Files
cpuminer-opt-gpu/algo/luffa/luffa-hash-2way.c
Jay D Dee d60a268972 v3.8.2
2018-02-15 14:48:50 -05:00

584 lines
20 KiB
C

/*
* luffa_for_sse2.c
* Version 2.0 (Sep 15th 2009)
*
* Copyright (C) 2008-2009 Hitachi, Ltd. All rights reserved.
*
* Hitachi, Ltd. is the owner of this software and hereby grant
* the U.S. Government and any interested party the right to use
* this software for the purposes of the SHA-3 evaluation process,
* notwithstanding that this software is copyrighted.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <string.h>
#include <immintrin.h>
#include "luffa-hash-2way.h"
#if defined(__AVX2__)
#include "avxdefs.h"
#define MASK _mm256_set_epi32( 0UL, 0UL, 0UL, 0xffffffffUL, \
0UL, 0UL, 0UL, 0xffffffffUL )
#define ADD_CONSTANT(a,b,c0,c1)\
a = _mm256_xor_si256(a,c0);\
b = _mm256_xor_si256(b,c1);\
#define MULT2(a0,a1) \
do { \
register __m256i b = _mm256_xor_si256( a0, \
_mm256_shuffle_epi32( _mm256_and_si256(a1,MASK), 16 ) ); \
a0 = _mm256_or_si256( _mm256_srli_si256(b,4), _mm256_slli_si256(a1,12) ); \
a1 = _mm256_or_si256( _mm256_srli_si256(a1,4), _mm256_slli_si256(b,12) ); \
} while(0)
// confirm pointer arithmetic
// ok but use array indexes
#define STEP_PART(x,c,t)\
SUBCRUMB(*x,*(x+1),*(x+2),*(x+3),*t);\
SUBCRUMB(*(x+5),*(x+6),*(x+7),*(x+4),*t);\
MIXWORD(*x,*(x+4),*t,*(t+1));\
MIXWORD(*(x+1),*(x+5),*t,*(t+1));\
MIXWORD(*(x+2),*(x+6),*t,*(t+1));\
MIXWORD(*(x+3),*(x+7),*t,*(t+1));\
ADD_CONSTANT(*x, *(x+4), *c, *(c+1));
#define SUBCRUMB(a0,a1,a2,a3,t)\
t = _mm256_load_si256(&a0);\
a0 = _mm256_or_si256(a0,a1);\
a2 = _mm256_xor_si256(a2,a3);\
a1 = _mm256_andnot_si256(a1, m256_neg1 );\
a0 = _mm256_xor_si256(a0,a3);\
a3 = _mm256_and_si256(a3,t);\
a1 = _mm256_xor_si256(a1,a3);\
a3 = _mm256_xor_si256(a3,a2);\
a2 = _mm256_and_si256(a2,a0);\
a0 = _mm256_andnot_si256(a0, m256_neg1 );\
a2 = _mm256_xor_si256(a2,a1);\
a1 = _mm256_or_si256(a1,a3);\
t = _mm256_xor_si256(t,a1);\
a3 = _mm256_xor_si256(a3,a2);\
a2 = _mm256_and_si256(a2,a1);\
a1 = _mm256_xor_si256(a1,a0);\
a0 = _mm256_load_si256(&t);\
#define MIXWORD(a,b,t1,t2)\
b = _mm256_xor_si256(a,b);\
t1 = _mm256_slli_epi32(a,2);\
t2 = _mm256_srli_epi32(a,30);\
a = _mm256_or_si256(t1,t2);\
a = _mm256_xor_si256(a,b);\
t1 = _mm256_slli_epi32(b,14);\
t2 = _mm256_srli_epi32(b,18);\
b = _mm256_or_si256(t1,t2);\
b = _mm256_xor_si256(a,b);\
t1 = _mm256_slli_epi32(a,10);\
t2 = _mm256_srli_epi32(a,22);\
a = _mm256_or_si256(t1,t2);\
a = _mm256_xor_si256(a,b);\
t1 = _mm256_slli_epi32(b,1);\
t2 = _mm256_srli_epi32(b,31);\
b = _mm256_or_si256(t1,t2);
#define STEP_PART2(a0,a1,t0,t1,c0,c1,tmp0,tmp1)\
a1 = _mm256_shuffle_epi32(a1,147);\
t0 = _mm256_load_si256(&a1);\
a1 = _mm256_unpacklo_epi32(a1,a0);\
t0 = _mm256_unpackhi_epi32(t0,a0);\
t1 = _mm256_shuffle_epi32(t0,78);\
a0 = _mm256_shuffle_epi32(a1,78);\
SUBCRUMB(t1,t0,a0,a1,tmp0);\
t0 = _mm256_unpacklo_epi32(t0,t1);\
a1 = _mm256_unpacklo_epi32(a1,a0);\
a0 = _mm256_load_si256(&a1);\
a0 = _mm256_unpackhi_epi64(a0,t0);\
a1 = _mm256_unpacklo_epi64(a1,t0);\
a1 = _mm256_shuffle_epi32(a1,57);\
MIXWORD(a0,a1,tmp0,tmp1);\
ADD_CONSTANT(a0,a1,c0,c1);
#define NMLTOM768(r0,r1,r2,s0,s1,s2,s3,p0,p1,p2,q0,q1,q2,q3)\
s2 = _mm256_load_si256(&r1);\
q2 = _mm256_load_si256(&p1);\
r2 = _mm256_shuffle_epi32(r2,216);\
p2 = _mm256_shuffle_epi32(p2,216);\
r1 = _mm256_unpacklo_epi32(r1,r0);\
p1 = _mm256_unpacklo_epi32(p1,p0);\
s2 = _mm256_unpackhi_epi32(s2,r0);\
q2 = _mm256_unpackhi_epi32(q2,p0);\
s0 = _mm256_load_si256(&r2);\
q0 = _mm256_load_si256(&p2);\
r2 = _mm256_unpacklo_epi64(r2,r1);\
p2 = _mm256_unpacklo_epi64(p2,p1);\
s1 = _mm256_load_si256(&s0);\
q1 = _mm256_load_si256(&q0);\
s0 = _mm256_unpackhi_epi64(s0,r1);\
q0 = _mm256_unpackhi_epi64(q0,p1);\
r2 = _mm256_shuffle_epi32(r2,225);\
p2 = _mm256_shuffle_epi32(p2,225);\
r0 = _mm256_load_si256(&s1);\
p0 = _mm256_load_si256(&q1);\
s0 = _mm256_shuffle_epi32(s0,225);\
q0 = _mm256_shuffle_epi32(q0,225);\
s1 = _mm256_unpacklo_epi64(s1,s2);\
q1 = _mm256_unpacklo_epi64(q1,q2);\
r0 = _mm256_unpackhi_epi64(r0,s2);\
p0 = _mm256_unpackhi_epi64(p0,q2);\
s2 = _mm256_load_si256(&r0);\
q2 = _mm256_load_si256(&p0);\
s3 = _mm256_load_si256(&r2);\
q3 = _mm256_load_si256(&p2);\
#define MIXTON768(r0,r1,r2,r3,s0,s1,s2,p0,p1,p2,p3,q0,q1,q2)\
s0 = _mm256_load_si256(&r0);\
q0 = _mm256_load_si256(&p0);\
s1 = _mm256_load_si256(&r2);\
q1 = _mm256_load_si256(&p2);\
r0 = _mm256_unpackhi_epi32(r0,r1);\
p0 = _mm256_unpackhi_epi32(p0,p1);\
r2 = _mm256_unpackhi_epi32(r2,r3);\
p2 = _mm256_unpackhi_epi32(p2,p3);\
s0 = _mm256_unpacklo_epi32(s0,r1);\
q0 = _mm256_unpacklo_epi32(q0,p1);\
s1 = _mm256_unpacklo_epi32(s1,r3);\
q1 = _mm256_unpacklo_epi32(q1,p3);\
r1 = _mm256_load_si256(&r0);\
p1 = _mm256_load_si256(&p0);\
r0 = _mm256_unpackhi_epi64(r0,r2);\
p0 = _mm256_unpackhi_epi64(p0,p2);\
s0 = _mm256_unpackhi_epi64(s0,s1);\
q0 = _mm256_unpackhi_epi64(q0,q1);\
r1 = _mm256_unpacklo_epi64(r1,r2);\
p1 = _mm256_unpacklo_epi64(p1,p2);\
s2 = _mm256_load_si256(&r0);\
q2 = _mm256_load_si256(&p0);\
s1 = _mm256_load_si256(&r1);\
q1 = _mm256_load_si256(&p1);\
#define NMLTOM1024(r0,r1,r2,r3,s0,s1,s2,s3,p0,p1,p2,p3,q0,q1,q2,q3)\
s1 = _mm256_load_si256(&r3);\
q1 = _mm256_load_si256(&p3);\
s3 = _mm256_load_si256(&r3);\
q3 = _mm256_load_si256(&p3);\
s1 = _mm256_unpackhi_epi32(s1,r2);\
q1 = _mm256_unpackhi_epi32(q1,p2);\
s3 = _mm256_unpacklo_epi32(s3,r2);\
q3 = _mm256_unpacklo_epi32(q3,p2);\
s0 = _mm256_load_si256(&s1);\
q0 = _mm256_load_si256(&q1);\
s2 = _mm256_load_si256(&s3);\
q2 = _mm256_load_si256(&q3);\
r3 = _mm256_load_si256(&r1);\
p3 = _mm256_load_si256(&p1);\
r1 = _mm256_unpacklo_epi32(r1,r0);\
p1 = _mm256_unpacklo_epi32(p1,p0);\
r3 = _mm256_unpackhi_epi32(r3,r0);\
p3 = _mm256_unpackhi_epi32(p3,p0);\
s0 = _mm256_unpackhi_epi64(s0,r3);\
q0 = _mm256_unpackhi_epi64(q0,p3);\
s1 = _mm256_unpacklo_epi64(s1,r3);\
q1 = _mm256_unpacklo_epi64(q1,p3);\
s2 = _mm256_unpackhi_epi64(s2,r1);\
q2 = _mm256_unpackhi_epi64(q2,p1);\
s3 = _mm256_unpacklo_epi64(s3,r1);\
q3 = _mm256_unpacklo_epi64(q3,p1);
#define MIXTON1024(r0,r1,r2,r3,s0,s1,s2,s3,p0,p1,p2,p3,q0,q1,q2,q3)\
NMLTOM1024(r0,r1,r2,r3,s0,s1,s2,s3,p0,p1,p2,p3,q0,q1,q2,q3);
/* initial values of chaining variables */
static const uint32 IV[40] __attribute((aligned(32))) = {
0xdbf78465,0x4eaa6fb4,0x44b051e0,0x6d251e69,
0xdef610bb,0xee058139,0x90152df4,0x6e292011,
0xde099fa3,0x70eee9a0,0xd9d2f256,0xc3b44b95,
0x746cd581,0xcf1ccf0e,0x8fc944b3,0x5d9b0557,
0xad659c05,0x04016ce5,0x5dba5781,0xf7efc89d,
0x8b264ae7,0x24aa230a,0x666d1836,0x0306194f,
0x204b1f67,0xe571f7d7,0x36d79cce,0x858075d5,
0x7cde72ce,0x14bcb808,0x57e9e923,0x35870c6a,
0xaffb4363,0xc825b7c7,0x5ec41e22,0x6c68e9be,
0x03e86cea,0xb07224cc,0x0fc688f1,0xf5df3999
};
/* Round Constants */
static const uint32 CNS_INIT[128] __attribute((aligned(32))) = {
0xb213afa5,0xfc20d9d2,0xb6de10ed,0x303994a6,
0xe028c9bf,0xe25e72c1,0x01685f3d,0xe0337818,
0xc84ebe95,0x34552e25,0x70f47aae,0xc0e65299,
0x44756f91,0xe623bb72,0x05a17cf4,0x441ba90d,
0x4e608a22,0x7ad8818f,0x0707a3d4,0x6cc33a12,
0x7e8fce32,0x5c58a4a4,0xbd09caca,0x7f34d442,
0x56d858fe,0x8438764a,0x1c1e8f51,0xdc56983e,
0x956548be,0x1e38e2e7,0xf4272b28,0x9389217f,
0x343b138f,0xbb6de032,0x707a3d45,0x1e00108f,
0xfe191be2,0x78e38b9d,0x144ae5cc,0xe5a8bce6,
0xd0ec4e3d,0xedb780c8,0xaeb28562,0x7800423d,
0x3cb226e5,0x27586719,0xfaa7ae2b,0x5274baf4,
0x2ceb4882,0xd9847356,0xbaca1589,0x8f5b7882,
0x5944a28e,0x36eda57f,0x2e48f1c1,0x26889ba7,
0xb3ad2208,0xa2c78434,0x40a46f3e,0x96e1db12,
0xa1c4c355,0x703aace7,0xb923c704,0x9a226e9d,
0x00000000,0x00000000,0x00000000,0xf0d2e9e3,
0x00000000,0x00000000,0x00000000,0x5090d577,
0x00000000,0x00000000,0x00000000,0xac11d7fa,
0x00000000,0x00000000,0x00000000,0x2d1925ab,
0x00000000,0x00000000,0x00000000,0x1bcb66f2,
0x00000000,0x00000000,0x00000000,0xb46496ac,
0x00000000,0x00000000,0x00000000,0x6f2d9bc9,
0x00000000,0x00000000,0x00000000,0xd1925ab0,
0x00000000,0x00000000,0x00000000,0x78602649,
0x00000000,0x00000000,0x00000000,0x29131ab6,
0x00000000,0x00000000,0x00000000,0x8edae952,
0x00000000,0x00000000,0x00000000,0x0fc053c3,
0x00000000,0x00000000,0x00000000,0x3b6ba548,
0x00000000,0x00000000,0x00000000,0x3f014f0c,
0x00000000,0x00000000,0x00000000,0xedae9520,
0x00000000,0x00000000,0x00000000,0xfc053c31
};
__m256i CNS[32];
/***************************************************/
/* Round function */
/* state: hash context */
void rnd512_2way( luffa_2way_context *state, __m256i *msg )
{
__m256i t0, t1;
__m256i *chainv = state->chainv;
__m256i msg0, msg1;
__m256i tmp[2];
__m256i x[8];
t0 = chainv[0];
t1 = chainv[1];
t0 = _mm256_xor_si256( t0, chainv[2] );
t1 = _mm256_xor_si256( t1, chainv[3] );
t0 = _mm256_xor_si256( t0, chainv[4] );
t1 = _mm256_xor_si256( t1, chainv[5] );
t0 = _mm256_xor_si256( t0, chainv[6] );
t1 = _mm256_xor_si256( t1, chainv[7] );
t0 = _mm256_xor_si256( t0, chainv[8] );
t1 = _mm256_xor_si256( t1, chainv[9] );
MULT2( t0, t1 );
msg0 = _mm256_shuffle_epi32( msg[0], 27 );
msg1 = _mm256_shuffle_epi32( msg[1], 27 );
chainv[0] = _mm256_xor_si256( chainv[0], t0 );
chainv[1] = _mm256_xor_si256( chainv[1], t1 );
chainv[2] = _mm256_xor_si256( chainv[2], t0 );
chainv[3] = _mm256_xor_si256( chainv[3], t1 );
chainv[4] = _mm256_xor_si256( chainv[4], t0 );
chainv[5] = _mm256_xor_si256( chainv[5], t1 );
chainv[6] = _mm256_xor_si256( chainv[6], t0 );
chainv[7] = _mm256_xor_si256( chainv[7], t1 );
chainv[8] = _mm256_xor_si256( chainv[8], t0 );
chainv[9] = _mm256_xor_si256( chainv[9], t1 );
t0 = chainv[0];
t1 = chainv[1];
MULT2( chainv[0], chainv[1]);
chainv[0] = _mm256_xor_si256( chainv[0], chainv[2] );
chainv[1] = _mm256_xor_si256( chainv[1], chainv[3] );
MULT2( chainv[2], chainv[3]);
chainv[2] = _mm256_xor_si256(chainv[2], chainv[4]);
chainv[3] = _mm256_xor_si256(chainv[3], chainv[5]);
MULT2( chainv[4], chainv[5]);
chainv[4] = _mm256_xor_si256(chainv[4], chainv[6]);
chainv[5] = _mm256_xor_si256(chainv[5], chainv[7]);
MULT2( chainv[6], chainv[7]);
chainv[6] = _mm256_xor_si256(chainv[6], chainv[8]);
chainv[7] = _mm256_xor_si256(chainv[7], chainv[9]);
MULT2( chainv[8], chainv[9]);
chainv[8] = _mm256_xor_si256( chainv[8], t0 );
chainv[9] = _mm256_xor_si256( chainv[9], t1 );
t0 = chainv[8];
t1 = chainv[9];
MULT2( chainv[8], chainv[9]);
chainv[8] = _mm256_xor_si256( chainv[8], chainv[6] );
chainv[9] = _mm256_xor_si256( chainv[9], chainv[7] );
MULT2( chainv[6], chainv[7]);
chainv[6] = _mm256_xor_si256( chainv[6], chainv[4] );
chainv[7] = _mm256_xor_si256( chainv[7], chainv[5] );
MULT2( chainv[4], chainv[5]);
chainv[4] = _mm256_xor_si256( chainv[4], chainv[2] );
chainv[5] = _mm256_xor_si256( chainv[5], chainv[3] );
MULT2( chainv[2], chainv[3] );
chainv[2] = _mm256_xor_si256( chainv[2], chainv[0] );
chainv[3] = _mm256_xor_si256( chainv[3], chainv[1] );
MULT2( chainv[0], chainv[1] );
chainv[0] = _mm256_xor_si256( _mm256_xor_si256( chainv[0], t0 ), msg0 );
chainv[1] = _mm256_xor_si256( _mm256_xor_si256( chainv[1], t1 ), msg1 );
MULT2( msg0, msg1);
chainv[2] = _mm256_xor_si256( chainv[2], msg0 );
chainv[3] = _mm256_xor_si256( chainv[3], msg1 );
MULT2( msg0, msg1);
chainv[4] = _mm256_xor_si256( chainv[4], msg0 );
chainv[5] = _mm256_xor_si256( chainv[5], msg1 );
MULT2( msg0, msg1);
chainv[6] = _mm256_xor_si256( chainv[6], msg0 );
chainv[7] = _mm256_xor_si256( chainv[7], msg1 );
MULT2( msg0, msg1);
chainv[8] = _mm256_xor_si256( chainv[8], msg0 );
chainv[9] = _mm256_xor_si256( chainv[9], msg1 );
MULT2( msg0, msg1);
chainv[3] = _mm256_or_si256( _mm256_slli_epi32( chainv[3], 1 ),
_mm256_srli_epi32( chainv[3], 31 ) );
chainv[5] = _mm256_or_si256( _mm256_slli_epi32( chainv[5], 2 ),
_mm256_srli_epi32( chainv[5], 30 ) );
chainv[7] = _mm256_or_si256( _mm256_slli_epi32( chainv[7], 3 ),
_mm256_srli_epi32( chainv[7], 29 ) );
chainv[9] = _mm256_or_si256( _mm256_slli_epi32( chainv[9], 4 ),
_mm256_srli_epi32( chainv[9], 28 ) );
NMLTOM1024( chainv[0], chainv[2], chainv[4], chainv[6],
x[0], x[1], x[2], x[3],
chainv[1],chainv[3],chainv[5],chainv[7],
x[4], x[5], x[6], x[7] );
STEP_PART( &x[0], &CNS[ 0], &tmp[0] );
STEP_PART( &x[0], &CNS[ 2], &tmp[0] );
STEP_PART( &x[0], &CNS[ 4], &tmp[0] );
STEP_PART( &x[0], &CNS[ 6], &tmp[0] );
STEP_PART( &x[0], &CNS[ 8], &tmp[0] );
STEP_PART( &x[0], &CNS[10], &tmp[0] );
STEP_PART( &x[0], &CNS[12], &tmp[0] );
STEP_PART( &x[0], &CNS[14], &tmp[0] );
MIXTON1024( x[0], x[1], x[2], x[3],
chainv[0], chainv[2], chainv[4],chainv[6],
x[4], x[5], x[6], x[7],
chainv[1],chainv[3],chainv[5],chainv[7]);
/* Process last 256-bit block */
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[16], CNS[17],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[18], CNS[19],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[20], CNS[21],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[22], CNS[23],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[24], CNS[25],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[26], CNS[27],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[28], CNS[29],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t0, t1, CNS[30], CNS[31],
tmp[0], tmp[1] );
}
/***************************************************/
/* Finalization function */
/* state: hash context */
/* b[8]: hash values */
void finalization512_2way( luffa_2way_context *state, uint32 *b )
{
uint32 hash[8] __attribute((aligned(64)));
__m256i* chainv = state->chainv;
__m256i t[2];
__m256i zero[2];
zero[0] = zero[1] = _mm256_setzero_si256();
/*---- blank round with m=0 ----*/
rnd512_2way( state, zero );
t[0] = chainv[0];
t[1] = chainv[1];
t[0] = _mm256_xor_si256( t[0], chainv[2] );
t[1] = _mm256_xor_si256( t[1], chainv[3] );
t[0] = _mm256_xor_si256( t[0], chainv[4] );
t[1] = _mm256_xor_si256( t[1], chainv[5] );
t[0] = _mm256_xor_si256( t[0], chainv[6] );
t[1] = _mm256_xor_si256( t[1], chainv[7] );
t[0] = _mm256_xor_si256( t[0], chainv[8] );
t[1] = _mm256_xor_si256( t[1], chainv[9] );
t[0] = _mm256_shuffle_epi32( t[0], 27 );
t[1] = _mm256_shuffle_epi32( t[1], 27 );
_mm256_store_si256( (__m256i*)&hash[0], t[0] );
_mm256_store_si256( (__m256i*)&hash[8], t[1] );
casti_m256i( b, 0 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
casti_m256i( b, 1 ) = mm256_bswap_32( casti_m256i( hash, 1 ) );
rnd512_2way( state, zero );
t[0] = chainv[0];
t[1] = chainv[1];
t[0] = _mm256_xor_si256( t[0], chainv[2] );
t[1] = _mm256_xor_si256( t[1], chainv[3] );
t[0] = _mm256_xor_si256( t[0], chainv[4] );
t[1] = _mm256_xor_si256( t[1], chainv[5] );
t[0] = _mm256_xor_si256( t[0], chainv[6] );
t[1] = _mm256_xor_si256( t[1], chainv[7] );
t[0] = _mm256_xor_si256( t[0], chainv[8] );
t[1] = _mm256_xor_si256( t[1], chainv[9] );
t[0] = _mm256_shuffle_epi32( t[0], 27 );
t[1] = _mm256_shuffle_epi32( t[1], 27 );
_mm256_store_si256( (__m256i*)&hash[0], t[0] );
_mm256_store_si256( (__m256i*)&hash[8], t[1] );
casti_m256i( b, 2 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
casti_m256i( b, 3 ) = mm256_bswap_32( casti_m256i( hash, 1 ) );
}
int luffa_2way_init( luffa_2way_context *state, int hashbitlen )
{
int i;
state->hashbitlen = hashbitlen;
for ( i=0; i<32; i++ ) CNS[i] =
_mm256_set_epi32( CNS_INIT[ (i<<2) + 3 ], CNS_INIT[ (i<<2) +2 ],
CNS_INIT[ (i<<2) + 1 ], CNS_INIT[ (i<<2) ],
CNS_INIT[ (i<<2) + 3 ], CNS_INIT[ (i<<2) +2 ],
CNS_INIT[ (i<<2) + 1 ], CNS_INIT[ (i<<2) ] );
for ( i=0; i<10; i++ ) state->chainv[i] =
_mm256_set_epi32( IV[ (i<<2) +3 ], IV[ (i<<2) +2 ],
IV[ (i<<2) +1 ], IV[ (i<<2) ],
IV[ (i<<2) +3 ], IV[ (i<<2) +2 ],
IV[ (i<<2) +1 ], IV[ (i<<2) ] );
((__m256i*)state->buffer)[0] = m256_zero;
((__m256i*)state->buffer)[1] = m256_zero;
return 0;
}
// Do not call luffa_update_close after having called luffa_update.
// Once luffa_update has been called only call luffa_update or luffa_close.
int luffa_2way_update( luffa_2way_context *state, const void *data,
size_t len )
{
__m256i *vdata = (__m256i*)data;
__m256i *buffer = (__m256i*)state->buffer;
__m256i msg[2];
int i;
int blocks = (int)len / 32;
state-> rembytes = (int)len % 32;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = mm256_bswap_32( vdata[ i ] );
msg[1] = mm256_bswap_32( vdata[ i+1 ] );
rnd512_2way( state, msg );
}
// 16 byte partial block exists for 80 byte len
// store in buffer for transform in final for midstate to work
if ( state->rembytes )
{
// remaining data bytes
buffer[0] = mm256_bswap_32( vdata[0] );
buffer[1] = _mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
}
return 0;
}
int luffa_2way_close( luffa_2way_context *state, void *hashval )
{
__m256i *buffer = (__m256i*)state->buffer;
__m256i msg[2];
// transform pad block
if ( state->rembytes )
// not empty, data is in buffer
rnd512_2way( state, buffer );
else
{ // empty pad block, constant data
msg[0] = _mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
msg[1] = m256_zero;
rnd512_2way( state, msg );
}
finalization512_2way( state, (uint32*)hashval );
if ( state->hashbitlen > 512 )
finalization512_2way( state, (uint32*)( hashval+128 ) );
return 0;
}
int luffa_2way_update_close( luffa_2way_context *state,
void *output, const void *data, size_t inlen )
{
// Optimized for integrals of 16 bytes, good for 64 and 80 byte len
const __m256i *vdata = (__m256i*)data;
__m256i msg[2];
int i;
const int blocks = (int)( inlen >> 5 );
state->rembytes = inlen & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = mm256_bswap_32( vdata[ 0 ] );
msg[1] = mm256_bswap_32( vdata[ 1 ] );
rnd512_2way( state, msg );
}
// 16 byte partial block exists for 80 byte len
if ( state->rembytes )
{
// padding of partial block
msg[0] = mm256_bswap_32( vdata[0] );
msg[1] = _mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
rnd512_2way( state, msg );
}
else
{
// empty pad block
msg[0] = _mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
msg[1] = m256_zero;
rnd512_2way( state, msg );
}
finalization512_2way( state, (uint32*)output );
if ( state->hashbitlen > 512 )
finalization512_2way( state, (uint32*)( output+128 ) );
return 0;
}
#endif