Files
cpuminer-opt-gpu/algo/quark/hmq1725-4way.c
Jay D Dee d6e8d7a46e v3.9.4
2019-06-18 13:15:45 -04:00

619 lines
20 KiB
C

#include "hmq1725-gate.h"
#if defined(HMQ1725_4WAY)
#include <string.h>
#include <stdint.h>
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/hamsi/hamsi-hash-4way.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/shabal-hash-4way.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/haval/haval-hash-4way.h"
#include "algo/sha/sha2-hash-4way.h"
union _hmq1725_4way_context_overlay
{
blake512_4way_context blake;
bmw512_4way_context bmw;
hashState_groestl groestl;
skein512_4way_context skein;
jh512_4way_context jh;
keccak512_4way_context keccak;
hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
hashState_sd simd;
hashState_echo echo;
hamsi512_4way_context hamsi;
sph_fugue512_context fugue;
shabal512_4way_context shabal;
sph_whirlpool_context whirlpool;
sha512_4way_context sha512;
haval256_5_4way_context haval;
};
typedef union _hmq1725_4way_context_overlay hmq1725_4way_context_overlay;
extern void hmq1725_4way_hash(void *state, const void *input)
{
// why so big? only really need 8, haval thing uses 16.
uint32_t hash0 [32] __attribute__ ((aligned (64)));
uint32_t hash1 [32] __attribute__ ((aligned (64)));
uint32_t hash2 [32] __attribute__ ((aligned (64)));
uint32_t hash3 [32] __attribute__ ((aligned (64)));
uint32_t vhash [32<<2] __attribute__ ((aligned (64)));
uint32_t vhashA[32<<2] __attribute__ ((aligned (64)));
uint32_t vhashB[32<<2] __attribute__ ((aligned (64)));
hmq1725_4way_context_overlay ctx __attribute__ ((aligned (64)));
__m256i vh_mask;
const __m256i vmask = _mm256_set1_epi64x( 24 );
const uint32_t mask = 24;
__m256i* vh = (__m256i*)vhash;
__m256i* vhA = (__m256i*)vhashA;
__m256i* vhB = (__m256i*)vhashB;
bmw512_4way_init( &ctx.bmw );
bmw512_4way( &ctx.bmw, input, 80 );
bmw512_4way_close( &ctx.bmw, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash1, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash2, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash3, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
// first fork, A is groestl serial, B is skein parallel.
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], vmask ),
m256_zero );
// A
// if ( hash0[0] & mask )
// {
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(char*)hash0, 512 );
// }
// if ( hash1[0] & mask )
// {
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash1,
(char*)hash1, 512 );
// }
// if ( hash2[0] & mask )
// {
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash2,
(char*)hash2, 512 );
// }
// if ( hash3[0] & mask )
// {
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(char*)hash3, 512 );
// }
mm256_intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
// B
// if ( mm256_any_clr_256( vh_mask ) )
// {
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhashB );
// }
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
jh512_4way_init( &ctx.jh );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
keccak512_4way_init( &ctx.keccak );
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
// second fork, A = blake parallel, B= bmw parallel.
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], vmask ),
m256_zero );
// if ( mm256_any_set_256( vh_mask ) )
// {
blake512_4way_init( &ctx.blake );
blake512_4way( &ctx.blake, vhash, 64 );
blake512_4way_close( &ctx.blake, vhashA );
// }
// if ( mm256_any_clr_256( vh_mask ) )
// {
bmw512_4way_init( &ctx.bmw );
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhashB );
// }
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash0,
(const BitSequence*)hash0, 64 );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash1,
(const BitSequence*)hash1, 64 );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash2,
(const BitSequence*)hash2, 64 );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash3,
(const BitSequence*)hash3, 64 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (BitSequence *)hash0,
(const BitSequence *)hash0, 64 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (BitSequence *)hash1,
(const BitSequence *)hash1, 64 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (BitSequence *)hash2,
(const BitSequence *)hash2, 64 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (BitSequence *)hash3,
(const BitSequence *)hash3, 64 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
// A= keccak parallel, B= jh parallel
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], vmask ),
m256_zero );
// if ( mm256_any_set_256( vh_mask ) )
// {
keccak512_4way_init( &ctx.keccak );
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhashA );
// }
// if ( mm256_any_clr_256( vh_mask ) )
// {
jh512_4way_init( &ctx.jh );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhashB );
// }
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512 ( &ctx.shavite, hash0, 64 );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512 ( &ctx.shavite, hash1, 64 );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512 ( &ctx.shavite, hash2, 64 );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512 ( &ctx.shavite, hash3, 64 );
sph_shavite512_close( &ctx.shavite, hash3 );
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash0,
(const BitSequence *)hash0, 512 );
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash1,
(const BitSequence *)hash1, 512 );
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash2,
(const BitSequence *)hash2, 512 );
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash3,
(const BitSequence *)hash3, 512 );
// A is whirlpool serial, B is haval parallel.
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], vmask ),
m256_zero );
// A
// if ( hash0[0] & mask )
// {
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
// }
// if ( hash1[0] & mask )
// {
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash1, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
// }
// if ( hash2[0] & mask )
// {
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash2, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
// }
// if ( hash3[0] & mask )
// {
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash3, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
// }
mm256_intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
// B
// if ( mm256_any_clr_256( vh_mask ) )
// {
haval256_5_4way_init( &ctx.haval );
haval256_5_4way( &ctx.haval, vhash, 64 );
haval256_5_4way_close( &ctx.haval, vhashB );
memset( &vhashB[8<<2], 0, 32<<2);
// }
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *)hash0, 512 );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *)hash1, 512 );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash2,
(const BitSequence *)hash2, 512 );
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
blake512_4way_init( &ctx.blake );
blake512_4way( &ctx.blake, vhash, 64 );
blake512_4way_close( &ctx.blake, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// shavite & luffa, both serial, select individually.
if ( hash0[0] & mask )
{
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash0, 64 ); //
sph_shavite512_close( &ctx.shavite, hash0 ); //8
}
else
{
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence *)hash0,
(const BitSequence *)hash0, 64 );
}
if ( hash1[0] & mask )
{
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash1, 64 ); //
sph_shavite512_close( &ctx.shavite, hash1 ); //8
}
else
{
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence *)hash1,
(const BitSequence *)hash1, 64 );
}
if ( hash2[0] & mask )
{
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash2, 64 ); //
sph_shavite512_close( &ctx.shavite, hash2 ); //8
}
else
{
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence *)hash2,
(const BitSequence *)hash2, 64 );
}
if ( hash3[0] & mask )
{
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash3, 64 ); //
sph_shavite512_close( &ctx.shavite, hash3 ); //8
}
else
{
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence *)hash3,
(const BitSequence *)hash3, 64 );
}
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, 64 );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash1, 64 );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash2, 64 );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
// A echo, B sd both serial
if ( hash0[0] & mask ) //4
{
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *)hash0, 512 );
}
else
{
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash0,
(const BitSequence *)hash0, 512 );
}
if ( hash1[0] & mask ) //4
{
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *)hash1, 512 );
}
else
{
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash1,
(const BitSequence *)hash1, 512 );
}
if ( hash2[0] & mask ) //4
{
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash2,
(const BitSequence *)hash2, 512 );
}
else
{
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash2,
(const BitSequence *)hash2, 512 );
}
if ( hash3[0] & mask ) //4
{
init_echo( &ctx.echo, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *)hash3, 512 );
}
else
{
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash3,
(const BitSequence *)hash3, 512 );
}
mm128_intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
shabal512_4way_init( &ctx.shabal );
shabal512_4way( &ctx.shabal, vhash, 64 );
shabal512_4way_close( &ctx.shabal, vhash );
mm128_dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash1, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash2, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash3, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
// A = fugue serial, B = sha512 prarallel
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], vmask ),
m256_zero );
// if ( hash0[0] & mask )
// {
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, 64 );
sph_fugue512_close( &ctx.fugue, hash0 );
// }
// if ( hash1[0] & mask )
// {
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash1, 64 );
sph_fugue512_close( &ctx.fugue, hash1 );
// }
// if ( hash2[0] & mask )
// {
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash2, 64 );
sph_fugue512_close( &ctx.fugue, hash2 );
// }
// if ( hash3[0] & mask )
// {
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
// }
mm256_intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
// if ( mm256_any_clr_256( vh_mask ) )
// {
sha512_4way_init( &ctx.sha512 );
sha512_4way( &ctx.sha512, vhash, 64 );
sha512_4way_close( &ctx.sha512, vhashB );
// }
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
sha512_4way_init( &ctx.sha512 );
sha512_4way( &ctx.sha512, vhash, 64 );
sha512_4way_close( &ctx.sha512, vhash );
// A = haval parallel, B = Whirlpool serial
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], vmask ),
m256_zero );
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// if ( mm256_any_set_256( vh_mask ) ) //4
// {
haval256_5_4way_init( &ctx.haval );
haval256_5_4way( &ctx.haval, vhash, 64 );
haval256_5_4way_close( &ctx.haval, vhashA );
memset( &vhashA[8<<2], 0, 32<<2 );
// }
// if ( !( hash0[0] & mask ) )
// {
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
// }
// if ( !( hash2[0] & mask ) )
// {
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash1, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
// }
// if ( !( hash2[0] & mask ) )
// {
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash2, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
// }
// if ( !( hash3[0] & mask ) )
// {
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash3, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
// }
mm256_intrlv_4x64( vhashB, hash0, hash1, hash2, hash3, 512 );
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
bmw512_4way_init( &ctx.bmw );
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
memcpy(state, vhash, 32<<2 );
}
int scanhash_hmq1725_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
// uint32_t *hash7 = &(hash[7<<2]);
// uint32_t lane_hash[8];
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t Htarg = ptarget[7];
uint64_t htmax[] = { 0, 0xF, 0xFF,
0xFFF, 0xFFFF, 0x10000000 };
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
mm256_bswap_intrlv80_4x64( vdata, pdata );
for ( int m = 0; m < 6; m++ ) if ( Htarg <= htmax[m] )
{
uint32_t mask = masks[ m ];
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
hmq1725_4way_hash( hash, vdata );
for ( int i = 0; i < 4; i++ )
if ( ( (hash+(i<<3))[7] & mask ) == 0 )
{
if ( fulltest( (hash+(i<<3)), ptarget ) && !opt_benchmark )
{
pdata[19] = n + i;
submit_solution( work, (hash+(i<<3)), mythr, i );
}
}
n += 4;
} while ( ( n < max_nonce-4 ) && !work_restart[thr_id].restart );
break;
}
*hashes_done = n - first_nonce + 1;
return 0;
}
#endif // HMQ1725_4WAY