mm512_set1_epi32( CS0 ) ); \
G256_16WAY_ALT( V3, V7, VB, VF, _mm512_set1_epi32( CS3 ) , \
_mm512_xor_si512( M3, _mm512_set1_epi32( CS8 ) ) ); \
G256_16WAY_ALT( V0, V5, VA, VF, \
_mm512_xor_si512( M4, _mm512_set1_epi32( CSD ) ), \
_mm512_xor_si512( MD, _mm512_set1_epi32( CS4 ) ) ); \
G256_16WAY_ALT( V1, V6, VB, VC, _mm512_set1_epi32( CS5 ) , \
_mm512_set1_epi32( CS7 ) ); \
G256_16WAY_ALT( V2, V7, V8, VD, \
_mm512_xor_si512( MF, _mm512_set1_epi32( CSE ) ), \
_mm512_set1_epi32( CSF ) ); \
G256_16WAY_ALT( V3, V4, V9, VE, \
_mm512_xor_si512( M1, _mm512_set1_epi32( CS9 ) ), \
_mm512_set1_epi32( CS1 ) ); \
}
#define ROUND256_16WAY_6 \
{ \
G256_16WAY_ALT( V0, V4, V8, VC, _mm512_set1_epi32( CS5 ) , \
_mm512_set1_epi32( CSC ) ); \
G256_16WAY_ALT( V1, V5, V9, VD, \
_mm512_xor_si512( M1, _mm512_set1_epi32( CSF ) ), \
_mm512_xor_si512( MF, _mm512_set1_epi32( CS1 ) ) ); \
G256_16WAY_ALT( V2, V6, VA, VE, _mm512_set1_epi32( CSD ) , \
_mm512_xor_si512( MD, _mm512_set1_epi32( CSE ) ) );\
G256_16WAY_ALT( V3, V7, VB, VF, \
_mm512_xor_si512( M4, _mm512_set1_epi32( CSA ) ), \
_mm512_set1_epi32( CS4 ) ); \
G256_16WAY_ALT( V0, V5, VA, VF, \
_mm512_xor_si512( M0, _mm512_set1_epi32( CS7 ) ), \
_mm512_set1_epi32( CS0 ) ); \
G256_16WAY_ALT( V1, V6, VB, VC, _mm512_set1_epi32( CS3 ) , \
_mm512_xor_si512( M3, _mm512_set1_epi32( CS6 ) ) ); \
G256_16WAY_ALT( V2, V7, V8, VD, _mm512_set1_epi32( CS2 ) , \
_mm512_xor_si512( M2, _mm512_set1_epi32( CS9 ) ) ); \
G256_16WAY_ALT( V3, V4, V9, VE, _mm512_set1_epi32( CSB ) , \
_mm512_set1_epi32( CS8 ) ); \
}
#define ROUND256_16WAY_7 \
{ \
G256_16WAY_ALT( V0, V4, V8, VC, \
_mm512_xor_si512( MD, _mm512_set1_epi32( CSB ) ), \
_mm512_set1_epi32( CSD ) ); \
G256_16WAY_ALT( V1, V5, V9, VD, _mm512_set1_epi32( CSE ) , \
_mm512_set1_epi32( CS7 ) ); \
G256_16WAY_ALT( V2, V6, VA, VE, _mm512_set1_epi32( CS1 ) , \
_mm512_xor_si512( M1, _mm512_set1_epi32( CSC ) ) ); \
G256_16WAY_ALT( V3, V7, VB, VF, \
_mm512_xor_si512( M3, _mm512_set1_epi32( CS9 ) ), \
_mm512_set1_epi32( CS3 ) ); \
G256_16WAY_ALT( V0, V5, VA, VF, _mm512_set1_epi32( CS0 ) , \
_mm512_xor_si512( M0, _mm512_set1_epi32( CS5 ) ) ); \
G256_16WAY_ALT( V1, V6, VB, VC, \
_mm512_xor_si512( MF, _mm512_set1_epi32( CS4 ) ), \
_mm512_xor_si512( M4, _mm512_set1_epi32( CSF ) ) ); \
G256_16WAY_ALT( V2, V7, V8, VD, _mm512_set1_epi32( CS6 ) , \
_mm512_set1_epi32( CS8 ) ); \
G256_16WAY_ALT( V3, V4, V9, VE, \
_mm512_xor_si512( M2, _mm512_set1_epi32( CSA ) ), \
_mm512_set1_epi32( CS2 ) ); \
}
#define ROUND256_16WAY_8 \
{ \
G256_16WAY_ALT( V0, V4, V8, VC, _mm512_set1_epi32( CSF ), \
_mm512_xor_si512( MF, _mm512_set1_epi32( CS6 ) ) ); \
G256_16WAY_ALT( V1, V5, V9, VD, _mm512_set1_epi32( CS9 ) , \
_mm512_set1_epi32( CSE ) ); \
G256_16WAY_ALT( V2, V6, VA, VE, _mm512_set1_epi32( CS3 ) , \
_mm512_xor_si512( M3, _mm512_set1_epi32( CSB ) ) ); \
G256_16WAY_ALT( V3, V7, VB, VF, \
_mm512_xor_si512( M0, _mm512_set1_epi32( CS8 ) ), \
_mm512_set1_epi32( CS0 ) ); \
G256_16WAY_ALT( V0, V5, VA, VF, _mm512_set1_epi32( CS2 ) , \
_mm512_xor_si512( M2, _mm512_set1_epi32( CSC ) ) ); \
G256_16WAY_ALT( V1, V6, VB, VC, \
_mm512_xor_si512( MD, _mm512_set1_epi32( CS7 ) ), \
_mm512_set1_epi32( CSD ) ); \
G256_16WAY_ALT( V2, V7, V8, VD, \
_mm512_xor_si512( M1, _mm512_set1_epi32( CS4 ) ), \
_mm512_xor_si512( M4, _mm512_set1_epi32( CS1 ) ) ); \
G256_16WAY_ALT( V3, V4, V9, VE, _mm512_set1_epi32( CS5 ) , \
_mm512_set1_epi32( CSA ) ); \
}
#define ROUND256_16WAY_9 \
{ \
G256_16WAY_ALT( V0, V4, V8, VC, _mm512_set1_epi32( CS2 ) , \
_mm512_xor_si512( M2, _mm512_set1_epi32( CSA ) ) ); \
G256_16WAY_ALT( V1, V5, V9, VD, _mm512_set1_epi32( CS4 ) , \
_mm512_xor_si512( M4, _mm512_set1_epi32( CS8 ) ) ); \
G256_16WAY_ALT( V2, V6, VA, VE, _mm512_set1_epi32( CS6 ) , \
_mm512_set1_epi32( CS7 ) ); \
G256_16WAY_ALT( V3, V7, VB, VF, \
_mm512_xor_si512( M1, _mm512_set1_epi32( CS5 ) ), \
_mm512_set1_epi32( CS1 ) ); \
G256_16WAY_ALT( V0, V5, VA, VF, \
_mm512_xor_si512( MF, _mm512_set1_epi32( CSB ) ), \
_mm512_set1_epi32( CSF ) ); \
G256_16WAY_ALT( V1, V6, VB, VC, _mm512_set1_epi32( CSE ) , \
_mm512_set1_epi32( CS9 ) ); \
G256_16WAY_ALT( V2, V7, V8, VD, \
_mm512_xor_si512( M3, _mm512_set1_epi32( CSC ) ), \
_mm512_set1_epi32( CS3 ) ); \
G256_16WAY_ALT( V3, V4, V9, VE, \
_mm512_xor_si512( MD, _mm512_set1_epi32( CS0 ) ), \
_mm512_xor_si512( M0, _mm512_set1_epi32( CSD ) ) ); \
}
#define DECL_STATE32_16WAY \
__m512i H0, H1, H2, H3, H4, H5, H6, H7; \
sph_u32 T0, T1;
#define READ_STATE32_16WAY(state) \
do { \
H0 = (state)->H[0]; \
H1 = (state)->H[1]; \
H2 = (state)->H[2]; \
H3 = (state)->H[3]; \
H4 = (state)->H[4]; \
H5 = (state)->H[5]; \
H6 = (state)->H[6]; \
H7 = (state)->H[7]; \
T0 = (state)->T0; \
T1 = (state)->T1; \
} while (0)
#define WRITE_STATE32_16WAY(state) \
do { \
(state)->H[0] = H0; \
(state)->H[1] = H1; \
(state)->H[2] = H2; \
(state)->H[3] = H3; \
(state)->H[4] = H4; \
(state)->H[5] = H5; \
(state)->H[6] = H6; \
(state)->H[7] = H7; \
(state)->T0 = T0; \
(state)->T1 = T1; \
} while (0)
#define COMPRESS32_16WAY( rounds ) \
{ \
__m512i M0, M1, M2, M3, M4, M5, M6, M7; \
__m512i M8, M9, MA, MB, MC, MD, ME, MF; \
__m512i V0, V1, V2, V3, V4, V5, V6, V7; \
__m512i V8, V9, VA, VB, VC, VD, VE, VF; \
__m512i shuf_bswap32; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = m512_const1_64( 0x243F6A88243F6A88 ); \
V9 = m512_const1_64( 0x85A308D385A308D3 ); \
VA = m512_const1_64( 0x13198A2E13198A2E ); \
VB = m512_const1_64( 0x0370734403707344 ); \
VC = _mm512_set1_epi32( T0 ^ 0xA4093822 ); \
VD = _mm512_set1_epi32( T0 ^ 0x299F31D0 ); \
VE = _mm512_set1_epi32( T1 ^ 0x082EFA98 ); \
VF = _mm512_set1_epi32( T1 ^ 0xEC4E6C89 ); \
shuf_bswap32 = m512_const_64( 0x3c3d3e3f38393a3b, 0x3435363730313233, \
0x2c2d2e2f28292a2b, 0x2425262720212223, \
0x1c1d1e1f18191a1b, 0x1415161710111213, \
0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
M0 = _mm512_shuffle_epi8( * buf , shuf_bswap32 ); \
M1 = _mm512_shuffle_epi8( *(buf+ 1), shuf_bswap32 ); \
M2 = _mm512_shuffle_epi8( *(buf+ 2), shuf_bswap32 ); \
M3 = _mm512_shuffle_epi8( *(buf+ 3), shuf_bswap32 ); \
M4 = _mm512_shuffle_epi8( *(buf+ 4), shuf_bswap32 ); \
M5 = _mm512_shuffle_epi8( *(buf+ 5), shuf_bswap32 ); \
M6 = _mm512_shuffle_epi8( *(buf+ 6), shuf_bswap32 ); \
M7 = _mm512_shuffle_epi8( *(buf+ 7), shuf_bswap32 ); \
M8 = _mm512_shuffle_epi8( *(buf+ 8), shuf_bswap32 ); \
M9 = _mm512_shuffle_epi8( *(buf+ 9), shuf_bswap32 ); \
MA = _mm512_shuffle_epi8( *(buf+10), shuf_bswap32 ); \
MB = _mm512_shuffle_epi8( *(buf+11), shuf_bswap32 ); \
MC = _mm512_shuffle_epi8( *(buf+12), shuf_bswap32 ); \
MD = _mm512_shuffle_epi8( *(buf+13), shuf_bswap32 ); \
ME = _mm512_shuffle_epi8( *(buf+14), shuf_bswap32 ); \
MF = _mm512_shuffle_epi8( *(buf+15), shuf_bswap32 ); \
ROUND_S_16WAY(0); \
ROUND_S_16WAY(1); \
ROUND_S_16WAY(2); \
ROUND_S_16WAY(3); \
ROUND_S_16WAY(4); \
ROUND_S_16WAY(5); \
ROUND_S_16WAY(6); \
ROUND_S_16WAY(7); \
if (rounds == 14) \
{ \
ROUND_S_16WAY(8); \
ROUND_S_16WAY(9); \
ROUND_S_16WAY(0); \
ROUND_S_16WAY(1); \
ROUND_S_16WAY(2); \
ROUND_S_16WAY(3); \
} \
H0 = mm512_xor3( V8, V0, H0 ); \
H1 = mm512_xor3( V9, V1, H1 ); \
H2 = mm512_xor3( VA, V2, H2 ); \
H3 = mm512_xor3( VB, V3, H3 ); \
H4 = mm512_xor3( VC, V4, H4 ); \
H5 = mm512_xor3( VD, V5, H5 ); \
H6 = mm512_xor3( VE, V6, H6 ); \
H7 = mm512_xor3( VF, V7, H7 ); \
}
#define COMPRESS32_16WAY_LE( rounds ) \
{ \
__m512i M0, M1, M2, M3, M4, M5, M6, M7; \
__m512i M8, M9, MA, MB, MC, MD, ME, MF; \
__m512i V0, V1, V2, V3, V4, V5, V6, V7; \
__m512i V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = m512_const1_64( 0x243F6A88243F6A88 ); \
V9 = m512_const1_64( 0x85A308D385A308D3 ); \
VA = m512_const1_64( 0x13198A2E13198A2E ); \
VB = m512_const1_64( 0x0370734403707344 ); \
VC = _mm512_set1_epi32( T0 ^ 0xA4093822 ); \
VD = _mm512_set1_epi32( T0 ^ 0x299F31D0 ); \
VE = _mm512_set1_epi32( T1 ^ 0x082EFA98 ); \
VF = _mm512_set1_epi32( T1 ^ 0xEC4E6C89 ); \
M0 = buf[ 0]; \
M1 = buf[ 1]; \
M2 = buf[ 2]; \
M3 = buf[ 3]; \
M4 = buf[ 4]; \
M5 = buf[ 5]; \
M6 = buf[ 6]; \
M7 = buf[ 7]; \
M8 = buf[ 8]; \
M9 = buf[ 9]; \
MA = buf[10]; \
MB = buf[11]; \
MC = buf[12]; \
MD = buf[13]; \
ME = buf[14]; \
MF = buf[15]; \
ROUND_S_16WAY(0); \
ROUND_S_16WAY(1); \
ROUND_S_16WAY(2); \
ROUND_S_16WAY(3); \
ROUND_S_16WAY(4); \
ROUND_S_16WAY(5); \
ROUND_S_16WAY(6); \
ROUND_S_16WAY(7); \
if (rounds == 14) \
{ \
ROUND_S_16WAY(8); \
ROUND_S_16WAY(9); \
ROUND_S_16WAY(0); \
ROUND_S_16WAY(1); \
ROUND_S_16WAY(2); \
ROUND_S_16WAY(3); \
} \
H0 = mm512_xor3( V8, V0, H0 ); \
H1 = mm512_xor3( V9, V1, H1 ); \
H2 = mm512_xor3( VA, V2, H2 ); \
H3 = mm512_xor3( VB, V3, H3 ); \
H4 = mm512_xor3( VC, V4, H4 ); \
H5 = mm512_xor3( VD, V5, H5 ); \
H6 = mm512_xor3( VE, V6, H6 ); \
H7 = mm512_xor3( VF, V7, H7 ); \
}
// Blake-256 prehash of the second block is split onto 2 parts. The first part
// is constant for every nonce and only needs to be run once per job. The
// second part is run for each nonce using the precalculated midstate and the
// hash from the first block.
void blake256_16way_round0_prehash_le( void *midstate, const void *midhash,
void *data )
{
__m512i *M = (__m512i*)data;
__m512i *V = (__m512i*)midstate;
const __m512i *H = (const __m512i*)midhash;
V[ 0] = H[0];
V[ 1] = H[1];
V[ 2] = H[2];
V[ 3] = H[3];
V[ 4] = H[4];
V[ 5] = H[5];
V[ 6] = H[6];
V[ 7] = H[7];
V[ 8] = m512_const1_32( CS0 );
V[ 9] = m512_const1_32( CS1 );
V[10] = m512_const1_32( CS2 );
V[11] = m512_const1_32( CS3 );
V[12] = m512_const1_32( CS4 ^ 0x280 );
V[13] = m512_const1_32( CS5 ^ 0x280 );
V[14] = m512_const1_32( CS6 );
V[15] = m512_const1_32( CS7 );
// M[ 0:3 ] contain new message data including unique nonces in M[ 3].
// M[ 5:12, 14 ] are always zero and not needed or used, except M[5] as noted.
// M[ 4], M[ 13], M[15] are constant and are initialized here.
// M[ 5] is a special case, used as a cache for (M[13] ^ CSC).
M[ 4] = m512_const1_32( 0x80000000 );
M[13] = m512_one_32;
M[15] = m512_const1_32( 80*8 );
M[ 5] =_mm512_xor_si512( M[13], _mm512_set1_epi32( CSC ) );
// G0
GS_16WAY( M[ 0], M[ 1], CS0, CS1, V[ 0], V[ 4], V[ 8], V[12] );
// G1
// GS_16WAY( M[ 2], M[ 3], CS2, CS3, V1, V5, V9, VD );
V[ 1] = _mm512_add_epi32( _mm512_add_epi32( V[ 1], V[ 5] ),
_mm512_xor_si512( _mm512_set1_epi32( CS3 ), M[ 2] ) );
V[13] = mm512_ror_32( _mm512_xor_si512( V[13], V[ 1] ), 16 );
V[ 9] = _mm512_add_epi32( V[ 9], V[13] );
V[ 5] = mm512_ror_32( _mm512_xor_si512( V[ 5], V[ 9] ), 12 );
V[ 1] = _mm512_add_epi32( V[ 1], V[ 5] );
// G2
// GS_16WAY( M[ 4], M[ 5], CS4, CS5, V[ 2], V[ 6], V[10], V[14] );
V[ 2] = _mm512_add_epi32( _mm512_add_epi32( V[ 2], V[ 6] ),
_mm512_xor_si512( _mm512_set1_epi32( CS5 ), M[ 4] ) );
V[14] = mm512_ror_32( _mm512_xor_si512( V[14], V[ 2] ), 16 );
V[10] = _mm512_add_epi32( V[10], V[14] );
V[ 6] = mm512_ror_32( _mm512_xor_si512( V[ 6], V[10] ), 12 );
V[ 2] = _mm512_add_epi32( _mm512_add_epi32( V[ 2], V[ 6] ),
_mm512_set1_epi32( CS4 ) );
V[14] = mm512_ror_32( _mm512_xor_si512( V[14], V[ 2] ), 8 );
V[10] = _mm512_add_epi32( V[10], V[14] ); \
V[ 6] = mm512_ror_32( _mm512_xor_si512( V[ 6], V[10] ), 7 );
// G3
// GS_16WAY( M[ 6], M[ 7], CS6, CS7, V[ 3], V[ 7], V[11], V[15] );
V[ 3] = _mm512_add_epi32( _mm512_add_epi32( V[ 3], V[ 7] ),
_mm512_set1_epi32( CS7 ) );
V[15] = mm512_ror_32( _mm512_xor_si512( V[15], V[ 3] ), 16 );
V[11] = _mm512_add_epi32( V[11], V[15] );
V[ 7] = mm512_ror_32( _mm512_xor_si512( V[ 7], V[11] ), 12 );
V[ 3] = _mm512_add_epi32( _mm512_add_epi32( V[ 3], V[ 7] ),
_mm512_set1_epi32( CS6 ) );
V[15] = mm512_ror_32( _mm512_xor_si512( V[15], V[ 3] ), 8 );
V[11] = _mm512_add_epi32( V[11], V[15] ); \
V[ 7] = mm512_ror_32( _mm512_xor_si512( V[ 7], V[11] ), 7 );
// G4
// GS_16WAY( M[ 8], M[ 9], CS8, CS9, V0, V5, VA, VF );
V[ 0] = _mm512_add_epi32( V[ 0], _mm512_set1_epi32( CS9 ) );
// G5
// GS_16WAY( M[10], M[11], CSA, CSB, V1, V6, VB, VC );
// G6
// GS_16WAY( M[12], M[13], CSC, CSD, V2, V7, V8, VD );
V[ 2] = _mm512_add_epi32( _mm512_add_epi32( V[ 2], V[ 7] ),
_mm512_set1_epi32( CSD ) );
// G7
// GS_16WAY( M[14], M[15], CSE, CSF, V3, V4, V9, VE );
V[ 3] = _mm512_add_epi32( _mm512_add_epi32( V[ 3], V[ 4] ),
_mm512_set1_epi32( CSF ) );
V[14] = mm512_ror_32( _mm512_xor_si512( V[14], V[ 3] ), 16 );
V[ 3] = _mm512_add_epi32( V[ 3],
_mm512_xor_si512( _mm512_set1_epi32( CSE ), M[15] ) );
}
void blake256_16way_final_rounds_le( void *final_hash, const void *midstate,
const void *midhash, const void *data )
{
__m512i *H = (__m512i*)final_hash;
const __m512i *h = (const __m512i*)midhash;
__m512i V0, V1, V2, V3, V4, V5, V6, V7;
__m512i V8, V9, VA, VB, VC, VD, VE, VF;
__m512i M0, M1, M2, M3, M4, MD, MF;
__m512i MDxorCSC;
V0 = _mm512_load_si512( (__m512i*)midstate + 0 );
V1 = _mm512_load_si512( (__m512i*)midstate + 1 );
V2 = _mm512_load_si512( (__m512i*)midstate + 2 );
V3 = _mm512_load_si512( (__m512i*)midstate + 3 );
V4 = _mm512_load_si512( (__m512i*)midstate + 4 );
V5 = _mm512_load_si512( (__m512i*)midstate + 5 );
V6 = _mm512_load_si512( (__m512i*)midstate + 6 );
V7 = _mm512_load_si512( (__m512i*)midstate + 7 );
V8 = _mm512_load_si512( (__m512i*)midstate + 8 );
V9 = _mm512_load_si512( (__m512i*)midstate + 9 );
VA = _mm512_load_si512( (__m512i*)midstate + 10 );
VB = _mm512_load_si512( (__m512i*)midstate + 11 );
VC = _mm512_load_si512( (__m512i*)midstate + 12 );
VD = _mm512_load_si512( (__m512i*)midstate + 13 );
VE = _mm512_load_si512( (__m512i*)midstate + 14 );
VF = _mm512_load_si512( (__m512i*)midstate + 15 );
M0 = _mm512_load_si512( (__m512i*)data + 0 );
M1 = _mm512_load_si512( (__m512i*)data + 1 );
M2 = _mm512_load_si512( (__m512i*)data + 2 );
M3 = _mm512_load_si512( (__m512i*)data + 3 );
M4 = _mm512_load_si512( (__m512i*)data + 4 );
// M5 to MC & ME are zero padding and optimised out
MD = _mm512_load_si512( (__m512i*)data + 13 );
MF = _mm512_load_si512( (__m512i*)data + 15 );
// cache for precalculated MD^CSC, used in round0 G6.
MDxorCSC = _mm512_load_si512( (__m512i*)data + 5 );
// Finish round 0 with the nonce (M3) now available
// G0
// GS_16WAY( M0, M1, CS0, CS1, V0, V4, V8, VC );
// G1
// GS_16WAY( M2, M3, CS2, CS3, V1, V5, V9, VD );
V1 = _mm512_add_epi32( V1,
_mm512_xor_si512( _mm512_set1_epi32( CS2 ), M3 ) );
VD = mm512_ror_32( _mm512_xor_si512( VD, V1 ), 8 );
V9 = _mm512_add_epi32( V9, VD );
V5 = mm512_ror_32( _mm512_xor_si512( V5, V9 ), 7 );
// G2,G3
// GS_16WAY( M4, M5, CS4, CS5, V2, V6, VA, VE );
// GS_16WAY( M6, M7, CS6, CS7, V3, V7, VB, VF );
// G4
// GS_16WAY( M8, M9, CS8, CS9, V0, V5, VA, VF );
V0 = _mm512_add_epi32( V0, V5 );
VF = mm512_ror_32( _mm512_xor_si512( VF, V0 ), 16 );
VA = _mm512_add_epi32( VA, VF );
V5 = mm512_ror_32( _mm512_xor_si512( V5, VA ), 12 );
V0 = _mm512_add_epi32( V0, _mm512_add_epi32( V5,
_mm512_set1_epi32( CS8 ) ) );
VF = mm512_ror_32( _mm512_xor_si512( VF, V0 ), 8 );
VA = _mm512_add_epi32( VA, VF );
V5 = mm512_ror_32( _mm512_xor_si512( V5, VA ), 7 );
// G5
// GS_16WAY( MA, MB, CSA, CSB, V1, V6, VB, VC );
V1 = _mm512_add_epi32( _mm512_add_epi32( V1, V6 ),
_mm512_set1_epi32( CSB ) );
VC = mm512_ror_32( _mm512_xor_si512( VC, V1 ), 16 );
VB = _mm512_add_epi32( VB, VC );
V6 = mm512_ror_32( _mm512_xor_si512( V6, VB ), 12 );
V1 = _mm512_add_epi32( _mm512_add_epi32( V1, V6 ),
_mm512_set1_epi32( CSA ) );
VC = mm512_ror_32( _mm512_xor_si512( VC, V1 ), 8 );
VB = _mm512_add_epi32( VB, VC );
V6 = mm512_ror_32( _mm512_xor_si512( V6, VB ), 7 );
// G6
// GS_16WAY( MC, MD, CSC, CSD, V2, V7, V8, VD );
VD = mm512_ror_32( _mm512_xor_si512( VD, V2 ), 16 );
V8 = _mm512_add_epi32( V8, VD );
V7 = mm512_ror_32( _mm512_xor_si512( V7, V8 ), 12 );
V2 = _mm512_add_epi32( V2, _mm512_add_epi32( V7, MDxorCSC ) );
VD = mm512_ror_32( _mm512_xor_si512( VD, V2 ), 8 );
V8 = _mm512_add_epi32( V8, VD );
V7 = mm512_ror_32( _mm512_xor_si512( V7, V8 ), 7 );
// G7
// GS_16WAY( ME, MF, CSE, CSF, V3, V4, V9, VE );
V9 = _mm512_add_epi32( V9, VE );
V4 = mm512_ror_32( _mm512_xor_si512( V4, V9 ), 12 );
V3 = _mm512_add_epi32( V3, V4 );
VE = mm512_ror_32( _mm512_xor_si512( VE, V3 ), 8 );
V9 = _mm512_add_epi32( V9, VE );
V4 = mm512_ror_32( _mm512_xor_si512( V4, V9 ), 7 );
// Remaining rounds, optimised
ROUND256_16WAY_1;
ROUND256_16WAY_2;
ROUND256_16WAY_3;
ROUND256_16WAY_4;
ROUND256_16WAY_5;
ROUND256_16WAY_6;
ROUND256_16WAY_7;
ROUND256_16WAY_8;
ROUND256_16WAY_9;
ROUND256_16WAY_0;
ROUND256_16WAY_1;
ROUND256_16WAY_2;
ROUND256_16WAY_3;
// Byte swap final hash
const __m512i shuf_bswap32 =
m512_const_64( 0x3c3d3e3f38393a3b, 0x3435363730313233,
0x2c2d2e2f28292a2b, 0x2425262720212223,
0x1c1d1e1f18191a1b, 0x1415161710111213,
0x0c0d0e0f08090a0b, 0x0405060700010203 );
H[0] = _mm512_shuffle_epi8( mm512_xor3( V8, V0, h[0] ), shuf_bswap32 );
H[1] = _mm512_shuffle_epi8( mm512_xor3( V9, V1, h[1] ), shuf_bswap32 );
H[2] = _mm512_shuffle_epi8( mm512_xor3( VA, V2, h[2] ), shuf_bswap32 );
H[3] = _mm512_shuffle_epi8( mm512_xor3( VB, V3, h[3] ), shuf_bswap32 );
H[4] = _mm512_shuffle_epi8( mm512_xor3( VC, V4, h[4] ), shuf_bswap32 );
H[5] = _mm512_shuffle_epi8( mm512_xor3( VD, V5, h[5] ), shuf_bswap32 );
H[6] = _mm512_shuffle_epi8( mm512_xor3( VE, V6, h[6] ), shuf_bswap32 );
H[7] = _mm512_shuffle_epi8( mm512_xor3( VF, V7, h[7] ), shuf_bswap32 );
}
#endif
// Blake-256 4 way
static const uint32_t salt_zero_4way_small[4] = { 0, 0, 0, 0 };
static void
blake32_4way_init( blake_4way_small_context *ctx, const uint32_t *iv,
const uint32_t *salt, int rounds )
{
casti_m128i( ctx->H, 0 ) = m128_const1_64( 0x6A09E6676A09E667 );
casti_m128i( ctx->H, 1 ) = m128_const1_64( 0xBB67AE85BB67AE85 );
casti_m128i( ctx->H, 2 ) = m128_const1_64( 0x3C6EF3723C6EF372 );
casti_m128i( ctx->H, 3 ) = m128_const1_64( 0xA54FF53AA54FF53A );
casti_m128i( ctx->H, 4 ) = m128_const1_64( 0x510E527F510E527F );
casti_m128i( ctx->H, 5 ) = m128_const1_64( 0x9B05688C9B05688C );
casti_m128i( ctx->H, 6 ) = m128_const1_64( 0x1F83D9AB1F83D9AB );
casti_m128i( ctx->H, 7 ) = m128_const1_64( 0x5BE0CD195BE0CD19 );
ctx->T0 = ctx->T1 = 0;
ctx->ptr = 0;
ctx->rounds = rounds;
}
static void
blake32_4way( blake_4way_small_context *ctx, const void *data,
size_t len )
{
__m128i *buf = (__m128i*)ctx->buf;
size_t bptr = ctx->ptr<<2;
size_t vptr = ctx->ptr >> 2;
size_t blen = len << 2;
DECL_STATE32_4WAY
if ( blen < (sizeof ctx->buf) - bptr )
{
memcpy( buf + vptr, data, (sizeof ctx->buf) - bptr );
bptr += blen;
ctx->ptr = bptr>>2;
return;
}
READ_STATE32_4WAY( ctx );
while ( blen > 0 )
{
size_t clen = ( sizeof ctx->buf ) - bptr;
if ( clen > blen )
clen = blen;
memcpy( buf + vptr, data, clen );
bptr += clen;
data = (const unsigned char *)data + clen;
blen -= clen;
if ( bptr == ( sizeof ctx->buf ) )
{
if ( ( T0 = T0 + 512 ) < 512 )
T1 = T1 + 1;
COMPRESS32_4WAY( ctx->rounds );
bptr = 0;
}
}
WRITE_STATE32_4WAY( ctx );
ctx->ptr = bptr>>2;
}
static void
blake32_4way_close( blake_4way_small_context *ctx, unsigned ub, unsigned n,
void *dst, size_t out_size_w32 )
{
__m128i buf[16] __attribute__ ((aligned (64)));
size_t ptr = ctx->ptr;
size_t vptr = ctx->ptr>>2;
unsigned bit_len = ( (unsigned)ptr << 3 );
uint32_t tl = ctx->T0 + bit_len;
uint32_t th = ctx->T1;
if ( ptr == 0 )
{
ctx->T0 = 0xFFFFFE00UL;
ctx->T1 = 0xFFFFFFFFUL;
}
else if ( ctx->T0 == 0 )
{
ctx->T0 = 0xFFFFFE00UL + bit_len;
ctx->T1 = ctx->T1 - 1;
}
else
ctx->T0 -= 512 - bit_len;
buf[vptr] = m128_const1_64( 0x0000008000000080 );
if ( vptr < 12 )
{
memset_zero_128( buf + vptr + 1, 13 - vptr );
buf[ 13 ] = _mm_or_si128( buf[ 13 ],
m128_const1_64( 0x0100000001000000ULL ) );
buf[ 14 ] = _mm_set1_epi32( bswap_32( th ) );
buf[ 15 ] = _mm_set1_epi32( bswap_32( tl ) );
blake32_4way( ctx, buf + vptr, 64 - ptr );
}
else
{
memset_zero_128( buf + vptr + 1, (60-ptr) >> 2 );
blake32_4way( ctx, buf + vptr, 64 - ptr );
ctx->T0 = 0xFFFFFE00UL;
ctx->T1 = 0xFFFFFFFFUL;
memset_zero_128( buf, 56>>2 );
buf[ 13 ] = _mm_or_si128( buf[ 13 ],
m128_const1_64( 0x0100000001000000ULL ) );
buf[ 14 ] = _mm_set1_epi32( bswap_32( th ) );
buf[ 15 ] = _mm_set1_epi32( bswap_32( tl ) );
blake32_4way( ctx, buf, 64 );
}
mm128_block_bswap_32( (__m128i*)dst, (__m128i*)ctx->H );
}
#if defined (__AVX2__)
// Blake-256 8 way
static const sph_u32 salt_zero_8way_small[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
static void
blake32_8way_init( blake_8way_small_context *sc, const sph_u32 *iv,
const sph_u32 *salt, int rounds )
{
casti_m256i( sc->H, 0 ) = m256_const1_64( 0x6A09E6676A09E667 );
casti_m256i( sc->H, 1 ) = m256_const1_64( 0xBB67AE85BB67AE85 );
casti_m256i( sc->H, 2 ) = m256_const1_64( 0x3C6EF3723C6EF372 );
casti_m256i( sc->H, 3 ) = m256_const1_64( 0xA54FF53AA54FF53A );
casti_m256i( sc->H, 4 ) = m256_const1_64( 0x510E527F510E527F );
casti_m256i( sc->H, 5 ) = m256_const1_64( 0x9B05688C9B05688C );
casti_m256i( sc->H, 6 ) = m256_const1_64( 0x1F83D9AB1F83D9AB );
casti_m256i( sc->H, 7 ) = m256_const1_64( 0x5BE0CD195BE0CD19 );
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
sc->rounds = rounds;
}
static void
blake32_8way( blake_8way_small_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
__m256i *buf;
size_t ptr;
const int buf_size = 64; // number of elements, sizeof/4
DECL_STATE32_8WAY
buf = sc->buf;
ptr = sc->ptr;
if ( len < buf_size - ptr )
{
memcpy_256( buf + (ptr>>2), vdata, len>>2 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE32_8WAY(sc);
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if (clen > len)
clen = len;
memcpy_256( buf + (ptr>>2), vdata, clen>>2 );
ptr += clen;
vdata += (clen>>2);
len -= clen;
if ( ptr == buf_size )
{
if ( ( T0 = SPH_T32(T0 + 512) ) < 512 )
T1 = SPH_T32(T1 + 1);
COMPRESS32_8WAY( sc->rounds );
ptr = 0;
}
}
WRITE_STATE32_8WAY(sc);
sc->ptr = ptr;
}
static void
blake32_8way_close( blake_8way_small_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32 )
{
__m256i buf[16];
size_t ptr;
unsigned bit_len;
sph_u32 th, tl;
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
buf[ptr>>2] = m256_const1_64( 0x0000008000000080ULL );
tl = sc->T0 + bit_len;
th = sc->T1;
if ( ptr == 0 )
{
sc->T0 = SPH_C32(0xFFFFFE00UL);
sc->T1 = SPH_C32(0xFFFFFFFFUL);
}
else if ( sc->T0 == 0 )
{
sc->T0 = SPH_C32(0xFFFFFE00UL) + bit_len;
sc->T1 = SPH_T32(sc->T1 - 1);
}
else
sc->T0 -= 512 - bit_len;
if ( ptr <= 52 )
{
memset_zero_256( buf + (ptr>>2) + 1, (52 - ptr) >> 2 );
if ( out_size_w32 == 8 )
buf[52>>2] = _mm256_or_si256( buf[52>>2],
m256_const1_64( 0x0100000001000000ULL ) );
*(buf+(56>>2)) = _mm256_set1_epi32( bswap_32( th ) );
*(buf+(60>>2)) = _mm256_set1_epi32( bswap_32( tl ) );
blake32_8way( sc, buf + (ptr>>2), 64 - ptr );
}
else
{
memset_zero_256( buf + (ptr>>2) + 1, (60-ptr) >> 2 );
blake32_8way( sc, buf + (ptr>>2), 64 - ptr );
sc->T0 = SPH_C32(0xFFFFFE00UL);
sc->T1 = SPH_C32(0xFFFFFFFFUL);
memset_zero_256( buf, 56>>2 );
if ( out_size_w32 == 8 )
buf[52>>2] = m256_const1_64( 0x0100000001000000ULL );
*(buf+(56>>2)) = _mm256_set1_epi32( bswap_32( th ) );
*(buf+(60>>2)) = _mm256_set1_epi32( bswap_32( tl ) );
blake32_8way( sc, buf, 64 );
}
mm256_block_bswap_32( (__m256i*)dst, (__m256i*)sc->H );
}
static void
blake32_8way_le( blake_8way_small_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
__m256i *buf;
size_t ptr;
const int buf_size = 64; // number of elements, sizeof/4
DECL_STATE32_8WAY
buf = sc->buf;
ptr = sc->ptr;
if ( len < buf_size - ptr )
{
memcpy_256( buf + (ptr>>2), vdata, len>>2 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE32_8WAY(sc);
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if (clen > len)
clen = len;
memcpy_256( buf + (ptr>>2), vdata, clen>>2 );
ptr += clen;
vdata += (clen>>2);
len -= clen;
if ( ptr == buf_size )
{
if ( ( T0 = SPH_T32(T0 + 512) ) < 512 )
T1 = SPH_T32(T1 + 1);
COMPRESS32_8WAY_LE( sc->rounds );
ptr = 0;
}
}
WRITE_STATE32_8WAY(sc);
sc->ptr = ptr;
}
static void
blake32_8way_close_le( blake_8way_small_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32 )
{
__m256i buf[16];
size_t ptr;
unsigned bit_len;
sph_u32 th, tl;
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
buf[ptr>>2] = m256_const1_32( 0x80000000 );
tl = sc->T0 + bit_len;
th = sc->T1;
if ( ptr == 0 )
{
sc->T0 = SPH_C32(0xFFFFFE00UL);
sc->T1 = SPH_C32(0xFFFFFFFFUL);
}
else if ( sc->T0 == 0 )
{
sc->T0 = SPH_C32(0xFFFFFE00UL) + bit_len;
sc->T1 = SPH_T32(sc->T1 - 1);
}
else
sc->T0 -= 512 - bit_len;
if ( ptr <= 52 )
{
memset_zero_256( buf + (ptr>>2) + 1, (52 - ptr) >> 2 );
if ( out_size_w32 == 8 )
buf[52>>2] = _mm256_or_si256( buf[52>>2], m256_one_32 );
*(buf+(56>>2)) = _mm256_set1_epi32( th );
*(buf+(60>>2)) = _mm256_set1_epi32( tl );
blake32_8way_le( sc, buf + (ptr>>2), 64 - ptr );
}
else
{
memset_zero_256( buf + (ptr>>2) + 1, (60-ptr) >> 2 );
blake32_8way_le( sc, buf + (ptr>>2), 64 - ptr );
sc->T0 = SPH_C32(0xFFFFFE00UL);
sc->T1 = SPH_C32(0xFFFFFFFFUL);
memset_zero_256( buf, 56>>2 );
if ( out_size_w32 == 8 )
buf[52>>2] = m256_one_32;
*(buf+(56>>2)) = _mm256_set1_epi32( th );
*(buf+(60>>2)) = _mm256_set1_epi32( tl );
blake32_8way_le( sc, buf, 64 );
}
mm256_block_bswap_32( (__m256i*)dst, (__m256i*)sc->H );
}
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
//Blake-256 16 way AVX512
static void
blake32_16way_init( blake_16way_small_context *sc, const sph_u32 *iv,
const sph_u32 *salt, int rounds )
{
casti_m512i( sc->H, 0 ) = m512_const1_64( 0x6A09E6676A09E667 );
casti_m512i( sc->H, 1 ) = m512_const1_64( 0xBB67AE85BB67AE85 );
casti_m512i( sc->H, 2 ) = m512_const1_64( 0x3C6EF3723C6EF372 );
casti_m512i( sc->H, 3 ) = m512_const1_64( 0xA54FF53AA54FF53A );
casti_m512i( sc->H, 4 ) = m512_const1_64( 0x510E527F510E527F );
casti_m512i( sc->H, 5 ) = m512_const1_64( 0x9B05688C9B05688C );
casti_m512i( sc->H, 6 ) = m512_const1_64( 0x1F83D9AB1F83D9AB );
casti_m512i( sc->H, 7 ) = m512_const1_64( 0x5BE0CD195BE0CD19 );
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
sc->rounds = rounds;
}
static void
blake32_16way( blake_16way_small_context *sc, const void *data, size_t len )
{
__m512i *vdata = (__m512i*)data;
__m512i *buf;
size_t ptr;
const int buf_size = 64; // number of elements, sizeof/4
DECL_STATE32_16WAY
buf = sc->buf;
ptr = sc->ptr;
if ( len < buf_size - ptr )
{
memcpy_512( buf + (ptr>>2), vdata, len>>2 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE32_16WAY(sc);
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if (clen > len)
clen = len;
memcpy_512( buf + (ptr>>2), vdata, clen>>2 );
ptr += clen;
vdata += (clen>>2);
len -= clen;
if ( ptr == buf_size )
{
if ( ( T0 = T0 + 512 ) < 512 )
T1 = T1 + 1;
COMPRESS32_16WAY( sc->rounds );
ptr = 0;
}
}
WRITE_STATE32_16WAY(sc);
sc->ptr = ptr;
}
static void
blake32_16way_close( blake_16way_small_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32 )
{
__m512i buf[16];
size_t ptr;
unsigned bit_len;
sph_u32 th, tl;
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
buf[ptr>>2] = m512_const1_64( 0x0000008000000080ULL );
tl = sc->T0 + bit_len;
th = sc->T1;
if ( ptr == 0 )
{
sc->T0 = 0xFFFFFE00UL;
sc->T1 = 0xFFFFFFFFUL;
}
else if ( sc->T0 == 0 )
{
sc->T0 = 0xFFFFFE00UL + bit_len;
sc->T1 = sc->T1 - 1;
}
else
sc->T0 -= 512 - bit_len;
if ( ptr <= 52 )
{
memset_zero_512( buf + (ptr>>2) + 1, (52 - ptr) >> 2 );
if ( out_size_w32 == 8 )
buf[52>>2] = _mm512_or_si512( buf[52>>2],
m512_const1_64( 0x0100000001000000ULL ) );
buf[56>>2] = _mm512_set1_epi32( bswap_32( th ) );
buf[60>>2] = _mm512_set1_epi32( bswap_32( tl ) );
blake32_16way( sc, buf + (ptr>>2), 64 - ptr );
}
else
{
memset_zero_512( buf + (ptr>>2) + 1, (60-ptr) >> 2 );
blake32_16way( sc, buf + (ptr>>2), 64 - ptr );
sc->T0 = 0xFFFFFE00UL;
sc->T1 = 0xFFFFFFFFUL;
memset_zero_512( buf, 56>>2 );
if ( out_size_w32 == 8 )
buf[52>>2] = m512_const1_64( 0x0100000001000000ULL );
buf[56>>2] = _mm512_set1_epi32( bswap_32( th ) );
buf[60>>2] = _mm512_set1_epi32( bswap_32( tl ) );
blake32_16way( sc, buf, 64 );
}
mm512_block_bswap_32( (__m512i*)dst, (__m512i*)sc->H );
}
static void
blake32_16way_le( blake_16way_small_context *sc, const void *data, size_t len )
{
__m512i *vdata = (__m512i*)data;
__m512i *buf;
size_t ptr;
const int buf_size = 64; // number of elements, sizeof/4
DECL_STATE32_16WAY
buf = sc->buf;
ptr = sc->ptr;
// only if calling update with 80
if ( len < buf_size - ptr )
{
memcpy_512( buf + (ptr>>2), vdata, len>>2 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE32_16WAY(sc);
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if (clen > len)
clen = len;
memcpy_512( buf + (ptr>>2), vdata, clen>>2 );
ptr += clen;
vdata += (clen>>2);
len -= clen;
if ( ptr == buf_size )
{
if ( ( T0 = T0 + 512 ) < 512 )
T1 = T1 + 1;
COMPRESS32_16WAY_LE( sc->rounds );
ptr = 0;
}
}
WRITE_STATE32_16WAY(sc);
sc->ptr = ptr;
}
static void
blake32_16way_close_le( blake_16way_small_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32 )
{
__m512i buf[16];
size_t ptr;
unsigned bit_len;
sph_u32 th, tl;
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
buf[ptr>>2] = m512_const1_32( 0x80000000 );
tl = sc->T0 + bit_len;
th = sc->T1;
if ( ptr == 0 )
{
sc->T0 = 0xFFFFFE00UL;
sc->T1 = 0xFFFFFFFFUL;
}
else if ( sc->T0 == 0 )
{
sc->T0 = 0xFFFFFE00UL + bit_len;
sc->T1 = sc->T1 - 1;
}
else
sc->T0 -= 512 - bit_len;
if ( ptr <= 52 )
{
memset_zero_512( buf + (ptr>>2) + 1, (52 - ptr) >> 2 );
buf[52>>2] = _mm512_or_si512( buf[52>>2], m512_one_32 );
buf[56>>2] = _mm512_set1_epi32( th );
buf[60>>2] = _mm512_set1_epi32( tl );
blake32_16way_le( sc, buf + (ptr>>2), 64 - ptr );
}
else
{
memset_zero_512( buf + (ptr>>2) + 1, (60-ptr) >> 2 );
blake32_16way_le( sc, buf + (ptr>>2), 64 - ptr );
sc->T0 = 0xFFFFFE00UL;
sc->T1 = 0xFFFFFFFFUL;
memset_zero_512( buf, 56>>2 );
buf[52>>2] = m512_one_32;
buf[56>>2] = _mm512_set1_epi32( th );
buf[60>>2] = _mm512_set1_epi32( tl );
blake32_16way_le( sc, buf, 64 );
}
mm512_block_bswap_32( (__m512i*)dst, (__m512i*)sc->H );
}
void
blake256_16way_init(void *cc)
{
blake32_16way_init( cc, IV256, salt_zero_8way_small, 14 );
}
void
blake256_16way_update(void *cc, const void *data, size_t len)
{
blake32_16way(cc, data, len);
}
void
blake256_16way_close(void *cc, void *dst)
{
blake32_16way_close(cc, 0, 0, dst, 8);
}
void
blake256_16way_update_le(void *cc, const void *data, size_t len)
{
blake32_16way_le(cc, data, len);
}
void
blake256_16way_close_le(void *cc, void *dst)
{
blake32_16way_close_le(cc, 0, 0, dst, 8);
}
void blake256r14_16way_init(void *cc)
{
blake32_16way_init( cc, IV256, salt_zero_8way_small, 14 );
}
void
blake256r14_16way_update(void *cc, const void *data, size_t len)
{
blake32_16way(cc, data, len);
}
void
blake256r14_16way_close(void *cc, void *dst)
{
blake32_16way_close(cc, 0, 0, dst, 8);
}
void blake256r8_16way_init(void *cc)
{
blake32_16way_init( cc, IV256, salt_zero_8way_small, 8 );
}
void
blake256r8_16way_update(void *cc, const void *data, size_t len)
{
blake32_16way(cc, data, len);
}
void
blake256r8_16way_close(void *cc, void *dst)
{
blake32_16way_close(cc, 0, 0, dst, 8);
}
#endif // AVX512
// Blake-256 4 way
// default 14 rounds, backward copatibility
void
blake256_4way_init(void *ctx)
{
blake32_4way_init( ctx, IV256, salt_zero_4way_small, 14 );
}
void
blake256_4way_update(void *ctx, const void *data, size_t len)
{
blake32_4way(ctx, data, len);
}
void
blake256_4way_close(void *ctx, void *dst)
{
blake32_4way_close(ctx, 0, 0, dst, 8);
}
#if defined(__AVX2__)
// Blake-256 8 way
void
blake256_8way_init(void *cc)
{
blake32_8way_init( cc, IV256, salt_zero_8way_small, 14 );
}
void
blake256_8way_update(void *cc, const void *data, size_t len)
{
blake32_8way(cc, data, len);
}
void
blake256_8way_close(void *cc, void *dst)
{
blake32_8way_close(cc, 0, 0, dst, 8);
}
void
blake256_8way_update_le(void *cc, const void *data, size_t len)
{
blake32_8way_le(cc, data, len);
}
void
blake256_8way_close_le(void *cc, void *dst)
{
blake32_8way_close_le(cc, 0, 0, dst, 8);
}
#endif
// 14 rounds Blake, Decred
void blake256r14_4way_init(void *cc)
{
blake32_4way_init( cc, IV256, salt_zero_4way_small, 14 );
}
void
blake256r14_4way_update(void *cc, const void *data, size_t len)
{
blake32_4way(cc, data, len);
}
void
blake256r14_4way_close(void *cc, void *dst)
{
blake32_4way_close(cc, 0, 0, dst, 8);
}
#if defined(__AVX2__)
void blake256r14_8way_init(void *cc)
{
blake32_8way_init( cc, IV256, salt_zero_8way_small, 14 );
}
void
blake256r14_8way_update(void *cc, const void *data, size_t len)
{
blake32_8way(cc, data, len);
}
void
blake256r14_8way_close(void *cc, void *dst)
{
blake32_8way_close(cc, 0, 0, dst, 8);
}
#endif
// 8 rounds Blakecoin, Vanilla
void blake256r8_4way_init(void *cc)
{
blake32_4way_init( cc, IV256, salt_zero_4way_small, 8 );
}
void
blake256r8_4way_update(void *cc, const void *data, size_t len)
{
blake32_4way(cc, data, len);
}
void
blake256r8_4way_close(void *cc, void *dst)
{
blake32_4way_close(cc, 0, 0, dst, 8);
}
#if defined (__AVX2__)
void blake256r8_8way_init(void *cc)
{
blake32_8way_init( cc, IV256, salt_zero_8way_small, 8 );
}
void
blake256r8_8way_update(void *cc, const void *data, size_t len)
{
blake32_8way(cc, data, len);
}
void
blake256r8_8way_close(void *cc, void *dst)
{
blake32_8way_close(cc, 0, 0, dst, 8);
}
#endif
#ifdef __cplusplus
}
#endif
//#endif